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Abstract

Targeted agents are increasingly used for treating cancer and other diseases, but patients may need to be carefully
selected to maximize the potential for therapeutic benefit. One way to select patients is to bind an imaging
radionuclide to a targeting agent of interest, so that its uptake in specific sites of disease can be visualized by
positron-emission tomography (PET) or single-photon emission computed tomography.

'8¢ is the most commonly used radionuclide for PET imaging. Its half-life of approximately 2 h is suited for same-
day imaging of many compounds that clear quickly from the body to allow visualization of uptake in the intended
target. A significant impediment to its use, however, is the challenging coupling of '®F to a carbon atom of the
targeting agent. Because fluorine binds to aluminum, we developed a procedure where the Al'®F complex could
be captured by a chelate, thereby greatly simplifying the way that imaging agents can be fluorinated for PET
imaging. This article reviews our experience with this technology.
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Review
Introduction
Molecular imaging with high-resolution positron emission
tomography (PET) provides a sensitive and specific view of
normal or abnormal biological processes or conditions that
cannot be obtained through anatomical imaging. The most
commonly used PET-imaging isotope is the halogen '°F.
It has a highly abundant, low-energy positron emission
(B*, 0.635 MeV (97%)), with a half-life of 109.8 min that
provides the highest resolution of several common PET
isotopes (®®*Ga, ®Zr, and "**I) [1]. It also has few undesired
side emissions and is produced in a cyclotron from
inexpensive and readily available '*O water, "*O(p,n)"®F.

The best known fluorinated PET imaging agent is
2-['*F]fluoro-2-deoxyglucose (['*F]JFDG), but there are
increasing numbers of new imaging agents of potential
medical interest. Naturally, 18F would not be the best choice
for all targeting agents, but there are several receptors
for peptides, such as integrins, somatostatin, bombesin/
gastrin-releasing peptide, etc., that could be targeted by
small peptides, where a radionuclide with a 2-h half-life,
such as *®F, would be ideal [2].

'8F usually is attached to the carbon atom of a prosthetic
group and subsequently coupled to the targeting molecule

* Correspondence: bmcbride@immunomedics.com
'Immunomedics, Inc, 300 The American Road, Morris Plains, NJ 07950, USA
Full list of author information is available at the end of the article

@ Springer

[3-6], although attachments through silicon, phosphorus,
and boron also have been employed [7-10]. The labeling of
peptides with '®F on carbon is a multistep process, because
harsh reaction conditions are used [6].

These methods typically start with '®F being trapped
on an anion binding cartridge and then eluted with
potassium carbonate and kryptofix-222. This solution is
dried with heat under an inert gas and mixed with
acetonitrile and dried again to remove the remaining
water azeotropically, which reduces the nucleophilicity
of the fluoride ion. The dry-down process can take 20
min with an automated set-up, but recently progress has
been made to allow '®F to be attached in aqueous solution
[11]. '®F is then used to displace a leaving group on the
prosthetic molecule. The labeled prosthetic molecule is
then purified by solid-phase extraction (SPE) or high
performance liquid chromatography (HPLC).

The prosthetic molecule can then be attached to the
targeting agent by many different methods, including oxime
formation, acylation, alkylation, maleimide/thiol coupling,
and click chemistry, to name a few [3-6]. The acylation and
alkylation labeling methods are often used on small mole-
cules, most likely with protecting groups present, so that
only one reactive site is available in order to minimize side
products. The oxime, maleimide/thiol, and click linkages
can be used with more complex molecules, where the
conjugation only occurs at specific sites. The maleimide
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method is often preferred for short-lived isotopes, because
the reaction proceeds in minutes under very mild reaction
conditions.

The "®F-prosthetic group is conjugated to the peptide or
protein and then purified again. The entire labeling, purifi-
cation, and formulation process often takes 1 to 3 h to
perform, with decay-corrected yields often less than 40%
[6]. The entire process, on a GMP manufacturing scale,
typically takes 1 to 2 h, requires expensive automated
equipment to produce the radiolabeled peptide. In
addition, the complicated syntheses require a dedicated,
highly skilled staff to produce the '*F-labeled molecules.

Unfortunately the process required to attach the **F to
a carbon atom on the targeting agent often is too long
and cumbersome for practical use [3-6], which may
hinder the development of new targeting agents of
medical interest. Therefore, it would be a major advantage
to have a simple, rapid method for binding '°F to a variety
of compounds.

Our interest in developing a radiofluorinated peptide
arose from studies with a bispecific antibody (bsMADb)
pretargeting method that showed improved imaging
capabilities over directly-radiolabeled antibody fragments
[12]. This procedure utilized a radiolabeled hapten-peptide
bearing a metal-binding chelate. Since '*F-metal complexes
form quickly and in many instances very tightly [13],
this provided the rationale to explore a peptide-chelate
conjugate for rapid radiofluorination. In this review, we
discuss the development of this technique and its potential
for simplifying the preparation of **F-labeled compounds
for PET-imaging.

Aluminum fluoride complexes

Fluorine binds to most metals, forming a very strong bond
with AI**, which can form complexes with metal-binding
chelates [13]. The aluminum fluoride bond is stronger
than 60 other metal-fluoride bonds, e.g., bond energy of
670 kJ/mol [7,13]. The aluminum-fluoride bond is highly
stable in vivo, and small amounts of AIF complexes are
compatible with biological systems [14,15].

Perhaps, the biggest challenge at the onset was the
selection of a suitable chelate that could hold the AI'F
complex stably for several hours under physiological and
biological conditions. Aluminum forms octahedral com-
plexes; so ideally, a pentadentate ligand would be desired,
leaving one binding site open for the fluoride ion. Naturally,
the first ligands to examine would be those known to bind
A*, with the caveat that (AIF)*>* was the actual material
bound to the chelate. However, initially, studies began with
a diethylenetriamine pentaacetic acid (DTPA) peptide, since
DTPA was known to form a stable complex with another
group III metal (*In) [16]. The test peptide, IMP272
(DTPA-QAK(HSG)Y4K(HSG)-NH,), included two hapten
moieties (HSG is histamine-succinyl-glycine) on the lysine
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side chains for binding to the bsMAb used in pretargeting
applications [17].

The pH is critically important for the formation of
(AIF)**-chelate complexes. If the pH is too high, metals
would form hydroxide complexes and precipitate, and if
it is too low, then the preferred fluoride species in the
equilibrium would be HF. Studies of AIF complexes sug-
gested that pH 4 would favor a 1:1 aluminum-fluoride
complex, and pH 4 was compatible with the metal-
complex formation [18]. The '*F~, AI**, and DTPA pep-
tide were mixed together in a pH 4 buffer and heated,
forming a complex with >90% vyield, but it was unstable
in water. Modifications to the peptide, adjacent to the
DTPA, led to increased stability in water, but none was
stable in serum [19]. The NOTA ligand was known to
form stable complexes with AI** [20], and thus, the com-
mercially available = S-2-(4-isothiocyanatobenzyl)-1,4,7-
triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA)
ligand was attached to a pretargeting peptide (IMP449,
NOTA-p-Bn-CS-AKy(HSG)Yq Kq(HSG)-NH,; Figure 1).
The peptide was formulated in an acetate buffer (pH 4)
and labeled with ®F~ by heating the mixture at 100°C for
15 min and then purifying by HPLC. The isolated labeling
yield was low (5% to 20%), but the labeled product was
stable in serum at 37°C (4 h); therefore, this product was
used in preclinical testing using nude mice bearing the
human colon cancer xenograft, LS174T [21]. Figure 2C
shows a posterior coronal image taken 1 h after the animal
was given AI'®F-IMP449 (no pretargeting). Uptake was
seen only in the cortical region of the kidneys (2.67%
injected dose per gram (ID/g)). There was no bone accre-
tion, and urine taken from the animals showed the labeled
peptide was excreted intact, indicating stability in vivo. The
center panel shows the animal given the AI'*F-IMP449
following the bsMAb injection. In addition to the kidneys,
the tumor (arrow identified with T) was clearly visible,
illustrating the selective retention of the labeled peptide by
the pretargeted bsMAb. The left panel shows an animal
given the '®F-FDG, illustrating the high level of uptake in
the brain, bone marrow, and heart (all sites active in metab-
olizing glucose), highlighting the improved visualization
afforded by the bsMAb pretargeting method.

In a later study, AI'*F-IMP449 was compared to a
®8Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid-labeled peptide [22]. The targeting and biodistribution
of the two peptides were quite similar, suggesting that the
AI'"®F-complex was in a residualizing form of '°F, just like
chelated radiometals, which are often sequestered within
the cells that they target.

Efficient and stable binding of metals by chelates is
highly influenced by the chelate structure. Thus, in an
attempt to reveal how chelate structure influenced
(AIF)** binding, we prepared three new pretargeting
peptides, each with a different ligand. One had a
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Figure 1 Schematic structures of initial chelate-peptides used for Al'®F labeling.
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1,4,7-triazacyclononane-1,4-diacetate (NODA) ligand, and
two had a NOTA derivative [23]. The four peptides
(including IMP449) were labeled and purified by SPE
using the same protocols. Table 1 shows that the simple
NOTA ligand (IMP461) and the p-SCN-Bn-NOTA on
IMP449 afforded roughly the same yield, while the NODA
derivative on IMP460 had a much lower yield, possibly
due to steric hindrance. All of the complexes formed with
the peptides were stable in serum at 37°C. The IMP467
peptide contained the C-NETA ligand, which was known
to have enhanced binding kinetics for some metals [24],
and it did significantly improve radiolabeling yields. How-
ever, it formed two "*F complexes that could inter-convert
(i.e., even when a single peak was isolated, in about 3 h at
room temperature, it equilibrated back to the mixture).
Importantly, the inter-conversion did not result in the loss

of '®F from the complex. In contrast, the IMP460 and
IMP461 peptides formed single complexes with (AI'*F)**.

The one-step labeling of IMP467 was optimized further,
completing the process within 30 min with only one
SPE-purification step and a specific activity of 115
GBq/umol (52% yield) [25]. AI'F-IMP467 also was
stable in vivo, showing excellent targeting at 3 h with
8.16% + 4.83%, 0.02% + 0.01%, 0.41% + 0.08% ID/g in
the tumor, blood, and bone, respectively.

The "F" in the cyclotron target '*O water can contain
metals, radiometals, and other impurities, so in most cases,
it is purified before use. We also discovered that the readily
available USP grade '®F~ in saline, a source of sterile and
purified "®F", could be used for the radiolabeling process.
Using this product further simplifies the radiolabeling
process and expands its use to radiopharmacies that do not

%ID/g A %ID/g B %IDIg C
Pretargeted Al'®F
8F.FDG AI'SF IMP 449
IMP 449 alone

Tumor 7.91 3.01

(weight) (g) {0.056) (0.021)

Liver 1.03 0.08

Spleen 3.05 0.05

Kidneys 1.62 2,01

Lungs 4.98 0.06

Blood 0.80 0.01

Stomach 2.09 0.04

Small intestine 256 0.03

Muscle 1.73 0.02

Femur 249 0.04

Tumor/blood 10:1 249:1 31

Figure 2 Biodistribution of '®F-labeled agents in tumor-bearing nude mice by small-animal PET. Coronal slices of three nude mice

bearing small, subcutaneous LS174T tumor on each left flank after being injected with either (A) 8F-FDG, (B) Al'8F-IMP449 pretargeted with anti-
CEA x anti-HSG bsMAb, or (C) Al'®F-IMP449 alone (not pretargeted with bsMADb). Biodistribution data expressed as percentage injected dose per
gram (% ID/g) are given for tissues removed from animals at conclusion of the imaging session. Br, brain; BM, bone marrow; H, heart; K, kidney; T,
tumor (reproduced with permission from the Journal of Nuclear Medicine; McBride et al. [21]).
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Table 1 NOTA/NODA ligands and maximum isolated yields after radiolabeling with 500 nmol peptide (R = K4(HSG)Y4Kq4

(HSG)-NH,)
Peptide Structure Maximum '®F-labeling yield (%)
IMP449 ”
O O
Y\ <
g N N oH
&NJ/\Q\ )SL D-Ala-R
Kfo NN
H H
OH
IMP460 OH 58
0 © o)
> N\ _Ala-
hd N N N,D Ala-R
Un/ "
N
Kfo
OH
IMP461 0 o 31
.\~
g N N HN-D-Ala-R
Un/
Kfo
OH
IMP467 o 87

Reproduced with permission from Bioconjugate Chemistry, McBride et al. [23].

have access to a cyclotron, thus affording widespread use of
this new facile '*F-labeling kit.

New simple NODA derivatives were synthesized by
our group and also by Shetty et al, reporting an X-ray
crystal structure of a NODA with a methylphenylacetic
acid (MPAA) (Figure 3) or a benzyl group attached to
the ring, respectively [25,26]. In both structures, the
AI** forms a slightly distorted octahedral complex
with the fluorine in an axial position. Labeling studies
of various derivatives showed that having a carbonyl
on the NODA ring or close enough to form a 5- or
6-member ring with the NODA reduced the labeling
yield (11% to 24%). If a carbonyl group was 3 or 4

carbons removed from the ring, then the labeling
yields were good (78% to 86%) [26]. These experiments
indicate that the groups adjacent to the ligand can have a
significant interaction with the complex. Furthermore, in
cases where two peaks are seen for a NODA complex, the
groups that are nearby may be hindering the free rotation
of the AIF complex. The two isomers may be simply
the complex with the '®F pointing in one direction
relative to a nearby chiral center and pointing in the
opposite direction for the other isomer. If the spacer
is long enough, and/or does not have a functional
group that interacts with the AIF complex, then a single
peak is seen by HPLC.
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Figure 3 X-ray crystal structure of NODA-MPAA.

AI'®F(NODA-
NPAA)

The NODA-MPAA ligand was attached to a pretargeting
peptide designated IMP485 (NODA-MPAA-K4(HSG)Y4Kq
(HSG)-NH,) [25]. Labeling yields were good, but adding a
co-solvent in a 1:1 ratio to the aqueous radiolabeling
solution of IMP485 significantly increased (e.g., doubled)
the yield. Several different solvents, such as DMSO, DMF,
CH3CN, and EtOH, also were effective, but EtOH was
chosen because it was the most biocompatible of all
the solvents.

Kit formulation

The goal was to make an IMP485-lyophilized kit that
would contain most of the necessary components
required for a successful, high-yield radiofluorinated
product. The end-user would simply add USP '®F~ in
saline and ethanol to the vial, heat for about 15 min
and purify by SPE to obtain the final product within
30 min [27]. As with many compounds, having a suitable
specific activity is critical. For example, the optimal
specific activity for a somatostatin imaging peptide
(approximately 28 GBq/umol) has been examined,
with lower uptake observed if the specific activity was
too low or too high [28]. For pretargeting applications, we
assumed that a specific activity of >18.5 GBq/pmol would
be desired. We prepared a unit-dose kit that could be
labeled at a cyclotron site or at a radiopharmacy some
distance from a cyclotron, examining the amount of
peptide, pH, radioprotectant, peptide-to-AI** ratio, bulking
agent, and buffer needed to achieve a high-yielding
product [27].

The optimum pH for radiolabeling was pH 4.0 + 0.2,
so two buffers (potassium biphthalate and ascorbic acid)
were used to control the pH. The amount of the peptide
chosen was 20 nmol, or a 50 pM concentration, when
labeled in 400 pL of 1:1 Na'®F in saline:EtOH. Under
these conditions, the best yields of Al'*F-IMP485
were acquired at 100°C to 110°C (Figure 4). A rapid
SPE-purification step ensured > 97% purity. The kits
were designed to provide a single-patient dose by
adding approximately 1.85 GBq of Na'®F to the vials.

Under these conditions, yields typically ranged from 70% to
80%, with a specific activity of 92.5 GBq/umol. When the
final formulation was prepared using a GMP lyophilizer,
radiolabeling yields improved to nearly 90%.

The highest specific activity IMP485 kit radiolabeling
so far is 223 GBq/pumol, but the yield at this higher
specific activity was just 45.6% compared to 80% to
90% when labeling at about 70 GBq/pmol. We also
discovered that higher specific activity labeling requires
additional attention to pH control.

A IMP485
100+

e = 25uM
$ 759 « 50 oM
> H
= v 100 M
- 504 + 250 uM
5 + 500 uM
O 254
@

0' T T T T T T 1

40 50 60 70 80 90 100110120

Temperature °C
B IMP466
100-

- = 25uM
T 75 =~ 50 pM
> - 100 pM
2 " —~ 250 pM
E 1 - 500 pM
©
B 254 //—.
K]
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Figure 4 Concentration of peptide in a kit versus radiolabeling
yield heated 15 min at different temperatures. (A) IMP485 and
(B) IMP466 in 400 plL 1:1 saline:FtOH.
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Application of AIF to other agents

After establishing proof of principle with a pretargeting
peptide, it was important to determine if this procedure
would have broader utility with other compounds. The
following sections summarize additional studies performed
by our groups in collaboration with others, as well as other
independent assessments of the procedure.

Receptor-targeting peptides

The same lyophilized kit formulation (20 nmol peptide,
KHP/ascorbate buffers, pH 4.1, etc.) was applied to an
octreotide analog, IMP466, NOTA-FCFWKTCTol [27].
The peptide was labeled in exactly the same way, using
200 pL of F (2.51 GBq) in saline, with 200 L ethanol
added to the kit and heating to 100°C to 110°C for 15
min followed by purification by SPE. While the yields
with this ligand (55%) were not quite as high as IMP485
with the MPAA-NODA ligand, the peptide could still be
produced with a specific activity (60.5 GBq/pmol) that
was suitable for in vivo imaging studies (Figure 4). The
NOTA ligand on IMP466 had higher yields than that on
IMP485 at lower temperatures, but IMP485 gave better
yields at higher temperatures. This leads to the possibility
that many different peptides or small molecules might be
labeled and purified in a similar manner with subtle
changes to achieve optimum yields.

IMP466 also was labeled in solution using a higher
dose of peptide in a two-step, one-pot solution process
that afforded the AI'®F-IMP466 in 97% decay-corrected
yield after HPLC purification [29,30]. The radiolabeling and
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tumor targeting of this peptide were confirmed by others
[31]. Interestingly, this complex had two radiolabeled
peaks by HPLC, while the same ligand on IMP461
(Table 1) formed a single AI'®F complex. The two
peaks are most likely due to the hindered rotation of
the complex caused by an interaction of the complex
with the sterically constrained cyclic peptide.

The receptor targeting of the AI'*F-NOTA-octreotide
analog was compared to the same peptide labeled with
®Ga. Both peptides were stable in vivo and showed
excellent and specific tumor targeting (Figure 5) in an
ARA42] rat pancreatic tumor model.

Dijkgraaf et al. [32] described the preparation and
biodistribution of a bombesin peptide, NOTA-NH-(CH,)
,CO-QWAVGHLM-NH, (NOTA-8-Aoc-BBN(7-14)NH,)
[33]. The peptide was radiolabeled in solution using ‘*F~ in
saline, 80 nmol AlICl;, and approximately 80 nmol of the
peptide in a pH 4.1 acetate buffer (100 pL aqueous total)
and 400 pL acetonitrile. The solution was heated at 100°C
for 15 min. The reaction solution was HPLC-purified to
remove excess peptide and to remove a radiolytic impurity,
which was expected for a methionine-containing peptide
[34]. Radiolytic impurities also were observed with
the thio-urea linked NOTA in IMP449 [21]. The reaction
yield ranged from 50% to 90% with a specific activity of
greater than 10 GBq/pmol after HPLC purification.

The arginine-glycine-aspartic acid (RGD) peptides are
small cyclic integrin a,f3-targeting peptides used to
localize sites of angiogenesis that can be used to image
tumors, as well as damaged myocardial tissue [35-41].

Figure 5 Anterior 3D volume-rendered projections of fused PET and CT scans. Mice with subcutaneous AR42J tumor on right flank injected
with "8F-IMP466 (A), "8F-IMP466 in the presence of excess of unlabeled IMP466 (B), and ®®Ga-IMP466 (C). Arrows indicate tumors. Scans were
recorded at 2 h after injection. Reproduced with permission from the Journal of Nuclear Medicine; Laverman et al. [29].




McBride et al. EJNMMI Research 2013, 3:36
http://www.ejnmmires.com/content/3/1/36

The peptides were all labeled with **F~ in solution and
HPLC-purified. Four different AlF-binding ligands were
used, the simple NOTA (same as IMP461, 45% yield)
[36], a benzyl NODA (similar to NODA-MPAA, 58%
yield) [38], the ITC-NOTA like IMP449 (5% to 42%
yield) [35,41] (Figure 6), and the NODA-GA ligand of
IMP460 (20% yield) [39].

Following our labeling method, Gao et al. [37] showed
the AI'"®)F-NOTA-PRGD2 produced a positive image of
damaged myocardial tissue in contrast to the current
heart imaging agents, *°'Tl and (**™Tc) sestamibi, which
provide negative images of damaged cardiac tissue.

A quantitative analysis of the AI'*F-NOTA-PRGD2
was also performed in tumor-bearing nude mice that
demonstrated that a [*®Ga]Ga-NOTA-PRGD2 or ['°F]
FPPRGD2 had clearance patterns comparable for all
three tracers [40]. The AI"®F-NOTA-PRGD2 was tested
recently in nine cancer patients, showing images of lung
tumors, as well as illustrating renal excretion of this
particular peptide without any noticeable uptake in normal
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tissues (e.g., bone) to suggest instability of the *°F [41]. This
first-in-man experience confirms our initial assessment of
the suitability of an AI'*F-labeled product for in vivo use, as
well as the simplicity afforded by this procedure using a
lyophilized kit first reported by us [27].

Non-peptide, small molecule-imaging agents

A NODA-2-nitroimidazole derivative (50 nmol, 1 mL)
(Figure 7) used for hypoxia imaging was labeled in 0.1 M,
pH 4, NaOAc buffer by mixing with 22.5 pyL of 2 mM
AlCl3-6H,0 (45 nmol) in 0.1 M pH 4 NaOAc, and 50 pL
of "®F in saline, then heated at 110°C for 10 min to obtain
the labeled complex in 85% yield [42]. In vivo studies with
the AI'®F-NODA-2-nitroimidazole showed the expected
biodistribution and tumor targeting, with no evidence of
product instability. The NOTA-DUPA-Pep molecule
(Figure 8) was made for targeting the prostate-specific
membrane antigen [43]. The '®F-labeled molecule was
synthesized in 79% yield after HPLC purification to
remove the unlabeled targeting agent.

Figure 6 RGD peptide of Lang et al. [35].
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Figure 7 NODA-2-nitroimidazole.

Large peptide and protein labeling
NOTA-N-ethylmaleimide was attached to a cysteine side
chain of the 40 amino acid exendin-4 peptide, which
targets the glucagon-like peptide type-1 receptor [44]. The
peptide was labeled with '®F~ using unpurified cyclotron
target water to obtain the labeled peptide in 23.6% + 2.4%
uncorrected yield in 35 min. The Al'®F-labeled peptide
had 15.7% + 1.4% ID/g in the tumor and 79.25% + 6.20%
ID/g in the kidneys at 30 min, with low uptake in all
other tissues.

The NOTA-affibody Zygro.03905 (58 amino acids, 7 kDa)
was labeled at 90°C for 15 min with AI'®F, with aceto-
nitrile as a cosolvent [45]. The labeling and purification
process took about 30 min, and the yield was 21% + 5.7%.
Again, biodistribution studies supported the stability
of the product with negligible bone uptake.

We also examined a two-step labeling method for
temperature-sensitive molecules [46]. The NODA-MPAA
ligand was attached to N-ethylmaleimide to make NODA-
MPAEM (Figure 9). The NODA-MPAEM (20 nmol in 10
uL 2 mM, pH 4, NaOAc) was mixed with 5 pL 2 mM AICl;
in 2 mM, pH 4, NaOAc followed by 200 uL 'SF~
saline and 200 pL of acetonitrile. The solution was
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heated at 105°C to 109°C for 15 min and purified by
SPE to produce the AI'*F-NODA-MPAEM in 80%
yield. This product was then coupled to a pre-reduced
antibody Fab' fragment (20 nmol) by mixing the purified
AI'®F-NODA-MPAEM at room temperature for 10 min,
followed by isolation of the labeled Fab' by gel filtration.
The labeled protein was obtained in an 80% yield. The
total synthesis time for both steps combined was
about 50 min, with an overall decay-corrected yield of
about 50% to 60%.

Several alternative two-step labeling methods also were
explored, using azides/alkynes, aminoxy acetyl and thiols
to link AI'*F-NODA complexes to the complementary
functionality on model compounds [47].

Residualization and in vivo clearance of Al'F complexes
Lang et al. compared the biodistribution of **F on carbon,
AI'F, and ®®Ga attached to the same NOTA-PRGD2
(Figure 6) peptide in the U-87MG human glioblastoma
model [35]. They found that the tumor uptake of the
"8E_.PPRGD2 peptide was 3.65% + 0.51% ID/g at 30 min
PI compared to 1.85% + 0.30% ID/g at 2 h, indicating that
the 'SF activity was slowly clearing from the tumor
between 30 min and 2 h (51% retention). The metal-
complexed RGD peptides had higher tumor retention
(4.20% + 0.23% ID/g (30 min), 3.53% + 0.45% ID/g
(2 h) or 84% retention for AI'’F-NOTA-PRGD2, and
3.25% + 0.62% ID/g (30 min), 2.66% + 0.32% ID/g (2 h),
or 82% retention °®Ga-NOTA-PRGD2) over the same
period. These data show that the chelated AIF complex
may be retained better in the tumor than the
radiofluorinated compound with **F bound to a carbon
atom. The retention of activity was also seen with the
exendin peptide and the affibody, where the activity cleared
from the kidneys when the '®F was attached to a carbon
atom [48,49], but was retained with the AI'®F complex
[44,45]. Retention of the radionuclide in a tissue could
provide a targeting advantage (e.g., [**FJFDG), particularly
in rapidly metabolizing tissues, such as damaged
heart tissue.

When designing an imaging agent for 'F, it is very
important that the agent binds rapidly to the desired
target and clears from normal tissues. The elimination

Figure 8 NOTA-DUPA-Pep.
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and non-target tissue-binding properties of a given agent
are defined by the structure of the radiolabeled molecule.
If a molecule is predominantly lipophilic, it will have a
high degree of hepatobiliary excretion; if it is hydrophilic,
then renal excretion is more likely. In some cases, small
lipophilic targeting molecules that have hepatobiliary
excretion can be modified with negatively-charged groups
and hydrophilic isotope-binding groups that can greatly
reduce hepatobiliary excretion while increasing renal
excretion of the non-targeted imaging agent [50-53].
With larger molecules, the clearance pattern will be
determined mostly by the targeting molecule, but even
there, occasionally small changes can have a pronounced
impact on biodistribution [54].

Conclusions

The AI'®F labeling method is a versatile procedure that
can be used with many targeting molecules (e.g., small
molecules, peptides, and even proteins) that retain high
binding affinities when derivatized with a NOTA ligand. A
two-step labeling method can be used for temperature-
sensitive molecules. The ligands and AI'®F complexes are
hydrophilic, which enables their use in aqueous systems.
The labeling method is fast, simple, and can be accom-
plished in one or two steps in aqueous solution, which
eliminates the need for a dry-down step needed for most
'8F labeling methods. In some cases, molecules can be la-
beled in high yield and high specific activity, eliminating
the need for HPLC purification; however, HPLC purifica-
tion may be required in some circumstances. The labeling
process is essentially the same from one compound to the
next, requiring minimal efforts to optimize the method.
The critical reaction conditions are pH (approximately pH
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4), reaction temperature (100°C), concentration of re-
agents, and reaction time. The procedure is readily adapt-
able to automation on a simple, inexpensive, automated
platform. Importantly, we showed the feasibility and prac-
ticality of having a lyophilized kit that can be simply taken
off the shelf at any time and radiofluorinated in just 30
min. The Al'*F-labeled molecules are stable in vitro and
in vivo. The AI'®F complexes are residualizing, which
should provide an advantage for internalizing agents,
while normal tissue retention (such as the kidneys) could
potentially be minimized by slight modifications to the
targeting molecule. The simplicity and adaptability of this
procedure may expand our ability to introduce new mo-
lecular imaging agents in the future.
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