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Abstract

Background: The purpose of this work was to reveal the research interest value of positron emission tomography
(PET) imaging in visualizing the induced tissue activity post high-energy photon radiation treatment. More
specifically, the focus was on the possibility of retrieving data such as tissue composition and physical half-lives
from dynamic PET acquisitions, as positron-emitting radionuclides such as >0, ''C, and "N are produced in vivo
during radiation treatment with high-energy photons (>15 MeV). The type, amount, and distribution of induced
positron-emitting radionuclides depend on the irradiated tissue cross section, the photon spectrum, and the
possible perfusion-driven washout.

Methods: A 62-year-old man diagnosed with prostate cancer was referred for palliative radiation treatment of the
pelvis minor. A total dose of 8 Gy was given using high-energy photon beams (50 MV) with a racetrack

microtron, and 7 min after the end of irradiation, the patient was positioned in a PET/computed tomography (CT)
camera, and a list-mode acquisition was performed for 30 min. Two volumes of interests (VOIs) were positioned on
the dynamic PET/CT images, one in the urinary bladder and the other in the subcutaneous fat. Analysis of the
measured relative count rate was performed in order to compute the tissue compositions and physical half-lives in
the two regions.

Results: Dynamic analysis from the two VOIs showed that the decay constants of activated oxygen and carbon
could be deduced. Calculation of tissue composition from analyzing the VOI containing subcutaneous fat only
moderately agreed with that of the tabulated International Commission on Radiation Units & Measurements (ICRU)
data of the adipose tissue. However, the same analysis for the bladder showed a good agreement with that of the
tabulated ICRU data.

Conclusions: PET can be used in visualizing the induced activity post high-energy photon radiation treatment.
Despite the very low count rate in this specific application, wherein 7 min after treatment was about 5% of that of
a standard '"®F-FDG PET scan, the distribution of activated tissue elements (*°O and ''C) could be calculated from
the dynamic PET data. One possible future application of this method could possibly be to measure and determine
the tumor tissue composition in order to identify any hypoxic or necrotic region, which is information that can be
used in the ongoing therapy planning process.

Trial registration: The official name of the trial committee of this study is ‘Regionala etikprévningsnédmnden i
Stockholm' (FE 289, Stockholm, SE-17177, Sweden). The unique identifying number is 2011/1789-31/2.
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Background

Georg de Hevesy became the father of nuclear medicine
when he formulated the famous ‘Tracer Principle’ in
1913 (G Jr. de Hevesy, personal communication) [1].
This means that by the administration of minute
amounts of a chemical compound labeled with a proper
radionuclide, it is possible to study functional mechan-
isms in living plants, animals, or humans without
interfering with their functional properties. Diagnostic
nuclear medicine is usually based on the administration
of a radiopharmaceutical which undergoes a biological
or physiological process in the body that can be
depicted and analyzed.

During external beam radiation therapy with high-
energy photons (>15 MeV), short-lived positron-emitting
radionuclides are generated in the normal tissues through
the processes of photonuclear reactions. For *C, N, and
0 in the living tissue, the photoneutron reaction,
denoted as (3, n), has a threshold energy of about 15 to 18
MeV [2-4]. The process leads to the positron-emitting
radionuclides ''C, **N, and '°O with physical half-lives of
20, 10, and 2 min, respectively. The amount of positron
emitters produced per unit volume will depend on the
shape of the photoneutron cross section for the specific
element and on the tissue density as well as the energy
spectrum of the incident photon beam.

The aim of this report is to highlight a way of producing
radionuclides in a patient, thus providing information that
may be complementary to that from traditional nuclear
medicine. Therefore, we describe a positron emission
tomography (PET) study in a male patient after high-
energy photon treatment of the pelvis minor because of
the local spread of prostate cancer. The examination was
done as an extension of earlier work described in [5]
which was an attempt to verify the dose location of the
radiation beams. Analysis of the series of consecutive PET
acquisitions initiated at the end of the treatment showed
a cascade of decaying radionuclides with different decay
patterns depending on the composition of the various
tissues irradiated. The amount of information was more
than one could achieve on the basis of a regular nuclear
medicine examination. As for today, a total number of
four racetrack microtrons using 50-MV photons are in
clinical use in China, and more units are being installed
(E Joreskog, personal communication). Consequently, this
or a similar technique based on nuclear activation may
have future applications.

Methods

Patient

A 61-year-old man was diagnosed with prostate cancer
with extensive local growth. Bone scintigraphy also
showed an uptake in the right os ischii and os pubis due
to metastases.
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Radiation treatment and beam setup

The patient was scheduled for palliative radiation treat-
ment consisting of five fractions delivered in a span of 1
week. The first four fractions were delivered to the patient
using 18-MV photons. The last fraction was delivered
using 50-MV scanned photon beams (Racetrack Microtron
MM50 Scanditronix, IBA, Uppsala, Sweden), giving a total
dose of 8 Gy. For the purpose of this and another patient
study, the racetrack microtron had to be restored to its ori-
ginal clinical state; thus, only one of the five fractions was
delivered using 50-MV photons. In Figure 1, the 50-MV
photon treatment plan is shown (together with the PET/
computed tomography (CT) image) for selected transaxial
and coronal planes. The target included the primary tumor
and the metastases of the right pelvic bones. The target
dose delivery was divided equally between four beams in
the following order: (1) posterior-anterior, (2) right, (3)
anterior-posterior, and (4) left. The total irradiation time,
including rotation of the gantry, was 6 min and 52 s.

PET/CT acquisition and patient positioning

The PET/CT scan was performed with a Siemens Biograph
TrueV PET/CT scanner (Siemens Medical USA, Knoxville,
TN, USA) located at the Nuclear Medicine Department.
The time span between the end of the irradiation and the
start of the PET/CT scan was approximately 7 min. Patient
transport was arranged with a wheelchair. The CT scan was
a ‘low-dose attenuation correction CT (ACCT) for
necessary corrections and an anatomical reference. The
PET acquisition was performed in list mode, allowing for
the optional selection of frame lengths. In order to eliminate
decay correction issues when reconstructing time frames,
the isotope information for the acquisition protocol was set
to ®Ge (half-life, 77, = 271 days). Reconstruction was per-
formed with filtered back projection (FBP) and attenuation-
weighted three-dimensional ordered subset expectation
minimization (3D-OSEM) (two iterations and eight sub-
sets), creating images with somewhat different characteris-
tics but derived from the same raw data. A 5-mm post-
reconstruction Gaussian filter was applied in all reconstruc-
tions. All data were corrected for random coincidences,
dead time, scatter, and attenuation. Reconstructed dynamic
series were created using a protocol consisting of 15 frames
of 2 min each. In addition, a summation image was created
using the complete acquired dataset, i.e., 30 min in dur-
ation. The PET study was, thus, performed on clinical indi-
cation. After a retrospective application, the regional ethical
committee, ‘Regionala etikprovningsndmnden i Stockholm’
(Stockholm, Sweden), declared no objection to the study.

Image fusion of PET/CT and dose planning CT

The volume co-registration software, Mirada (XD3, Mirada
Medical, Oxford UK) [6], was used to align the ACCT to
the planning CT. Mirada uses a voxel intensity-based
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Figure 1 Transaxial overlaid 50-MV radiation treatment plan on PET/CT (0 to 30 min) image. This is for three-dimensional ordered subset
expectation minimization (3D-OSEM, upper) and filtered back projection (FBP, lower) reconstruction. The treatment, here shown for plane section
through the normalization point (Norm), is a four-field box technique with the target dose delivery of 8 Gy in total divided equally between the
four beam portals. The isodose curves displayed cover the ranges 35% (yellow), 65% (green), 85% (orange), and 95% (blue) of the total dose. The
two red curves depict the interactively defined clinical target volume (inner line) and planning target volume (outer line). The gross tumor

volume is not depicted but includes the prostate together with the metastasis of the right os ischii and the medial portion of the right os pubis.

J

registration algorithm that can be both rigid and deform-
able. In this study, the deformable registration was used.
The fusion was performed by an experienced radiologist
interactively moving and rotating the ACCT volume until a
satisfactory fit to the planning CT was found. All four
image sets (PET, ACCT, planning CT, and treatment plan
data) were simultaneously displayed, allowing proper align-
ment of the ACCT and the planning CT.

Image analysis

The PET/CT images were interpreted by an experienced
radiologist. Two volumes of interest (VOIs) were positioned
on the dynamic PET/CT images. VOI 1 was positioned at a
region highlighted in the PET images, corresponding to the
subcutaneous fat lateral to the left hip joint. VOI 2 was
drawn with a certain margin within the urinary bladder as
depicted in the CT sections. Image viewing and VOI evalu-
ation was performed using AMIDE software [7,8]. Analysis

of the measured relative count rate in the two regions was
performed with MATLAB [9]. Due to the fact that the ther-
apy machine and the PET/CT unit were not co-located,
any washout of positron emitters in the patient was not
measurable from the PET data. In order to obtain such
data, preferably in-beam PET measurements need to be
performed as indicated by animal and patient studies dur-
ing 1 and C beam irradiation [10-12]. Thus, decay of
biological components was not considered in the analysis.
Assuming 2C, '°0, and "N to be the most dominant in
the tissue, the time-dependent measured total count rate
(per second; proportional to the activity), S(f), can be
written as the sum of three exponential terms:

S(t) = 81 exp( — In(2) x T;t )+ S» exp(—In(2)
) + Szexp( — In(2) x Tt

1
2 3

1

X

)+ K, (1)

L2
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where S;, S;, and Sz represent the count rates from
radionuclides with physical half-lives T, ;, Ty, », and Ty, 3,
respectively, at the end of the irradiation (corrected for
radioactive decay is 7 min, ie., the transport time
between when the irradiation finished to the start of the
PET scan). K is a constant. The quantities Sy, S,, S3, T3,1,
Ty,», and T, 3 are computed by performing a least square
fit, which minimizes the sum of the squares of the differ-
ences of measured data from Equation 1. A solution was
obtained for the following two cases: (i) S1, S», and Sz were
set as unknowns while 7,1, T',,, and T, 3 were held fixed
and set according to the half-lives of ''C, °O, and N,
respectively, and (ii) Sy, Sa, S3, Ts1, T2, and T, 3 were
all set as unknowns. Thus, the following constraints
were set for the two cases (i and ii for Equations 2 and 3,
respectively):

S1, Sy,and S3 >0, (2)

T%J = T%,IIC = 20.39 min,
T%A,Z = T%,ISO = 2.04 min,

T%,g = T%,13N = 9.97 min,

and
S1, S»,and S5 >0, (3)
Ti), Tip,and T3 2 0.

In equation 3, Ty, 1, Ty, and T3 were used to extract
the estimated physical half-lives (T, 11c, Tv,150, and T, 13x)
of ''C, 0, and N, respectively. The computed quantities
S1, S, and Sz are compared to 1H—adjusteda International
Commission on Radiation Units & Measurements (ICRU)
elemental composition for the urinary bladder (filled) and
adipose tissue [13].

Results and discussion

Results

In vivo visualization of the treatment beams by PET

It could be estimated that the activity concentration in a
radiotherapy-treated patient, 7 min after a 5- to 8-Gy
treatment, is close to 5% of that of a patient injected
with '®F-FDG for a standard PET scan. Even if FBP has
its strength in being a linear process, there are obvious
drawbacks looking at the visual appearance of the
images. The resulting images using FBP were noisy and
contained pronounced streak artifacts. Therefore, to
facilitate outlining of the VOI, images from iterative 3D-
OSEM reconstruction were used. In Figure 1, the PET/CT
(0 to 30 min) image is shown side by side for both recon-
struction methods. Clearly visible in both reconstructions is
a high-induced activity seen in the subcutaneous fat where
the four beams entered the patient.
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Dynamic VOI analysis

1. VOI 1. The VOI drawn over the subcutaneous fat on
the PET image is presented in Figure 2 for transaxial
and coronal planes. The relative number of counts as a
function of time for VOI 1 is shown in Figure 3, with
the lines representing the best fit to Equations 2 and 3
in solid red and dashed blue, respectively. For Equation 2,
it was found that §; = 0.32 + 0.11, S, = 0.65 + 0.21, S5 =
0.03 + 0.24, and K = 0 representing the relative count
rate, with calculated 95% confidence interval, from ''C,
>0, and "°N at the end of irradiation. For Equation 3
instead, it was found that S; = 0.33 + 0.01, 7} = 19.4 +
1.1 min, S; = 0.67 £ 0.11, T, = 1.99 £ 0.74 min, S5 = 0,
and K = 0. The values of S;, S,, and S3 are compared
with the 'H-adjusted® ICRU elemental compositions for
the adipose tissue of adult 2* in [13] which have the
following values: 67.7% C, 31.5 O, and 0.8% N.

2. VOI 2. The urinary bladder as defined by the CT
images is shown in Figure 4; it also shows the sum of the
complete dynamic PET study (0 to 30 min). An early image
(0 to 2 min) and three added late images (25 to 30 min)
from the dynamic PET study are also presented. The count
rate in the urinary bladder is high at the beginning of the
acquisition but declines to almost zero after 25 min. The
relative number of counts as a function of time for VOI 2 is
shown in Figure 3, with lines representing the best fit to
Equation 2 in solid red and Equation 3 in dashed blue. It
was found that the relative count rates, with calculated 95%

Figure 2 Transaxial (upper) and coronal (lower) PET/CT

(0 to 30 min) sections. The figure illustrates how VOI 1 (arrow)
was drawn on the dynamic PET image in the region of the beam
entrance in the subcutaneous fat.




Janek Straat et al. EINMMI Research 2013, 3:6
http://www.ejnmmires.com/content/3/1/6

Page 5 of 7

Relative number of counts

103

™ VOI 2 (urinar
EL ( Y

'\.O\

102 1 L

a=N

~a. \VOI 1 (subcutaneous fat)
‘D\,&
~0

bladder)

0 5 10 15

Figure 3 Relative number of counts for both VOIs as function of time

as circles and squares together with the best fit to Equations 2 and 3 represented as a solid red line and a dashed blue line, respectively.

. a
20 25 Time /min 30

displayed in linear-logarithmic diagram. Measured data are shown

confidence interval, from 'C, °0, and *N at the end of
irradiation were S; = 0.08 + 0.00, Sy = 0.92 + 0.03, S5 = 0,
and K = 0 for Equation 2. Applying the constraints in
Equation 3, the computation gave that S; = 0.08 + 0.00,
T, = 209 + 1.6 min, S, = 0.92 + 0.04, T, = 2.01 + 0.18
min, S3 = 0, and K = 0. The values of S}, Sy, and S5 are
compared with the "H-adjusted* ICRU elemental com-
positions for the urinary bladder (filled) of the adult in
[13] which have the following values: 4% **C, 94% '°O,
1.7% and “*N.

Discussion

This work focused on the potential use of PET for
measuring the in vivo-induced tissue activity due to
radiation treatment with high-energy photons, which
is 50 MV in this case. Since 1972, attempts were
already made at our institution using a gamma camera
to depict the distribution of the positron-emitting
radionuclides produced in patients being irradiated with
42-MV photons from a betatron. The acquired images
could clearly verify that the radionuclide distribution

Figure 4 Transaxial sections of the ACCT (left) and PET/CT (right) (0 to 30 min). The image shows the VOI drawn in the urinary bladder
(upper row). Lower row shows the transaxial section of the PET image acquired from 0 to 2 min (left) and from 25 to 30 min (right) along with
the VOI imposed in the urinary bladder. During this time period, the bladder activity representing '°O has almost completely declined while the
surrounding soft tissue activity, mainly representing ''C, is still clearly visible.
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coincided with the irradiated regions. However, as the
sensitivity of the camera was very low and the output
only analogous, no further such attempts were made
(L Johansson, personal communication). Other early
studies have shown the potential use of tissue activation
for the analysis of tumor blood flow in animal studies
[14-16]. More recently, by the study of biological washout
processes of ion-beam-induced positron emitters, half-lives
of various washout components could be measured in
animals [10,11] and in patients [12,17]. Furthermore,
dose and treatment beam verification during as well as
immediately after treatment with ion-beams [18,19] and
protons [17,20,21] in patients and for high-energy photons
in the animal tissue [5] have been reported.

In this study, measurements of biological washout
processes in the patient were not relevant due to the fact
that the therapy machine and the PET/CT were not co-
located, and most of the radioactivity had been eliminated
before the PET examination. Studying half-lives of various
washout components, particularly in blood-rich organs
such as the lungs and the liver, generally needs activity
measurements to be performed during or at least in direct
connection to the irradiation [22]. The urine of the bladder,
on the other hand, represents an enclosed compartment
with a negligible exchange with other tissues. From the CT
scan, it was estimated that the urine volume of the bladder
at the beginning of PET acquisition was approximately 200
cm®, Assuming a urine excretion of about 0.5 ml/min, the
dilution of activity in this case is almost negligible. Also in
fat, the dynamic portion constitutes only of a very small
fraction, and most of the induced PET activity originates
from radionuclides that are stationary within the tissue.

VOI analysis of the subcutaneous fat gave a compos-
ition that did not completely agree with ICRU-tabulated
values for the adipose tissue [13], although the fitted
half-lives were found to agree well for both 'C and **O.
The reason for the restricted agreement in composition
may be the variations in the actual composition of the
subcutaneous fat of the current patient. According to
[13], the adipose tissue is the most variable tissue in the
body regarding elemental composition. Water content
may vary from 10.9% to 21.0%, and lipid content can
range from 62% to 91% [23]. From the analysis of
urinary bladder contents (i.e., urine), a high level of
oxygen content was found, which is expected as it
mainly is composed of water. The calculated half-lives
and composition were found to correlate well with
tabulated ICRU values [13]. In bone tissues, a high
content of *°Ca and *'P will produce positron-emitting
radionuclides when they are irradiated with high-energy
photons. However, as the half-life of **Ca is only 0.86 s,
this activity will probably never be measurable, and *°P
that has a half-life of 2.5 min will most likely not be
distinguishable from 0.
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Upon arrival at the Nuclear Medicine department, the
setup and positioning of the patient on the PET/CT
couch were done as fast as possible in order to avoid
further loss of induced activity. The main focus was to
ensure that the radiation treatment volume was covered
by the axial field of view of the PET camera. Subsequent
reconstructions showed that the patient had become
slightly mis-positioned in all three planes. In addition,
the regular curved PET/CT couch did not match the flat
couch used during the radiation treatment and the CT
planning, resulting in a deformed activity distribution
toward the outer edges of the patient as seen on the
treatment plan overlaid on the PET/CT image. However,
the deformable registration compensated for the different
couches in the main part of the abdomen where the
beams intersect.

Reconstruction with FBP [24-26], which is based on
the inverse of the radon transform [27], is fast, robust,
linear, and known to yield quantitative results. However,
in the low count data such as in this study, the results
showed a poor visual image quality, disturbing streak
artifacts, and high noise. In order to better visualize the
activated tissue and, thereby, the positioning of the VOlIs,
the iterative reconstruction method, 3D-OSEM [28], was
preferred. The images reconstructed by 3D-OSEM lack the
streak artifacts and contain no data outside the object.
However, further studies are required to assess the quanti-
tative accuracy of the two methods. It might be that the
VOIs preferably are outlined using the 3D-OSEM algo-
rithm, while the data from the VOIs preferably should be
extracted from the FBP reconstructed data.

Conclusions

The purpose of this work was to reveal the research
interest value of PET imaging in visualizing the induced
tissue activity post high-energy photon radiation
treatment. Despite the very low count rate, the work
demonstrates that the distribution of activated tissue
elements (mainly 50 and C) could, for stationary
tissues, be calculated from the dynamic PET data. The
measurement of the mobile as well as stationary tissue
might be possible if the PET/CT unit is located close
to the radiation treatment facility as this method would
be more sensitive. This has been demonstrated in the
case of ions [12,17]. As the radionuclides produced in
the patient during photon irradiation all originate from
the body tissue (and not from the beam itself), the
measured PET activity will, with some corrections, be
strictly proportional to the body tissue composition.
The idea of being able to measure the true body tissue
composition and map anatomical structures is interesting
[29] and could have future applications. One possible
aspect of this method would be to measure and deter-
mine the tumor tissue composition in order to identify
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any hypoxic or necrotic regions that can be used in further
therapy planning process.

Endnotes

“The elemental composition was recalculated from
ICRU, where hydrogen (*H) - which will not become a
positron emitter - has been omitted in the calculation.
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