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Abstract

alternative proteasome inhibitor, MG132.

was assessed using antioxidants.

was ROS-dependent.

Background: The radiopharmaceutical '*'l-metaiodobenzylguanidine ("*'I-MIBG) is used for the targeted
radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of '*'I-MIBG's efficacy is
achieved by combination with the topoisomerase | inhibitor topotecan - currently being evaluated clinically.
Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the
proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in
combination with "*'I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by
bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the

Methods: Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome
inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by
combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation

Results: Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2¢) and
UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with
X-radiation, with "*'I-MIBG, or with "*'I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the
growth of human tumour xenografts in athymic mice when administered in combination with '*'I-MIBG and
topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity

Conclusions: Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with
"*'I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the
latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.
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Background

Neuroblastoma, the most common solid extra-cranial
tumour in children, accounts for approximately 15% of
all childhood cancer deaths. It is a disease of the post-
ganglionic sympathetic nervous system which commonly
arises in the adrenal gland. Most neuroblastoma cells ex-
press the noradrenaline transporter (NAT), a characteristic
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that enables diagnostic imaging and therapy using the
radiolabelled noradrenaline analogue metaiodobenzylgua-
nidine - **I-MIBG and "*'I-MIBG, respectively. Approxi-
mately 95% of tumours show affinity for MIBG [1].
Although "*'I-MIBG is associated with therapeutic success
in the form of long-term remissions and palliation, it is
likely that for maximum efficacy, there is a requirement
for this radiopharmaceutical to be administered in com-
bination with other chemotherapeutic agents [2]. We have
previously demonstrated the potential use of *'I-MIBG in
combination with the topoisomerase I inhibitor topotecan
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[3,4], the poly(ADP-ribose) polymerase (PARP) inhibitor
PJ34 [5] and disulfiram [6].

There is growing interest in targeting the proteasome
for anti-cancer therapy. Abnormally high proteasome ex-
pression and activity are observed in many cancer cells
and are closely related to cellular proliferation [7]. Prote-
olysis by the 26S proteasome is an essential metabolic
process which regulates the degradation of tumour sup-
pressors, transcription factors and proteins involved in
cell cycle control as well as mutant and damaged pro-
teins. Inhibition of proteasome function causes the ab-
normal accumulation of many intracellular proteins,
resulting in cell cycle arrest and apoptosis [8].

Cancer cells are more sensitive to the modulation of
proteasome activity than normal cells and proteasome in-
hibition increases the sensitivity of cancer cells to various
anti-cancer agents [9]. As well as having efficacy as single
agents, proteasome inhibitors have been demonstrated to
enhance the anti-tumour activity of other drugs, including
inhibitors of topoisomerase I [10] and histone deacetylase
[11]. Proteasome inhibition also sensitizes cancer cells to
radiation by down-regulation of the DNA damage re-
sponse [12], by prevention of the activation of radiation-
induced nuclear factor-kB (NF-kB) [9] and through cell
cycle arrest in the radiosensitive G2/M phase [13].

Bortezomib is the first proteasome inhibitor approved
by US FDA for the treatment of multiple myeloma. This
drug has been demonstrated to suppress tumour growth
and angiogenesis in solid tumours including breast,
prostate, lung, neuroblastoma, and mesothelioma [14].
Bortezomib's sensitization of cancer cells to radiation
treatment [15,16] also suggests it may be suitable for
combination with "*'I-MIBG therapy in neuroblastoma
patients. Indeed, bortezomib has recently been used in
combination with *°Y-ibritumomab or **Sm-lexidronam
for the treatment of non-Hodgkin lymphoma or multiple
myeloma, respectively [17,18]. In experimental models
of neuroblastoma, bortezomib has been shown to inhibit
cell proliferation; increase survival of human tumour xe-
nografts in athymic mice; inhibit angiogenesis [19,20];
and enhance the cytotoxicity of topotecan [10], doce-
taxel [21], and retinoids [22]. Acquired drug resistance is
an important cause of neuroblastoma treatment failure
and relapse [23]. Encouragingly, bortezomib is not a
substrate for multidrug resistance-associated proteins
[19], and it induces cell death regardless of p53 status
[20]. Furthermore, in children, bortezomib is associated
with minimal systemic toxicity [24].

Normal cells have relatively low concentrations of react-
ive oxygen species (ROS) and high antioxidant capacity,
whereas cancer cells generate abnormally high levels of
ROS due to aberrant metabolism [25]. Bortezomib-
induced apoptotic signalling in cultured human cancer
cells is initiated by ROS, and apoptosis is prevented by
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administration of antioxidants [26]. Bortezomib-induced
ROS generation may also be responsible for some side ef-
fects associated with the drug which currently limit its
clinical use. In particular, peripheral neuropathy, which
can affect up to 30% of patients receiving chemotherapy,
may be induced by ROS [27]. Therefore, in order to min-
imise normal tissue toxicity, it is necessary to characterize
the mode of action of bortezomib and alternative prote-
asome inhibitors.

In this study, we determined the capacity of bortezo-
mib to enhance the sensitivity of NAT-expressing cells
to radiotherapy in the form X-radiation or '*'I-MIBG.
Furthermore, triple combination therapy, consisting of
bortezomib with '*'I-MIBG + topotecan, was evaluated
in comparative investigations. We also compared the
mechanisms of cytotoxicity of bortezomib with a differ-
ent class of proteasome inhibitor, MG132, with respect
to dependence on ROS-induced cell death.

Methods

Reagents

Bortezomib was a gift from Millenium Pharmaceuticals
(Cambridge, MA, USA), MG132 was purchased from
Sigma-Aldrich (Dorset, UK) and topotecan from Axxora
UK Ltd. (Nottingham, UK). All cell culture media and
supplements were purchased from Life Technologies
Ltd. (Paisley, UK), and all other chemicals were from
Sigma-Aldrich (Dorset, UK). No-carrier-added 181y
MIBG was prepared using a solid-phase system wherein
the precursor of MIBG was attached to an insoluble
polymer via the tin-aryl bond [28].

Cell culture

Human neuroblastoma-derived SK-N-BE(2c) cells were
purchased from the American Type Culture Collection
(Manassas, VA, USA). The UVW cell line was derived
from a human glioblastoma [29]. Cell lines were authenti-
cated in-house using the AmpF/STR Identifiler kit (Ap-
plied Biosytems, Warrington, UK). SK-N-BE(2c) cells were
maintained in DMEM containing 15% (v/v) fetal calf serum
(FCS). UVW cells were transfected to express the NAT
gene, facilitating the active uptake of MIBG, as previously
described [30] and were maintained in MEM, containing
10% (v/v) FECS and 1 mg/ml geneticin. Transfectants were
designated as UWV/NAT.

Clonogenic survival assay

Cells were seeded in 25-cm? flasks at 10> cells/flask. When
cultures were in exponential growth phase, medium was re-
moved and replaced with fresh medium containing the pro-
teasome inhibitors bortezomib or MG132, the antioxidants
N-acetyl-L-cysteine (NAC, 1 mM) or tiron (4,5-Dihydroxy-
1,3-benzenedisulfonic acid disodium salt monohydrate,
1 mM), or various combinations of these agents. This
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enabled a comparison of NAC and tiron with respect to
the contribution of ROS generation to the cytotoxicity
of the proteasome inhibitors. Cells were incubated with
drugs for 24 h at 37 C in 5% CO,. In separate treat-
ments, cells were exposed to X-rays using an RS225
irradiator (Xstrahl, Surrey, UK) at a dose-rate of 1.33
Gy/min, then incubated for 24 h at 37°C in 5% CO,. After
treatment, cells were seeded for clonogenic assay as previ-
ously described [3,4].

Combination treatments

The cytotoxic interaction between bortezomib and radi-
ation was examined using clonogenic assay and combin-
ation index analysis, according to the method of Chou
and Talalay [31]. In this analysis, the toxicity induced by
single drugs and scheduled combinations is investigated
using the equation CI=(D);/(Dx); + (D),/(Dx),, where
(D); and (D), are the doses of each agent which inhibit x
% of cell growth when used in combination and (Dx);
and (Dx), are the doses of each drug which inhibit x% of
colonies when used as single agents.

Initially, exponentially growing cells were treated with
each agent alone to determine effective doses. Cells were
subsequently treated with a range of doses of bortezomib
and radiation, using a fixed dose ratio of bortezomib to ra-
diation, so that the proportional contribution of each
agent in the mixtures would be the same at all treatment
intensities. The fixed dose ratio was equivalent to 7.6 nM
bortezomib:3.8 Gy X-radiation, based on their respective
ICs, values. For combinations of **'I-MIBG and bortezo-
mib, the fixed dose ratio was 7.6 nM bortezomib:1.5 MBq
13I1_MIBG. For the purposes of combination index ana-
lysis, simultaneous treatment with {**'I-MIBG + topote-
can} was considered as one agent, and the fixed dose ratio
was 7.6 nM:0.5 MBq:4.9 nM (bortezomib:"*'I-MIBG:topo-
tecan), as this dose killed 50% of clonogens when adminis-
tered simultaneously in combination. Three different
treatment schedules were assessed: bortezomib given 24 h
before, after or simultaneously with radiation. The effect-
iveness of combinations of bortezomib and radiation was
quantified by determining a combination index (CI) at
various levels of cytotoxicity. CI <1, CI =1 and CI >1 indi-
cate synergism, additivity and antagonism, respectively.

Tumour xenografts

Six-week-old female, congenitally athymic mice of strain
CD1 nu/nu were obtained from Charles River plc (Kent,
UK). In vivo experiments were carried out in accordance
with the Animals (Scientific Procedures) Act 1986. Tu-
mours in athymic mice formed from SK-N-BE(2c) and
UVW/NAT cells express the NAT enabling active uptake
of *'[-MIBG. Subcutaneous tumour growth was estab-
lished as previously described [3]. Mice were used for
experimental therapy when the tumour volumes had
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reached approximately 100 mm?. To monitor potential
toxicity, experimental animals were examined daily for
signs of distress and weighed weekly. Mice were ran-
domized into treatment groups, each consisting of six
animals that received: PBS solution; 0.8 mg/kg bortezo-
mib solution; simultaneous administration of *'I-MIBG
(18 or 5 MBq for SK-N-BE(2c) or UVW/NAT, respect-
ively) and topotecan (1.75 or 0.875 mg/kg for SK-N-BE
(2c) or UVW/NAT, respectively); or administration of
bortezomib 24 h after {**'I-MIBG + topotecan} - all by ip
injection. The indicated activities of '*'[-MIBG adminis-
tered to the mice were shown previously by us to induce
significant delay of growth but incomplete sterilization of
SK-N-BE(2c) and UVW/NAT xenografts, and the simultan-
eous administration of '*'I-MIBG + topotecan was demon-
strated to be the most effective schedule [3]. Bortezomib
doses (0.5 to 1 mg/kg) were similar to those used in previ-
ous preclinical studies [9]. Tumours were measured with
callipers immediately before treatment and twice weekly
thereafter. On the assumption of ellipsoidal geometry,
diameter measurements were converted to an approximate
tumour volume by multiplying half the longest diameter by
the square of the mean of the two shorter diameters.

Statistics

Data are presented as means + standard error of the
mean (SEM), unless otherwise stated, with the number
of independent repetitions provided in the legend to
each figure. Statistical significance was determined using
Student's ¢ test. A P value <0.05 was considered to be
statistically significant and < 0.01 highly significant.

Results

Bortezomib is a radiosensitizer

When given as a single agent at a dose of 1 to 30 nM,
bortezomib decreased the survival of clonogens of both
SK-N-BE(2¢) cells and UVW/NAT cells (Figure 1A) in a
concentration-dependent manner. Following treatment
of either cell line with bortezomib at concentrations > 10
nM, clonogenic cell kill was highly significantly greater
than that of untreated control cultures. The decreased
clonogenic capacity of SK-N-BE(2c) and UVW/NAT
cells resulting from X-irradiation was enhanced by the
treatment with bortezomib at 3 and 5 nM (Figures 1B,C).
The ICs, values obtained for SK-N-BE(2c) cells exposed
to X-radiation alone, or in the presence of 3 or 5 nM
bortezomib were 3.72 + 0.16, 2.82 + 0.20 and 2.42 + 0.15 Gy,
respectively. For UVW/NAT cells, the IC5q values were
4.23+0.02, 2.94+0.12 and 2.73 £ 0.11 Gy for X-radiation
alone and 3 and 5 nM bortezomib, respectively. These
results indicate dose enhancement ratios at the 50% level
of toxicity (DERsp), in SK-N-BE(2c) cells and UVW/NAT
cells respectively, of 1.44 and 1.32 for 3 nM bortezomib,
and 1.54 and 1.55 for 5 nM bortezomib.
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Figure 1 Cytotoxicity and radiosensitizing effect of bortezomib. (A) Clonogenic survival after exposure of SK-N-BE(2c) cells or UYW/NAT cells
to bortezomib for 24 h. Clonogenic survival of (B) SK-N-BE(2¢) cells and (C) UVW/NAT cells simultaneously exposed to X-radiation and 3 or 5 nM
bortezomib for 24 h. Data are means + SEM, n =4; significance of differences: * p < 0.05, ** p <0.01 from untreated control, T p <0.05, 1 p <0.01

from radiation treatment alone.

Representative CI values for treatment of SK-N-BE(2c)
and UVW/NAT cells with bortezomib and X-radiation are
shown in Table 1. These indicated that supra-additive clo-
nogenic cell kill (CI<1) was dependent on both the dose
and the schedule. Synergism was most appreciable follow-
ing treatment with high dosage of both agents and the ad-
ministration of bortezomib 24 h after X-radiation (Table 1).

Similarly, the interaction between bortezomib and
IL_MIBG suggested that the administration schedule
was an important determinant of synergism. For SK-N-
BE(2c) and UVW/NAT cells, synergism was evident in
response to the administration of bortezomib 24 h after
BI.MIBG or simultaneous treatment with both agents
(Table 2). Administration of bortezomib 24 h before

Table 1 Synergism analysis of various schedules of administration of bortezomib and X-radiation

Effect Combination index* Combination index*
level SK-N-BE(2¢) cells UVW/NAT cells

Simultaneous BZ before BZ after Simultaneous BZ before BZ after
ED5s 112 1.16 1.16 1.02 0.90 077
EDso 0.94 1.04 0.95 0.95 084 0.79
EDss 0.80 0.93 0.78 0.89 0.80 0.80

Asterisk * indicates that the combination index values are means of four experiments. They were derived from median effect analysis, according to independent
action model, for three different levels of toxicity and three alternative schedules of administration. Cl values < 1 indicate synergy and values > 1 indicate partial
antagonism. Administration schedules were simultaneous, bortezomib 24 h before X-radiation (BZ before) and bortezomib 24 h after X-radiation (BZ after). Itali-
cised values indicate synergy.
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Table 2 Synergism analysis of various schedules of administration of bortezomib and '*'I-MIBG

Effect Combination index* Combination index*
level SK-N-BE(2¢) cells UVW/NAT cells

Simultaneous BZ before BZ after Simultaneous BZ before BZ after
ED5s 0.82 1.34 0.73 0.56 1.14 0.40
EDso 0.65 130 0.63 0.70 1.11 049
EDss 0.94 226 0.96 148 1.86 1.08

Asterisk * indicates that the combination index values are means of four experiments. Administration schedules were simultaneous, bortezomib 24 h before

131

MIBG (BZ before) and bortezomib 24 h after '*'I-MIBG (BZ after). Italicised values indicate synergy.

I311_MIBG had an antagonistic effect (CI>1) upon the
toxicity to both cell lines at all combination doses.

Three-way combination treatment consisted of bortezo-
mib and {"*'I-MIBG + topotecan} - the latter two agents
being given simultaneously [3]. Supra-additive clonogenic
cell kill was observed only when bortezomib was adminis-
tered 24 h after {**'I-MIBG + topotecan} (Table 3).

Bortezomib enhances tumour growth delay

In vitro experimental results indicated no enhancement of
tumour cell kill by scheduling bortezomib 24 h before
{"*}I- MIBG + topotecan} or simultaneous administration
of the components of the triple combination. Therefore, in
order to reduce the number of experimental animals, the
latter schedules were not administered to athymic mice
bearing xenografts. None of the animals in this study
showed sign of distress. The effects of agents administered
alone or in combination on the growth in athymic mice of
xenografts derived from SK-N-BE(2c) and UVW/NAT cells
are shown in Figure 2. Bortezomib alone induced a slight
delay in the growth of SK-N-BE(2c) tumours. The time
taken to increase tumour volume fivefold (z5) was 14.7 days,
compared to untreated control 75 of 12.3 days. Simultan-
eous administration of {**'I-MIBG + topotecan} induced
a similar delay in the growth of SK-N-BE(2c) xenografts
(r5 =15.8 days). However, bortezomib administered 24 h
after {**'I-MIBG + topotecan} resulted in enhanced tumour
growth delay, manifest by a 75 value of 28.5 days.

In xenografts derived from UVW/NAT cells, bortezomib
alone had no effect on growth rate, exemplified by 75
values of 16.0 and 15.9 days for untreated control groups
and bortezomib, respectively. In contrast, simultaneous

administration of **'I-MIBG and topotecan induced an en-
hancement of growth delay (75 = 18.2 days) compared with
PBS-treated controls. Bortezomib administered 24 h after
{**}I- MIBG + topotecan} resulted in a failure by tumours
to achieve a fivefold increase in volume over 42 days.
Therefore, in xenografts derived from either SK-N-BE(2c)
or UVW/NAT cells, the triple combination, consisting of
bortezomib administered 24 h after {**'I- MIBG + topote-
can}, induced significantly greater growth delay than borte-
zomib alone or the **'I-MIBG + topotecan combination.

Bortezomib-induced clonogenic kill is ROS-dependent
The mechanism of bortezomib-induced clonogenic cell kill
was investigated by determining the protection afforded
by treatment with antioxidants. The results are shown in
Figure 3. In both SK-N-BE(2c) and UVW/NAT cells, the
magnitude of bortezomib-induced clonogenic cell kill was
diminished by NAC. For example, exposure to 10 nM bor-
tezomib reduced clonogenic survival to 20% (SK-N-BE(2c)
cells) or 49% (UVW/NAT cells) of control values, whereas
in the presence of 1 mM NAC, the corresponding values
were 83% and 93%, respectively. This suggests that a sig-
nificant proportion of the cytotoxicity induced by bortezo-
mib as a single agent was due to ROS. An alternative ROS
scavenger, tiron, completely blocked bortezomib-induced
cytotoxicity at all concentrations (Figure 3), suggesting a
different mechanism of action of NAC and tiron or a dif-
ferent degree of nullification of ROS.

Radiosensitization by MG132 is not ROS-dependent
MG132, an alternative inhibitor of proteasome activity,
may have a pharmacologic profile different from that of

Table 3 Synergism analysis of various schedules of administration of bortezomib {'*'I-MIBG + topotecan}

Effect Combination index* Combination index*
level SK-N-BE(2¢) cells UVW/NAT cells

Simultaneous BZ before BZ after Simultaneous BZ before BZ after
ED5s 146 142 0.64 130 1.71 077
EDso 154 1.70 063 144 202 077
EDss 1.63 2.04 0.63 1.60 241 0.79

Asterisk **' indicates that the combination index values are means of four experiments. Administration schedules were simultaneous, bortezomib 24 h before {'*'I-
MIBG + topotecan} (BZ before) and bortezomib 24 h after {'*'I-MIBG + topotecan} (BZ after). Italicised values indicate synergy.
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Figure 2 Effect of bortezomib alone or combined with '*'I-MIBG/topotecan on the growth delay of experimental tumours. Growth of
human tumour xenografts derived from (A) SK-N-BE(2¢) cells or (B) UVW/NAT cells in athymic mice exposed to PBS, bortezomib alone (0.8 mg/
kg), "*"I-MIBG (18 or 5 MBq for SK-N-BE(2c) or UVW/NAT, respectively) + topotecan (1.75 or 0.875 mg/kg for SK-N-BE(2c) or UVW/NAT, respectively)
or the combination of bortezomib with {"*'I-MIBG + topotecan}. Data are expressed as mean tumour volume at every time point (mm?) = SD. Ab-

breviations: BZ, bortezomib; M/T, *'-MIBG and topotecan administered simultaneously.

bortezomib. Single agent treatment with MG132 caused
a concentration-dependent reduction in the survival of
SK-N-BE(2c) and UVW/NAT clonogens (Figure 4A).
MG132 also sensitized both cell lines to radiation treatment
(Figure 4B,C). The ICsy values obtained for SK-N-BE(2c)
cells following X-irradiation alone or with simultaneous ad-
ministration of 150 or 200 nM MG132 were 3.72 +0.17,
2.70+0.18 and 2.15 £ 0.09 Gy, respectively. For irradi-
ated UVW/NAT cells, the corresponding ICs, values were
423 +0.16, 2.36 £ 0.09 and 2.00 + 0.20 Gy. These results
indicate dose enhancement ratios at the 50% level of cell
kill (DERsp), in SK-N-BE(2c) cells and UVW/NAT cells,
respectively, of 1.38 and 1.79 for 150 nM MG132, and
1.73 and 2.12 for 200 nM MG132. These DER5, values
are comparable to those obtained following treatment

with bortezomib, which ranged from 1.32 to 1.55. This
suggests that although the two agents had a similar effect,
the concentrations required differed by approximately
40-fold. This difference in potency between bortezomib and
MG132 has previously been reported [13,32,33], though
not fully explained.

The dose-dependent kill of SK-N-BE(2c) or UVW/
NAT clonogens observed following treatment with
MG132 was not significantly altered by simultaneous
treatment with the antioxidants NAC or tiron (Figure 5).
Therefore, in contrast to the clonogenic cell kill resulting
from bortezomib treatment, MG132-induced kill was
not mediated by ROS. This suggests that although borte-
zomib and MG132 both target the proteasome, both in-
duce clonogenic kill as single agents and both sensitize
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+ SEM, n =4; significance of differences: * p < 0.05, ** p < 0.01 from untreated control, T p < 0.05, t1 p < 0.01 from radiation treatment alone.

B
19 SK-N-BE(20)
c
o
=
[¢]
©
S ~
- N
(<) 0.14 N **
£ X
2
>
1y
=1
[72] ——0nM MG132
—-0--150 nM MG132
—a—200 nM MG132
0.01 au

o 1 2 3 4 5 6 7 8
Radiation (Gy)

cancer cells to ionizing radiation, their mechanisms of
cytotoxicity do not both involve the generation of ROS.

Discussion
In agreement with previous reports of the cytotoxicity of
the proteasome inhibitors bortezomib and MG132 in vitro
[19,34], we observed that treatment with these drugs, as
single agents, induced concentration-dependent decreases
in the survival of clonogens from two tumour cell lines -
SK-N-BE(2c) and UVW/NAT. Proteasome inhibition may
cause growth arrest and cell death by several mechanisms
of action including inhibition of the expression of NF-kB-
dependent, anti-apoptotic genes [32] and accumulation of
pro-apoptotic proteins [21]. Bortezomib may also over-
come multidrug resistance in relapsed neuroblastoma [20].
Proteasome inhibitors have been reported to be radio-
sensitzers in vitro [15,16,35,36]. This therapeutic activity
was supported by our observation of enhanced radiation
cell kill in the presence of bortezomib or MG132. The
combination of proteasome inhibitor with X-radiation
engendered synergistic enhancement of clonogenic kill,
as assessed by combination index analysis (CI values of

less than 1) and enhancement of radiation kill (dose en-
hancement ratios between 1.54 and 2.12).

It has been observed, using in vitro and in vivo models,
that bortezomib enhanced topotecan experimental therapy
in neuroblastoma [10]. Furthermore, we have previously
demonstrated synergistic interaction between *'I-MIBG
and topotecan [3,4]. The present results indicate not only
that bortezomib improved '*'I-MIBG therapy but also
that a triple combination comprising bortezomib, '*'I-
MIBG and topotecan enhanced clonogenic cell kill in vitro
and delayed the growth of NAT-expressing tumour xeno-
grafts in vivo. This was possible both in vitro and in vivo
using concentrations of bortezomib which were clinically
achievable [37]. These studies also demonstrated the im-
portance of drug scheduling. According to combination
index analysis of clonogenic survival in vitro, the adminis-
tration of bortezomib prior to {***I-MIBG and topotecan}
produced no supra-additive cytotoxicity (CI value greater
than 1) whereas treatment with {**'I-MIBG and topote-
can} 24 h before bortezomib proved to be synergistic in
the treatment of both SK-N-BE(2c) and UVW/NAT cells.
The efficacy of the latter schedule was confirmed by the
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enhanced delay of the growth of xenografts derived from
SK-N-BE(2c) or UVW/NAT cells compared with that
achieved by bortezomib alone or by the double combin-
ation of "*'I-MIBG and topotecan. The absence of syner-
gism following the administration of bortezomib before
radiation suggests that DNA damage and/or NF-«B activa-
tion is necessary before the benefit of proteasome inhib-
ition becomes apparent.

In response to ionizing radiation, NF-kB activation is
elevated and this is likely to be prevented by proteasome
inhibition [32]. Moreover, proteasome inhibitors have
radiosensitizing activity which occurs independently of
NE-kB activity, via disruption of the balance between
pro- and anti-apoptotic signalling [21], loss of DNA re-
pair [12] and inhibition of cell cycle progression [13].
The accumulation of reactive oxygen species (ROS)
resulting from exposure to ionizing radiation may also
be increased by NF-«B inhibition, further supporting the
use of proteasome inhibitors as radiosensitizers.

Increased levels of ROS have been documented in a
variety of tumours [38] and further elevation of intracel-
lular ROS in order to trigger cell death is a promising
therapeutic strategy. It has been previously demon-
strated that ROS are intermediates in the regulation of
proteasome inhibitor-induced cell death and that cyto-
toxicity is partially blocked by antioxidants [11,19,26].
Furthermore, chemotherapy-induced peripheral neur-
opathy, a major dose-limiting effect of many commonly
used cytotoxic agents, including platinum drugs, tax-
anes, and vinca alkaloids, as well as bortezomib, may be
caused by ROS accumulation [27].

The extent to which ROS mediated the cytotoxicity in-
duced by bortezomib and MG132 was evaluated by simul-
taneous treatment of cells with the antioxidants NAC or
tiron. Proteasome activity, reportedly, is not affected by

NAC [11]. However, we observed that NAC prevented
bortezomib-induced toxicity, most likely by counteracting
the toxicity of ROS. Although the generation of ROS has
been reported in cancer cell lines exposed to MG132, this
may be a cell-specific phenomenon and, moreover, was
appreciable only in response to concentrations of MG132
(= 10 uM) more than ten times greater than the highest
dose examined in the present study [39,40]. At concentra-
tions of MG132 which were sufficient to inhibit prote-
asome activity and induce cytotoxicity, no protective effect
of antioxidants nor generation of ROS was reported
[31,35,40], consistent with the results of this study.

We also showed that bortezomib-induced but not
MG132-induced toxicity was prevented by tiron, as has
been previously demonstrated in melanoma cells [34]. Al-
though it has been suggested that the superoxide scaven-
ger tiron attenuated bortezomib-induced cell death
through a ROS-dependent mechanism [41], polyhydroxyl
compounds such as tiron also bind to boronic acid with
high affinity [34], directly interfering with the proteasome-
inhibitory function of bortezomib. This may account for
tiron's abrogation of bortezomib-induced toxicity as well
as the lack of effect on toxicity induced by non-boronated
MG132. Direct binding of tiron to bortezomib may also
explain the nullification of toxicity induced by high con-
centrations of bortezomib (> 10 nM) in SK-N-BE(2c¢) cells,
wherein the toxicity was only partially reversed by NAC.
Mechanistically, MG132-induced cytotoxicity may be
caused by activation of the mitochondria-dependent cas-
pase cascade, accumulation of pro-apoptotic proteins,
suppression of NF-kB activation and cell cycle arrest in
G2/M [33,36,42]. Therefore, although MG132 was toxic to
cancer cells and enhanced radiation-induced cell kill in a
manner similar to bortezomib, MG132 may have a re-
duced likelihood of ROS-related side effects.
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Conclusion

The experimental combination therapy studies reported
here indicate the potential use of proteasome inhibition as
a means of enhancing radiation-induced cancer cell kill,
especially when given in combination with the radiophar-
maceutical '*'I-MIBG for the targeted radiotherapy of
neuroblastoma. Bortezomib is routinely used in the treat-
ment of haematological malignancies and has been re-
ported to be well tolerated in children. Although it has
been shown to be effective as a single agent in pre-clinical
models of neuroblastoma, bortezomib is not only minim-
ally effective in the treatment of various other solid tu-
mours but also has been associated with toxic side effects
when administered as a single agent. Therefore, consider-
ation should be given to combination therapies including
alternative proteasome inhibitors which are expected to
have preferable clinical toxicity profiles.
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