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Abstract

Background: Functional brain changes induced by chemotherapy are still not well characterized. We used a novel
approach with a multivariate technique to analyze brain resting state [18 F]FDG-PET in patients with lymphoma, to
explore differences on cerebral metabolic glucose rate between chemotherapy-treated and non-treated patients.

Methods: PET/CT scan was performed on 28 patients, with 14 treated with systemic chemotherapy. We used a
support vector machine (SVM) classification, extracting the mean metabolism from the metabolic patterns,
or networks, that discriminate the two groups. We calculated the correct classifications of the two groups using the
mean metabolic values extracted by the networks.

Results: The SVM classification analysis gave clear-cut patterns that discriminate the two groups. The first,
hypometabolic network in chemotherapy patients, included mostly prefrontal cortex and cerebellar areas
(central executive network, CEN, and salience network, SN); the second, which is equal between groups, included
mostly parietal areas and the frontal eye field (dorsal attention network, DAN). The correct classification
membership to chemotherapy or not chemotherapy-treated patients, using only one network, was of 50% to 68%;
however, when all the networks were used together, it reached 80%.

Conclusions: The evidenced networks were related to attention and executive functions, with CEN and SN more
specialized in shifting, inhibition and monitoring, DAN in orienting attention. Only using DAN as a reference point,
indicating the global frontal functioning before chemotherapy, we could better classify the subjects. The emerging
concept consists in the importance of the investigation of brain intrinsic networks and their relations in
chemotherapy cognitive induced changes.
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Background
Cognitive changes in cancer patients after adjuvant
chemotherapy (CHT) have been reported since the mid
1970s, with systematic research starting in the early 1990s.
Most neuropsychological studies on CHT-treated cancer
survivors have reported cognitive impairments in multiple
domains such as executive functions, learning, memory,
attention, verbal fluency and speed of information pro-
cessing. The CHT effects ranges from small to moderate,
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involving mostly the cognitive functions subserved by
frontal lobes [1-3].
PET and magnetic resonance imaging (MRI) brain stud-

ies have provided evidences that CHT can induce both
structural (white matter [4-8] or grey matter [6,7,9] dam-
ages) and functional changes (hypometabolism [10] or
hypoactivation [11-13]) in areas correlated with attention,
concentration and/or memory (such as the prefrontal, cin-
gulate and parahippocampal cortex). Longitudinal neuro-
psychological [14,15] and neuroimaging [5,7] studies
pointed to a total reversibility after 1 to 3 years, opposed
to cross-sectional studies [10,12,16,17] that evidenced, in
some patients, a long-lasting damage (5 to 10 years). It is
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likely that chemotherapy generates a subtle damage, largely
reversible for the resolving power of our techniques, but
that could constitute, in the long course, a risk factor for
the onset of cognitive impairment in some genetically and
environmentally vulnerable patients [18,19].
All the cited neuroimaging studies used univariate ap-

proaches to identify the presence of focal or local brain
changes induced by chemotherapy, trying to find areas
in which the null hypothesis could be discarded. In this
study, we investigated the chemotherapy effects starting
from the brain total activity, instead of comparing two
groups of treated and not treated patients for single
voxels. We considered the pattern of intrinsic covari-
ation of different brain regions using them to map repre-
sentative brain characteristics onto the two groups. It is
well known that the resting brain contains the temporal
overlapping of many spatially independent networks [20],
which activity during behavioural tasks is correlated with
brain cognitive and emotional functions [21-23]. This is
possibly an intrinsic characteristic of the brain architec-
ture, which is a depiction of the need of integration of
different areas to substantiate the mind abilities [24].
The cognitive functions that are more fogged by chemo-

therapy (attention, concentration, memory, speed process-
ing and executive functions) could be suggestive of the
networks involved that will be the most representative of
these functions [22,25-28] which are the following:

1 The central executive network (CEN), left and right
parts, consists mainly of the dorsolateral prefrontal
cortex (DLPFC), Brodmann area (BA), 44/45/46,
dorsomedial prefrontal cortex, BA 8, 9, inferior and
superior parietal lobule, BA 7, supramarginal and
angular gyrus, BA 39/40 and cerebellum crus 1 and
crus 2.

2 Salience network (SN) consists mainly of the medial
frontal cortex, BA 32, the dorsal anterior cingulate
cortex, BA 24, anterior prefrontal cortex, BA 10, 11,
DLPFC, BA 46, the frontoinsular cortex, BA 47/12,
the thalamus and the cerebellum VI and crus 1.

3 Dorsal attentional network (DAN) consists mainly of
the superior parietal lobule, BA 5, 7, supramarginal
gyrus, BA 40 the frontal eye fields (FEF), BA 6 and
cerebellum VI.

We employed the multi-voxel pattern analysis (MVPA),
a technique involving searching through data to identify
patterns of features that are highly predictive of different
conditions. MVPA has been successfully applied in many
different medicine fields, for example, in gene selection for
large cluster analyses [29] or in detection of ventricular
fibrillation [30]. In neuroimaging literature, the use of
MVPA for functional MRI analyses (fMRI) [31,32] has be-
come more and more popular after the work of Haxby
et al. [33]. The voxels’ activation patterns in the ventral
temporal cortex, during a vision task, were distinctive of
the category of objects viewed by the experimental sub-
jects (drawing attention to the so-called mind reading
field of study [34]). This could be considered a revival in
fMRI of the multivariate techniques introduced in PET a
decade before [35,36]. In our case, data features were the
regional cerebral metabolic glucose rate values, obtained
from brain resting state [18 F]FDG-PET in lymphoma pa-
tients and MVPA extracted spatial patterns, representa-
tive of the two different groups brain states (treated and
untreated patients).
MVPA, compared to the univariate analysis, could de-

tect subtle distributed effects and might consider the co-
variance between distinct brain areas as a signature of
distributed brain networks. The aim of the study was to
uncover the effects of chemotherapy on brain intrinsic
networks enclosed in the resting ongoing activity.

Methods
Patients
Cancer patients were enrolled among those who were
planned to undergo a whole-body [18 F]FDG-PET/CT on
a clinically routine basis for cancer staging or to monitor
the disease after treatment.
Patients were considered eligible if they did not have

symptoms of neurological and psychiatric disorders and
medications that could potentially alter the neuropsycho-
logical performances and/or brain metabolism. We also
excluded patients who had, in the previous 2 years,
pharmacological or psychological treatments that could
potentially alter the brain metabolism or who had serious
physical effects after the chemotherapy treatment.
Eligible patients gave written informed consent to partici-

pate to the project, approved by the ethical committee of
AOU San Giovanni Battista University Hospital in Turin.
Among 28 enrolled patients, 14 were previously treated

with systemic CHT and 14 patients were not treated (no
CHT). The two subgroups were balanced for age (mean
52 years old), gender (12 males, 2 females) and education
level. All selected patients were evaluated and treated in
the same Haematology Oncology Department. In both
groups, majority of the patients had a non-Hodgkin's
lymphoma (NHL) (n = 12, 86%), while minority had a
Hodgkin’s lymphoma (HL) (n = 2, 14%). Ten patients
(36%, 5 had CHT, 5 had no CHT) referred weight loss,
febrile episodes or night sweats during the last 6 months;
nobody presented fever on the day of the scanning. Fif-
teen patients (54%, 4 had CHT, 11 had no CHT) had
lymphoma localisations outside the brain at PET total
body examination. Nobody presented morphological al-
terations at brain CT examination.
The CHT group underwent to conventional standard-

dose chemotherapy (the mean number of cycles was 6



D'Agata et al. EJNMMI Research 2013, 3:22 Page 3 of 9
http://www.ejnmmires.com/content/3/1/22
and the mean time elapsed from the treatment was
7 months).
The hydroxydaunorubicin (Adriamycin), bleomycin, vin-

blastine, dacarbazine (ABVD) chemotherapy was used as a
first-line protocol in all the HL patients. The cyclophos-
phamide, hydroxydaunorubicin and vincristine (Oncovin),
prednisone or prednisolone associated with the monoclo-
nal antibody rituximab (R-CHOP) were used as first-line
protocol in seven NHL patients (58%).
Second-line treatments were used in five NHL patients

(42%), in three cases, in association with rituximab: cyclo-
phosphamide, mitoxantrone (Novantrone), Oncovin, pred-
nisone (CNOP); vincristine, Adriamycin, cyclophosphamide,
Oncovin and prednisone (VACOP); and etoposide, Oncovin,
cyclophosphamide, hydroxydaunorubicin, (EPOCH). Cor-
ticosteroid therapy was used in about 86% (n = 12) and
immunotherapy in about 71% of patients (n = 10). All
protocol regimens were considered similar for toxicity and
side effects by the oncologists who took care of patients.
All patients underwent to a screening battery, in the

same morning before the PET acquisition, to exclude
cognitive impairment, anxiety and depression containing
the following tests: Mini Mental State Examination
(MMSE), Hospital Anxiety and Depression Scale (HADS),
Montgomery-Asberg Depression Rating Scale (MADRS),
Distress Thermometer (DT).

PET scanning
In a quiet waiting room, the participants, lying in a su-
pine position, were asked to refrain from moving and
instructed ‘to keep their eyes closed, to not engage in
any structured mental activity such as counting, rehears-
ing, etc. and to avoid falling asleep’. They were then
blindfolded and ear plugged and received intravenously
about 4.5 to 5.5 MBq kg−1 of 2-deoxy-2-[18 F]fluoro-
D-glucose. About 30 min later, PET/CT scan was
performed by a Philips Gemini scanner (Philips Medical
System, Cleveland, Ohio, USA). The brain scan acquisition
time was 20 min. Coronal, sagittal and transverse data sets
were reconstructed using a 3D iterative technique (row ac-
tion maximum likelihood algorithm, RAMLA-3D) and
corrected with single scatter simulation. Reconstructed
brain images had a dimension of 128 × 128 × 90 voxels
(2 × 2 × 2 mm3).
PET brain images were preprocessed using SPM8 (www.

fil.ion.ucl.ac.uk/spm) running on MATLAB 7.5 software
(Mathworks, Natick, Massachusetts). All images were
nonlinearly and spatially normalized into the Montreal
Neurological Institute (MNI) space and smoothed with an
isotropic Gaussian kernel with 12 mm full width half max-
imum. We normalized the count of each voxel to the
mean count of a standardized pontine region of interest
(ROI). The ROI was a rectangular multislice region
(−8 mm< x < 8 mm, −32 mm< y < −24 mm, −44 mm< z
< −34 mm, MNI space) sampling 144 voxels on the central
pontine region and manually drawn on the PET MNI tem-
plate using the MRIcron application (https://www.nitrc.
org/projects/mricron). The same ROI was employed on
each spatial normalized and smoothed brain image to sam-
ple the pons mean and then to scale voxel values of each
subject individually with the image calculation SPM tool.

SVM classification analysis
Support vector machine (SVM) is a supervised classifica-
tion machine-learning algorithm [37] commonly used as
neuroimaging MVPA [31,32]. SVM has typically two
phases: training and test phase. In the training phase,
SVM receives as input a number of cases or instances,
described by the values of distinctive features or charac-
teristics, specifying the membership of every case to one
of two different groups or categories. For example, we
could try to teach to the machine how to classify human
gender based on height, hair length and waist to hip ra-
tio features. SVM, in the multidimensional space of the
N features, searches the best hyperplane H (N-1 dimen-
sional) separating the classes without error (e.g., females
are generally short, long hair and wide hips creatures).
Since there could exist more than one solution to this
separation problem, SVM searches the only H with the
maximum margin, which means that the distance or
separation of the two classes are maximized by the
choice of H. This algorithm selects from many possible
solutions the optimal one determined by the most in-
formative training examples (called the support vectors),
those are the nearest to the margin (borderline cases).
This formulation is called hard margin SVM and implies
that the problem is well posed, separable and that a so-
lution exists. But there are problems in which some in-
stances could be so misleading, falling quite distant from
the representative mean of the group (e.g., a masculine
shaved basket girl player), that it does not exist a solu-
tion. The soft margin SVM (C-SVM or nu-SVM) intro-
duces a regularization parameter that allows some
examples to fall inside the margin and to ignore them in
the best choice of H. In the proposed example of the
shaved girl, that case will be ignored in the choice of H
and the margin extended to include her. Generally, the
value of the parameter should be searched by trials and
errors, using some validation criteria to optimize it.
After training phase, the algorithm has selected the opti-
mal hyperplane H separating the classes that can be de-
scribed in the following equation:

H : wvi þ b ¼ 0;

where w are the computed learning weights, b is an off-
set and vi is the classes features.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
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In the test phase, another sample of cases is classified
using the weights and assigning the membership to a
class based on the positive or negative sum of the
weighted features (this means to which ‘side’ of the hy-
perplane the example falls). Therefore, we could verify
the accuracy and the generality of the computed solu-
tion. Features with a weight near zero tend to have little
impact in the classification.
We applied the SVM onto the patient's whole brain

PET, where every voxel was considered as a feature and
the two classes were CHT or no CHT groups. We chose
SVM because it is still effective in high-dimensional
spaces, where the number of features is greater than the
number of samples (we had 28 cases and thousands of
features or voxels). More importantly, it can be taken
into account the full spatial pattern of brain activity
which is measured simultaneously at many locations and
exploiting its inherent multivariate nature which is in-
trinsically organized in networks.
Analyses were performed with an in-house Matlab-

based MVPA toolbox, which adopted LIBSVM, an easy-
to-use and efficient library for SVM classification and
regression [38]. In particular, we used a nu-SVM classifi-
cation machine and a grid searching of the best param-
eter of the machine. The training and test data consist of
28 subjects FDG-PET whole brain data. To test the ac-
curacy of the classification we used n-fold validation
scheme leaving out two random subjects for the test
phase after the training with the remaining 26 subjects,
repeating 14 times the procedure. After the best choice
of H, we had a large number of weights (one for every brain
voxels) so we kept only the voxels for which |w| > > 0,
discarding the other as less important for the classifica-
tion. We split the weights into two patterns or networks:
one of high negative weights and one of high positive
weights; these corresponded to the voxels that are import-
ant for discrimination between the groups. For the de-
scription of these networks, we used the viewer xjView8,
an SPM extension that could also output the cortical and
Brodmann areas contained within an input brain map in
the MNI space (http://www.alivelearn.net/xjview8).
Then we extracted the mean metabolism from the two

patterns of weights and we compared, with two inde-
pendent sample t tests, the values between CHT and no
CHT groups. We also compared the mean metabolism
with analysis of covariance (ANCOVA) models using po-
tentially confounding as covariate (depression, age and
time elapsed from treatment). We calculated the correct
classifications of the subjects' membership to CHT or no
CHT groups using only the mean metabolic values
extracted by the two networks.
We tested the association between clinical, demo-

graphic variables and extracted metabolic values with χ2

test, two-sample independent t test, ANCOVA, Pearson's
correlations, Kendall's tau-b, using SPSS 13.0; p < 0.05
was considered as significant.
Results
The demographic and clinical characteristics of patients
are shown in Table 1. In all patients, except four, HADS
scores were under the clinical relevant cut-off of 8 (mildly
anxious and depressed and equally distributed among
groups). All patients were cognitively spared (MMSE > 26).
There were no significant differences between groups

in level of distress, anxiety, depression, demographic or
clinical features (p > 0.05).
Patients with and without symptoms, who did not dif-

fer in brain metabolism and in clinical and demographic
features, were equally distributed among CHT and no
CHT groups and had similar presence/absence of PET
localizations outside the brain (p > 0.05).
SVM patterns
The nu-SVM classification analysis had a good gene-
ralization and could discriminate the two groups with an
accuracy of 65% (computed by n-fold cross validation,
greater than chance >57%). The two patterns of more
weighting voxels, significant for discrimination, are shown
in Figure 1, in red the pattern of high positive weights, in
blue the high negative.
The red pattern was symmetrical and included many

prefrontal cortices and cerebellar areas: anterior cingulated
cortex (ACC, BA 24, 32), medial prefrontal cortex (BA 8, 9,
10) dorsolateral prefrontal cortex (DLPFC, BA 45, 46),
orbitofrontal cortex (OFC, BA 11, 47), anterior insula (AI,
BA 48), putamen, thalamus, vermis VIII-IX, crus 1, crus 2,
lobules VIIB, VIII. It included some additional clusters in
the middle cingulated cortex, cuneus, precuneus, calcarine
scissure, superior temporal and supramarginal gyrus. The
largest part of the pattern, with the highest weights, was
contained in front of genu of corpus callosum: ACC and
medial prefrontal cortex (BA 10, 32) and in the posterior
cerebellum (crus 1 and crus 2). From a network point of
view, the pattern was largely overlapping with the SN, but
included also parts of the left and right CEN and other
additional small clusters. We will refer to this pattern to-
gether as the prefrontal cerebellar system (PCS).
The blue pattern was symmetrical and included mostly

parietal areas: postcentral gyrus (BA 2, 3), paracentral
(BA 5), inferior, superior parietal lobules (BA 7), with add-
itional clusters in precentral cortex (BA 4), particularly the
frontal eye field (FEF, BA 6), and in brainstem pontine nuclei.
This pattern was virtually indistinguishable from the DAN.

Classification and groups differences
CHT patients had significantly less positive PET localiza-
tions outside brain compared to no CHT patients (p = 0.01).

http://www.alivelearn.net/xjview8


Table 1 Clinical and demographic characteristics

Data/subgroups No CHT (n = 14) CHT (n = 14) p Valuea

Age (years) 52 ± 10 52 ± 10 1.00

Gender (M/F) 11/3 11/3 1.00

Education (years) 14 ± 5 14 ± 5 0.96

Type (HL/NHL) 2/12 2/12 1.00

Age at onset (years) 52 ± 10 51 ± 9 0.96

PET localization outside brain (yes/no) 11/3 4/10 0.01

Lymphoma symptoms (yes/no) 5/9 5/9 1.00

Cycles number (n) - 6 ± 3 -

Post-CHT time (months) - 7 ± 9 -

First-line treatmentb (n) - 9 -

Second-line treatment (n) - 5 -

Immunochemotherapy (n) - 10 (7/3)c -

MMSE/30 28.4 ± 1.3 28.1 ± 1.1 0.63

HADS depression/21 4 ± 3 4 ± 3 0.86

HADS anxiety/21 6 ±3 4 ±3 0.17

MADRS/50 9 ± 6 8 ± 7 0.68

DT/10 3 ±2 2 ±2 0.28

CHT, chemotherapy; F, females; HL, Hodgkin's lymphoma; M, males; NHL, non-Hodgkin's lymphoma. a Significance p, for two independent sample t test or p Chi-square
test. bFirst-line treatment, ABVD (hydroxydaunorubicin (Adriamycin), bleomycin, vinblastine, dacarbazine) or CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine
(Oncovin), prednisone or prednisolone). cImmunochemotherapy, treatment plus immunotherapy (rituximab). Values represent, when not otherwise specified, mean ±
standard deviation.
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The DAN mean metabolism (Figure 2 right) was very
similar between groups (two sample t test, p = 0.77) and
largely overlapping (in green CHT, in blue no CHT).
The PCS mean metabolism (Figure 2 middle) was sig-
nificantly (two sample t test, p = 0.02) lower in the CHT
group, but there was a certain amount of subjects with
similar values in the two groups. Using the PCS values,
searching for the best cut-off to discriminate between
Figure 1 Patterns of SVM classification analysis. Weights of SVM classifi
MNI (Montreal Neurological Institute) brain template. Images are in neurolo
evidenced a prefrontal cerebellar system (PCS) composed primarily by salie
In blue the negative weights pattern evidence the dorsal attention networ
CHT (lower than cut-off, under the orange line, Figure 2
left) and no CHT (higher than cut-off, above the orange
line, Figure 2 left), we obtained an accuracy of 68%, with
a great number of false attribution of patients in no
CHT to the CHT group. Using the DAN values in
searching for the best cut-off, we obtained a near chance
result with only 50% of accuracy. On the contrary, put-
ting together the two values of PCS and DAN with a
cation analysis between no CHT and CHT groups overlaid on canonical
gical convention (left is left). In red the positive weights pattern
nce network (SN) and secondarily by central executive network (CEN).
k (DAN).



Figure 2 The mean networks metabolism. On the left the prefrontal cerebellar system (PCS) and dorsal attention network (DAN) plotted in a
scatter dot graph. In blue the no CHT subjects and in green the CHT subjects (arbitrary units). The red line was the best division between CHT
and no CHT two groups using both PCS and DAN values. The orange line was the best division between CHT and no CHT using only PCS values.
In the middle, the PCS values for the two groups (in green the CHT group = 1, in blue the no CHT group = 0). On the right the DAN, values for
the two groups (in green the CHT group = 1, in blue the no CHT group = 0).
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PCS floating cut-off based on the DAN values (above
and below the red line in Figure 2 left) we had an im-
provement in accuracy to 80%.
The metabolic values of the two networks in all patients

were highly positively correlated (PCS-DAN r = 0.81,
p < 0.001) and both exhibited a high inverse correlation
with the age of subjects (AGE-DAN r = −0.51, p = 0.006;
AGE-PCS r = −0.53, p = 0.004). No other clinical or demo-
graphic variable was correlated with the metabolic values
extracted from the networks.
The ANCOVA models for CHT as independent and

PCS mean metabolism as dependent variables were all sig-
nificant controlling for different covariates: age (r2 = 0.50,
CHT factor p = 0.01), depression (r2 = 0.36, CHT factor
p = 0.02) or time elapsed from the end of treatment
(r2 = 0.32, CHT factor p = 0.04).

Discussion
The two networks extracted in this work could be com-
pared to those commonly extracted by many groups in
the decomposition of fMRI/PET resting state signals,
using blind data-driven multivariate techniques as princi-
pal component analysis, independent component ana-
lysis, subprofile scaling model, fuzzy clustering [35,39,40].
When covariation patterns of activity were extracted from
brain resting state, the large-scale spatial networks, in-
trinsically contained within the mind architecture, were
evidenced [20]. These techniques were used in the study
of normal subjects to understand brain functioning and in
pathological subjects to uncover characteristic pattern
useful for diagnosis [41-43].
Some of these networks [23] are more reliable than
the others and are detectable in the resting state activity:
default mode network, DAN (dorsal attentional net-
work), sensorimotor network, visual networks, auditory
network, left and right CEN (central executive net-
works), salience network (SN). These networks are also
present in the activation study when elicited by specific
tasks, the similarity of the active networks and resting
brain-extracted networks is impressive [23].
Our implementation of MVPA with nu-SVM had the ad-

vantage of looking at groups differences considering at the
same time the covariation patterns of the voxels in the
brain. We found a hypometabolism in a network that we
called PCS, composed by SN and to a lesser extent by CEN
and OFC. A dysfunction of this network could potentially
explain the neurocognitive, behavioural and mood alter-
ations found in some chemotreated cancer survivors [1-3].
Some authors hypothesized that prefrontal dysfunction
could be linked to acute depression and posttraumatic
stress in those patients that later normalize [44]. However,
our patients were not depressed or anxious and were cogni-
tively spared. In our patients, CHT was effective, as demon-
strated by the evaluation of total body PET, but nobody
suffered severe physical effects. Also controlling for possible
confounding effects as depression, time elapsed from CHT
or age, the differences between groups in the network
evidenced by MVPA was still significant. This result sup-
ported the role of CHTas the most probable responsible for
the brain hypometabolism in our sample. We also found a
spared metabolism in DAN that is important as a reference
point for setting the PCS floating cut-off (Figure 2 left).
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The meaning of these neural patterns could be in-
ferred by meta-analytic analyses looking at the functional
interpretations of brain networks in resting state [22].
In particular, the PCS included the cingulo-insular SN,

an aspect of the attention and monitoring of the priority
of stimuli processing and fronto-parietal CEN linked to
working memory, planning, execution and action sequen-
cing and the orbitofrontal areas related to reward, motiv-
ation and goal driven behaviour [22]. The DAN has
constantly been associated with attention orientation, es-
pecially eyes orientation, and focusing into space, visuo-
spatial integration, coordination and execution [22]. The
presence in the DAN network of sensory-motor cortex
and midbrain was extremely interesting and could reflect
a link with coordination/execution, arousal and attentional
processes.
All this functions are very flexible, involved in many

tasks and are all often grouped under the name of frontal
or executive functions; therefore, it is plausible to have
seen them cluster together. The DAN performs less cogni-
tive tasks, but highly interconnected with the aforemen-
tioned functions. In fact, focusing and orienting toward
interesting things and planning/execution of goal-oriented
actions are a top-down mechanism mirror of the bottom-
up attention saliency: This was reflected in the DAN and
PCS as very high positive correlation that we found in our
sample. Both DAN and PCS are substrate of flexible,
attention-based rapid processing skills that depend heavily
on age and have a marked trend to decline with it [45]. In
our sample, both DAN and PCS metabolism exhibited a
high inverse correlation only with the age of subjects, and
this is consistent with the functions that we attributed to
these networks. We therefore could summarize this find-
ing as a general inclination to have a global level of func-
tioning that decreased in subjects with ageing. However,
there is an important, although slight, difference in the
two groups: The CHT seemed to dip only into the PCS,
widely sparing the DAN metabolism. Age obviously repre-
sents a good coarse indicator of general frontal function-
ing, but different subjects of the same age could have
different global frontal functioning due to other factors
(genes, experiences, learning, epigenetic and environ-
ment). In this case, the best thing to study brain metabol-
ism is to have a good indicator that could act as a set
point as the DAN metabolism, unaffected by CHT and so
equal to the pre-treatment level. This indicator definitively
improved our capacity to discriminate between CHT and
no CHT subjects (from 50% to 80%). We demonstrated a
specific effect of the CHT (no other variable are significant
in the comparison between groups, see Table 1 and
ANCOVA analyses) on a specific network (PCS). CHT
had a small effect, which is hard to detect or put in the
right context with traditional univariate analyses [10-13]
or for behavioural comparison (no detectable differences
between CHT and no CHT in any cognitive or psycho-
logical data).
Our findings could be juxtaposed with the recent work

of Bruno and co-workers [46] that used the graph theoret-
ical analysis to examine the connectome in chemotherapy-
treated breast cancer survivors. They found a disrupted
regional network in frontal, striatal and temporal areas,
which is very similar to the PCS hypometabolic network.
Limitation
The limitation of the study was the presence in the sam-
ple of immunotherapy and the use of steroid at different
doses or second-line treatments that do not allow us to
distinguish if some chemotherapy drugs or combination
could have more impact than the other. However, this
limitation became less important, as we used a tech-
nique with increased sensitivity and we focused on a
multivariate networks analysis prospective.
Future directions
We could hypothesize a future clinical use of the net-
works’ perspective in extracting PCS and DAN meta-
bolic values from standard ROIs to identify patients at
risk, using only one FDG-PET scan, and possibly to treat
before clinical manifestation of cognitive fog or cancer
fatigue occurs. This work should be replicated in greater
numbers and with longitudinal design to demonstrate
the clinical applicability, and hypometabolism should be
put in relation to the development of clinical symptoms.
We could investigate possible mechanisms of neurotox-

icity (e.g., proinflammatory cytokines, toxicity via brain
blood barrier transporters and oxidative stress) via com-
parison of networks metabolism in groups stratified by
genes' polymorphism (e.g., multi-drug resistant protein or
MRP, interleukin or IL, tumour necrosis factor or TNF,
apolipoprotein E or APOE, brain-derived neutrotrophic
factor or BDNF).
Conclusion
The emerging concept consisted in the importance of the
investigation of brain intrinsic networks, using multivari-
ate statistical analyses, in cognitive chemotherapy, induced
changes.
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