Ogawa et al. EINMMI Research 2012, 2:54
http://www.ejnmmires.com/content/2/1/54

® EJNMMI Research

a SpringerOpen Journal

ORIGINAL RESEARCH Open Access

Development and evaluation of a novel
radioiodinated vesamicol analog as a sigma
receptor imaging agent

Kazuma Ogawa' ", Hiroya Kanbara', Kazuhiro Shiba®, Yoji Kitamura®, Takashi Kozaka? Tatsuto Kiwada'
and Akira Odani’

Abstract

Background: Sigma receptors are highly expressed in human tumors and should be appropriate targets for
developing tumor imaging agents. Previously, we synthesized a vesamicol analog, (+)-2-[4-(4-iodophenyl)piperidino]
cyclohexanol ((+)-pIV), with a high affinity for sigma receptors and prepared radiciodinated (+)-plV. As a result,
(+)—[]25|]pl\/ showed high tumor uptake in biodistribution experiments. However, the accumulation of radioactivity in
normal tissues, such as the liver, was high. We supposed that some parts of the accumulation of (+)-plV in the liver
should be because of its high lipophilicity, and prepared and evaluated a more hydrophilic radiolabeled vesamicol
analog, (+)-4-[1-(2-hydroxycyclohexyl)piperidine-4-yl]-2-iodophenol ((+)-IV-OH).

Methods: (+)-['*]IV-OH was prepared by the chloramine T method from the precursor. The partition coefficient of
(+)-['*IV-OH was measured. Biodistribution experiments were performed by intravenous administration of a mixed
solution of (+)-['*IV-OH and (+)-["*'l]pIV into DU-145 tumor-bearing mice. Blocking studies were performed by
intravenous injection of (+)-['?*[JIV-OH mixed with an excess amount of ligand into DU-145 tumor-bearing mice.

Results: The hydrophilicity of (+)-['*I]IV-OH was much higher than that of (+)-['*I]pIV. In biodistribution
experiments, (+)-['*’1IV-OH and (+)-["*'l]pIV showed high uptake in tumor tissues at 10-min post-injection. Although
(+)7[131I]pl\/ tended to be retained in most tissues, (+)-[' *IIV-OH was cleared from most tissues. In the liver, the
radioactivity level of (+)-['#’]IV-OH was significantly lower at all time points compared to those of (+)-['*'llpIV. In the
blocking studies, co-injection of an excess amount of sigma ligands resulted in significant decreases of tumor/blood
uptake ratios after injection of (+)-["*°1]IV-OH.

Conclusions: The results indicate that radioiodinated (+)-IV-OH holds a potential as a sigma receptor imaging agent.
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Background

Originally, sigma receptors were proposed as a new sub-
type of opioid receptors in 1976 [1]. At present, it is
known that sigma receptors possess specific drug select-
ivity characteristics and unique properties as different
types of receptors from the opioid receptors. It has
been reported that there are at least two subtypes of
sigma receptors, designated sigma-1 and sigma-2 [2].
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The sigma-1 receptor subtype has been cloned from vari-
ous tissues and species [3]. The human sigma-1 receptor
is a transmembrane protein of 223 amino acids [4],
which is located on the outer cell membrane and the
endoplasmic reticulum. Recently, the sigma-2 receptor
subtype, whose gene remains to be cloned, has been
identified as being progesterone receptor membrane
component 1 [5]. In the central nervous system, sigma
receptors have been shown to be involved in the regulation
of neurotransmitter release, modulation of neurotrans-
mitter receptor function, learning and memory processes,
and regulation of movement and posture [6]. Sigma recep-
tor ligands could be candidate drugs as neuroprotective
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agents after a stroke or head trauma [7], as antidepres-
sant agents [8], as anti-amnesic agents [9], as analgesic
agents [10], for alcohol abuse [11], and so on.

At the same time, it has been reported that both sigma
receptor subtypes are highly expressed in a variety of
human tumors such as prostate cancer, breast cancer,
malignant melanoma, renal carcinomas, colon carcin-
omas, glioma, neuroblastoma, small cell lung carcinoma,
and non-small cell lung carcinoma [12-14]. The high
expression of sigma receptors in tumors suggests that
they are appropriate targets for developing tumor-
imaging agents. Furthermore, sigma receptors should
be potential biomarkers of tumor proliferation because
they are highly expressed in rapidly proliferating cells and
are downregulated when cells become quiescent [15-17].
Meanwhile, sigma receptor ligands also could be candi-
date drugs for cancer therapy because some ligands have
been reported to affect cell growth and apoptosis [18,19].
Thus, imaging sigma receptors might have potential for
predicting prognosis and early diagnosis of the thera-
peutic effects of the drugs by determining the expression
level of the sigma receptor and drug development by de-
termination of receptor occupancy. For now, it was also
reported that radiolabeled sigma ligands should be useful
for monitoring the early effects of chemotherapy before
morphologic changes are observed [20].

Previously, we have developed several vesamicol
analogs with iodine into the 4-phenylpiperidine moiety
as sigma receptor imaging agents and determined the
binding affinities for the sigma receptors of the vesa-
micol analogs [21,22]. In these vesamicol analogs, the
(+)-enantiomer of 2-[4-(4-iodophenyl)piperidino]cyclo-
hexanol ((+)-plV, Figure 1a) showed the highest affinities
for the receptors [22]. Thus, to evaluate the potential of
radioiodinated (+)-pIV for tumor imaging, biodistribu-
tion experiments of (+)-[**’I]pIV using tumor-bearing
mice were performed. As a result, (+)-["*1]pIV showed
high uptake and long residence in the tumor. High tumor
to blood and muscle ratios were achieved because the
radioactivity levels of blood and muscle were low. How-
ever, the accumulations of radioactivity in normal tissues,
such as the liver and kidney, were high [23].

We supposed that some parts of the accumulation
of (+)-pIV in normal tissues, especially in the liver,
should be because of its high lipophilicity. In this study,
we designed and synthesized a new vesamicol derivative,

(@) (b)

Figure 1 Chemical structures of (a) (+)-plV and (b) (+)-IV-OH.
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(+)-4-[1-(2-hydroxycyclohexyl)piperidine-4-yl]-2-iodophenol
((+)-IV-OH, Figure 1b), which is a more hydrophilic
compound compared with (+)-pIV by introduction of a
hydroxyl group to the benzene ring of vesamicol. Prepar-
ation of radioiodinated (+)-IV-OH was performed. Use-
fulness of the new radioiodinated compound as a sigma
receptor imaging agent was evaluated in vitro and
in vivo.

Methods

Materials

Proton nuclear magnetic resonance spectra were
recorded on a JEOL JNM-ECS400 spectrometer (JEOL
Ltd., Tokyo, Japan), and the chemical shifts were
reported in parts per million downfield from an internal
tetramethylsilane standard. Electrospray ionization mass
spectra were obtained with an LCQ mass spectrometer
system (Thermo Fisher Scientific, Waltham, MA, USA).
Optical rotations were measured with a SEPA-300
high-sensitive polarimeter (HORIBA, Kyoto, Japan). [®H]
1,3-Di-tolylguanidine ([*H]DTG) (1.1 TBq/mmol), [*H]
pentazocine (1.0 TBq/mmol), [%I]sodium iodide (644
GBq/mg), and [**]sodium iodide (185 GBq/mg) were
purchased from PerkinElmer (Waltham, MA, USA).
Thin layer chromatography (TLC) analyses were per-
formed with silica plates (Art 5553, Merck, Darmstadt,
Germany). SA4503 was kindly supplied by M's Science
(Kobe, Japan). DTG, pentazocine, and haloperidol were
purchased from Sigma Chemical (St. Louis, MO, USA).
Other reagents were of reagent grade and used as
received.

Preparation of (+)-enantiomer of
4-[1-(2-hydroxycyclohexyl)piperidine-4-yl]-2-iodophenol
((+)-IV-OH, 7)
(+)-Enantiomer of compound 5 (274 mg, 1 mmol),
which was prepared using a method described previously
[24,25], was dissolved in 1 mL of 1-M HCI and then
NaNO, (172 mg, 2.5 mmol) in 0.5 mL of water was
added dropwise to the solution. The reaction solution
was stirred for 15 min while the reaction temperature
was maintained at 0°C. NaBF, (165 mg, 1.5 mmol) in
0.5 mL of water was added dropwise to the reaction
mixture at 0°C. After the mixture was stirred for 5 min,
a 250 mL of water was added, and the reaction solution
was stirred and refluxed at 120°C for 30 min. The reac-
tion solution was adjusted to pH 12 with 2 M NaOH,
and the aqueous mixture was extracted with ethyl acet-
ate. The organic layer was dried over Na,SOy,, and the
solvent was removed in vacuo. The residue ((+)-Ves-OH,
(+)-compound 6) was used in the next reaction without
further purification.

NaNO, (69 mg, 1 mmol) and I, (254 mg, 1 mmol) were
dissolved in 10 mL of 50% methanol. After being stirred
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for 30 min at room temperature, crude (+)-compound 6
(275 mg) in 1 mL of methanol was added dropwise to the
reaction mixture while the reaction temperature was
maintained at 0°C. After shaking the flask for 4 h at room
temperature, the reaction solution was adjusted to pH 12
with 2-M NaOH, and the aqueous mixture was extracted
with ethyl acetate. The organic layer was dried over
Na,SO,, and the solvent was removed in vacuo. The
residue was purified by chromatography on silica gel
using chloroform/methanol (5:1) as the eluent to ob-
tain (+)-compound 7 ((+)-IV-OH) (23.0 mg, 22% from
(+)-compound 5) as a brown powder. At the same time,
unreacted (+)-compound 6 ((+)-Ves-OH) (50.2 mg)
was collected as a yellow powder.

(+)-Compound 6: '"H NMR (CDCl;) & 1.17 to 1.34
(4H, m), 1.58 to 1.97 (8H, m), 2.14 (1H, m), 2.21 to
2.35 (2H, m), 2.39 to 2.49 (1H, m), 2.75 (2H, m), 2.96
(1H, d), 3.42 (1H, m), 5.30 (1H, s), 6.78 (2H, d), and 7.09
(2H, d); mass spectrum (MS, ESI) m/z 276 (M + H)".
(+)-Compound 7: 'H NMR (CDCl;) & 1.13 to 1.34
(4H, m), 1.62 to 1.94 (8H, m), 2.01 (1H, m), 2.19 to 2.32
(2H, m), 2.39 (1H, m), 2.67 to 2.80 (2H, m), 2.93 (1H, m),
341 (1H, m), 5.30 (1H, s), 6.91 (1H, d), 7.08 (1H, d), and
7.50 (1H, s); MS (ESI) m/z 402 (M + H)". Specific rota-
tion is [a]7 = 423.5°(c = 0.0014g/mL, methanol).

Preparation of (-)-enantiomer of
4-[1-(2-hydroxycyclohexyl)piperidine-4-yl]-2-iodophenol
((=)-IV-OH)

(-)-IV-OH was synthesized in the same manner as
was (+)-IV-OH using the (-)-enantiomer of vesamicol
as a starting material instead of the (+)-enantiomer
of vesamicol. 'H NMR (CDCl;) § 1.23 (4H, m), 1.50
to 2.00 (8H, m), 2.09 (1H, m), 2.18 to 2.30 (2H, m),
2.40 (1H, m), 2.75 (2H, m), 2.96 (1H, d), 3.41 (1H, m),
5.30 (1H, s), 6.92 (1H, d), 7.08 (1H, d), and 7.55 (1H, s);
mass spectrum (ESI) (m/z) 402 [M + H]". Specific rotation
is [@]% = —22.9°(c = 0.0014 g/mL, methanol).

In vitro competitive binding assay

Animal experimental protocols were approved by the
Committee on Animal Experimentation of Kanazawa
University. Experiments with animals were conducted
in accordance with the Guidelines for the Care and Use
of Laboratory Animals of Kanazawa University. The ani-
mals were housed with free access to food and water at
23°C with a 12-h alternating light/dark schedule. The rat
brain and liver membranes for binding experiments were
prepared from rat brains without cerebellum and rat liver
in male Sprague—Dawley rats (200 g, Japan SLC, Inc.,
Hamamatsu, Japan), respectively, using a method described
previously [21,26].
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A sigma-1 receptor binding assay was performed
using the following method. Rat cerebral membranes
(465- to 1,193-pug protein) were incubated with 5-nM
(+)-[3H]pentazocine and various concentrations of vesa-
micol analogs or sigma ligands (from 107 to 10~ M) in
0.5 ml of 50 mM Tris—HCI (pH 7.8) for 90 min at 37°C.
The incubated samples were quickly diluted with 5 mL
of ice-cold Tris—HCI (pH 7.8) buffer followed by rapid
filtration through Whatman Grade GEF/B glass fiber
filters (GE Healthcare UK Ltd.,, Amersham, UK) pre-
soaked in 0.5% polyethylenimine using a cell harvester
(Brandel, Gaithersburg, MD, USA). Filters were washed
three times with 5 mL of ice-cold buffer. Nonspecific
binding was determined in the presence of 10-uM
(+)-pentazocine. Radioactivity retained on the filters was
measured with a liquid scintillation counter (LSC-5100;
Aloka, Tokyo, Japan).

A sigma-2 receptor binding assay was performed
using the following method. Rat liver membranes (123-
to 179-ug protein) were incubated with 5-nM [PH]DTG
and each test compound (from 107'° to 10 M) in
0.5 mL of 50-mM Tris—HCI (pH 7.8) for 90 min at
37°C in the presence of 1-uM (+)-pentazocine to mask
sigma-1 sites. Nonspecific binding was determined in
the presence of 10-uM DTG and 1-pM (+)-pentazocine.
The incubated samples were treated in the same manner
as described for the sigma-1 receptor binding assays.

Preparation of (+)-['2*[]IV-OH

(+)-["**1IIV-OH was prepared by the chloramine-T
method [27]. Briefly, ['*I]sodium iodide solution
(3.7 MBq/1 pL) was added to (+)-Ves-OH (6) in 100 uL
of 0.1-M PBS pH 6.0 (10 mg/mL). Following mixing,
10 pL of chloramine-T aqueous solution (1 mg/mL) was
added. After 10 min of standing at room temperature, the
reaction mixture was quenched with 10 pL of NayH,SOs5
(0.72 mg/mL) and then purified by reversed phase (RP)-
HPLC performed with a Cosmosil 5C;5-MS-II column
(4.6 x 150 mm; Nacalai Tesque, Kyoto, Japan) at a flow
rate of 1 mL/min with a gradient mobile phase. Mobile
phase A was water with 0.1% triethylamine; phase B was
methanol with 0.1% triethylamine. The gradient condi-
tions were as follows: 0 to 10 min, 70% to 80% B; 10 to
11 min, 80% to 100% B; and 11 to 20 min, 100% B. The
column temperature was maintained at 40°C.

Determination of the partition coefficient

The partition coefficient of (+)-[**°I]IV-OH was mea-
sured as described previously [23]. The partition coeffi-
cient was determined by calculating the ratio of counts
per minute/milliliter in 1-octanol to that in the 0.02-M
phosphate buffer and expressed as a common logarithm
(log P).
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Cellular uptake experiments in vitro

Radiotracer uptake studies were performed in monolayer
cultures of DU-145 prostate cancer cell lines, which were
obtained from ATCC (Manassas, VA, USA). Cells were
grown in cell culture dishes in RPMI 1640 medium with
phenol red, 10% heat-inactivated fetal bovine serum
(FBS), 100-pug/mL glutamine, 100-units/mL penicillin,
and 100-pg/mL streptomycin at 37°C in a humidified
atmosphere of 95% air and 5% carbon dioxide. Cells were
plated on 6-well tissue culture plates (4 x 10° cells/well)
for 24 h before the study and incubated at 37°C in the
culture medium without FBS containing (+)-[**’I]IV-OH
or (+)-[***1|pIV (3.7 kBq/well), which was prepared by a
method of a previous study [23] for different time inter-
vals (15, 30, 60, and 120 min). For the washout experi-
ment, tumor cells exposed to a medium containing
(+)-[***1]IV-OH or (+)-[***I]pIV for 60 min were washed
with phosphate buffered saline (PBS) and incubated
in fresh (nonradioactive) medium without FBS at 37°C
for 15, 30, and 60 min. To investigate the inhibition
of uptake with an excess of sigma ligand, the reduced
uptake of (+)-["*’I]IIV-OH or (+)-["*I]pIV was also
examined by incubation with 10 uM of haloperidol. After
incubation, cells were washed twice with ice-cold PBS
and resolved by adding 0.5 mL of 1-M NaOH. The solu-
tions were then collected and the radioactivity was deter-
mined with an auto well gamma counter (ARC-380;
Aloka) and corrected for background radiation. The
radioactivity of each sample was normalized for the pro-
tein level, which was determined using a Protein Assay
Bicinchoninate Kit (Nacalai Tesque).

Biodistribution experiments of (+)-['?*1]IV-OH

and (+)-["*"lIpIV in tumor-bearing mice

(+)-[**'1]pIV was prepared using a method described pre-
viously [23]. To produce tumors, approximately 5 x 10°
of the prepared DU-145 cells was injected subcutane-
ously into the right dorsum of 4-week-old male BALB/c
nude mice (15 to 19 g, Japan SLC, Inc.). Biodistribution
experiments were performed at approximately 14- to
21-day post-inoculation, i.e., when tumors reached a
palpable size. Groups of four mice were intravenously
administered with 100 pL of a mixed solution of
(+)-[***1]IV-OH (37 kBq) and (+)-[**"1]pIV (37 kBq). At
10-min, 1-, 3-, and 24-h post-injections, the mice were
killed. Tissues of interest were removed and weighed,
and radioactivity counts were determined with an auto
well gamma counter and corrected for background radi-
ation. A window from 16 to 71 keV was used for mea-
suring '*’I and one from 300 to 433 keV for *'I. The
crossover of '*°I activity into the "*'I channel was neg-
ligible. Correlation factors to eliminate any crossover
of "' activity into '*°I were determined by measuring
the I standard in both windows.
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Blocking studies

For blocking studies, the above-mentioned DU-145
tumor-bearing mice were intravenously administered
with 100 pL of (+)-["*’I]IV-OH (37 kBq) mixed with
an excess of each unlabeled sigma ligand, haloperidol
(10 pmol/kg), SA4503 (10 pmol/kg) [28], or (+)-pIV
(10 pmol/kg). At 1-h post-injection, the mice were killed,
and biodistribution experiments were conducted as
described above.

Metabolite analysis in blood, tumor, and other tissues

For metabolite analysis, the above-mentioned DU-145
tumor-bearing mice were intravenously administered
with 100 uL of (+)-["**IJIV-OH (3.7 MBq). At 10-min
and 1-h post-injections, the mice were killed. Blood
was collected and tissues of interest were removed.
The blood was centrifuged at 1,000xg for 10 min at 4°C.
After the plasma was collected, an equivalent volume of
acetonitrile/water mixture (1:1) was added to the plasma.
The mixture was centrifuged at 1,000xg for 10 min at
4°C. The tissues of interest (0.2 to 0.5 g) were homoge-
nized in 1 mL of acetonitrile-water mixture (1:1). Each
homogenized sample was centrifuged at 1,000xg for
10 min at 4°C. The supernatants were analyzed by TLC
with a chloroform/methanol mixture (5:1) as a developing
solvent. TLC plates were exposed to phosphor imaging
plates (BAS IP SR 2025 E, Fujifilm, Tokyo, Japan) for
48 h. The exposed imaging plates were evaluated using
an imaging scanner (BAS 5000 Bio-Imaging Analyzer,
Fujifilm).

Statistical evaluation

A paired Student's ¢ test was used for the biodistribution
experiments. A one-way analysis of variance (ANOVA)
followed by Dunnett's post hoc test compared to the con-
trol group was used for experiments in the blocking
study. Results were considered statistically significant at
p < 0.05.

Results

Preparation of (+)-IV-OH, (-)-IV-OH, and (+)-['?*1]IV-OH
Syntheses of (+) and (-)-IV-OH are outlined in Scheme 1.
(+)-Ves-OH (6) was prepared from (+)-compound 5 by
diazotization and hydrolysis. Iodination was performed
from (+)-Ves-OH (6) to obtain (+)-IV-OH (7). The over-
all yield of (+)-IV-OH was 8.5%. (+)-['*’I]IV-OH was
prepared by the chloramine-T method from (+)-Ves-OH
(6) under no-carrier-added conditions with high radio-
chemical yield (69%). After purification by RP-HPLC,
(+)-[***1IV-OH showed radiochemical purities of over
98%. The specific activity of the no-carrier-added prepar-
ation must be comparable to that of ['**I]Nal. The iden-
tity of (+)-[**°1]IV-OH was verified by a comparison of
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Scheme 1 Synthesis of (+)-IV-OH. Reagents: (a) cyclohexene oxide, (b) (+)-di-p-toluoyl-D-tartaric acid, (c) HNO;,
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retention time with the nonradioactive (+)-IV-OH (7)
(Figure 2).

In vitro competitive binding assay

Binding affinities of (+)-IV-OH, (-)-IV-OH, (+)-Ves-OH,
(+)-vesamicol, haloperidol, and pentazocine to sigma
receptors (sigma-1 and sigma-2) are shown in Table 1.
The binding affinities of (+)-IV-OH to sigma-1 and
sigma-2 were greater than those of (-)-IV-OH. (+)-IV-OH
(K; = 22.8 nM for sigma 1, K; = 146.9 nM for sigma 2)
showed the same degree of affinity for sigma receptors
as (+)-vesamicol (K; = 19.1 nM for sigma 1 and K; =
159.3 nM for sigma 2), which is a mother compound,
but (+)-IV-OH showed lesser affinity for the sigma 1
receptor than (+)-pentazocine (K; = 10.0 nM) or halo-
peridol (K; = 6.4 nM), which are known as sigma ligands.

Partition coefficient
Determination of the partition coefficient resulted in that
the log P value of (+)-[**°1]IV-OH was 1.13 + 0.01. This
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Figure 2 RP-HPLC chromatograms of (A) nonradioactive (+)-IV-
OH and (B) (+)-['°1] IV-OH after purification. Condition: flow rate
was 1 mL/min. Mobile phase A was water with 0.1% triethylamine,
and phase B was methanol with 0.1% triethylamine. The gradient
conditions are as follows: 0 to 10 min, 70% to 80% B; 10 to 11 min,

80% to 100% B; and 11 to 20 min, 100% B.

result indicates that the lipophilicity of (+)-["**I]IV-OH is
much less than that of (+)-[***I]pIV, whose log P value
is 2.08 [23].

Cellular uptake experiments in vitro

Cellular uptake experiments in vitro demonstrated a
rapid uptake of (+)-[**’IIIV-OH and (+)-[**I]pIV
during the initial phase in DU-145 cells (Figure 3A).
The uptakes of both radiotracers were saturated at
30 min; that of (+)-[***I]IV-OH was lower than that of
(+)-[***1]pIV. The accumulation of (+)-[***I]IV-OH and
(+)-[***1]pIV was remarkably lessened in the presence of
a sigma ligand, haloperidol at 10 uM in culture medium
(Figure 3A). Figure 3B shows the percentages of radio-
activity of (+)-["*’I]IV-OH and (+)-["*’I]pIV in DU-145
cells to the time point of medium replacement in the
washout experiment. In this case, the uptake of each
radiotracer with haloperidol as a nonspecific uptake was
subtracted from the uptake of each radiotracer to obtain
a specific uptake via sigma receptor. The radioactivity of
both radiotracers in the cells was released in a time-
dependent manner after replacement of the medium.
Approximately 71% of intracellular (+)-[**°1]IV-OH was

Table 1 Affinities (nM) of IV-OH and reference
compounds for sigma receptors

Sigma-1 (K;) Sigma-2 (K;)
(+)-IV-OH 228 (6.3) 1469 (13.1)
(—)-IV-OH 455 (9.8) 165.5 (69.2)
(+)-Ves-OH 1786 (25.2) 972 (3.1)
(+)-Vesamicol 1(1.8) 159.3 (43.9)
Haloperidol 64 (0.7) 630 (7.2)
Pentazocine 10.0 (1.1) 24177 (326.2)

K; values derived from ICs, values according to the equation: K; = ICso/(1 + C/Ky),
where C is the concentration of the radioligand, and each Ky is the dissociation
constant of the corresponding radioligand (*H]pentazocine to sigma-1

(Kq = 19.9 nM) and [HIDTG to sigma-2 (K4 = 22.3 nM)). Values are means
(SEM) of three or four experiments.
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Figure 3 Cell uptake and washout study. (A) Time-dependent
accumulation of (+)-['**IV-OH and (+)-['*lpIV in DU-145 tumor
cells with or without the addition of haloperidol (10 pM) into

the medium. (B) Remaining percentage of radioactivity in cells after
changing to fresh medium.

released into the supernatant from the DU-145 cells
within 60-min after the medium replacement, while 44%
of intracellular (+)-["**I]pIV had been released from the
cells by that time.

Biodistribution experiments of (+)-['?*1]IV-OH

and (+)-["*"l]pIV in tumor-bearing mice

Table 2 lists the biodistribution of (+)-[***I]IV-OH
and (+)-[1311]pIV in DU-145 tumor-bearing mice.
(+)-[**°1]IV-OH showed high uptake in tumor and low
radioactivity levels in blood and muscle as well as
(+)-["pIV. (+)-["*'I]pIV tended to be retained in
most tissues, especially tumor. On the other hand,
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(+)-[**°1]IV-OH was cleared from most tissue, including
tumor, and almost no radioactivity was observed in any
tissue at 24-h post-injection. In the liver, as we expected,
the radioactivity levels of (+)-["*’I]IV-OH were signifi-
cantly lower at all time points compared with those
of (+)-[*1]pIV. At the same time, the accumulation of
(+)-[**°1]IV-OH in the stomach was low, indicating that
deiodination was not observed in vivo.

Blocking studies

The effects of some sigma ligands on tumor uptake of
(+)-[**°1]IV-OH at 1-h post-injection are shown as the
ratios of percent injected dose per gram of the tumor
(A), the brain (B), the liver (C), or the pancreas (D) as tis-
sues which have highly abundant sigma receptor density
to blood in Figure 4. In this case, the radioactivity level
in the blood was changed by co-injection of sigma
ligands. Thus, the figures are shown as tissue/blood ratio.
Co-injection of an excess amount of haloperidol,
SA4503, or (+)-pIV, which are sigma ligands, resulted in
a significant decrease in the uptake ratios of tumor to
blood, brain to blood, and pancreas to blood after injec-
tion of (+)-["*’I]IV-OH.

Metabolite analysis in blood, tumor, and other tissues
Table 3 and Figure 5 show the results of metabolite
analyses after intravenous injection of (+)-[**’I]IV-OH
in DU-145 tumor-bearing mice. The proportions of the
intact form in the tumor and brain were much higher
than were those in the blood, liver, and kidney. In the
blood, liver, and kidney, almost no intact (+)-[**’I]IV-OH
was observed at 1-h post-injection (0.9%, 0.1%, and 2.6%,
respectively).

Discussion

In competitive binding assays of sigma receptors, it
was reported that vesamicol and iodovesamicol analogs
enantioselectively bound to the sigma-1 receptor [21].
Namely, the (+)-enantiomers of the vesamicol analogs
have higher affinities than the (-)-enantiomers of the vesa-
micol analogs. In this study, IV-OH, as well as the previ-
ous vesamicol analogs, enantioselectively bound to the
sigma-1 receptor. The binding affinity of (+)-IV-OH to
sigma-1 receptor was greater than that of (-)-IV-OH
(Table 1). Meanwhile, (+)-Ves-OH (6) showed much less
affinity for sigma-1 compared to (+)-vesamicol. Accor-
dingly, the introduction of a hydroxyl group at the para-
position of the benzene ring in vesamicol markedly
reduced the affinity for sigma-1 receptor. By introduction
of iodine to (+)-Ves-OH, (+)-IV-OH showed a much
higher affinity for sigma-1 receptor compared to that of
(+)-Ves-OH. However, the reduction of the affinity for
sigma-1 receptor by the introduction of the hydroxyl
group was large. The affinity of (+)-IV-OH (K] = 22.8 nM)
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Table 2 Biodistribution of radioactivity after concomitant intravenous injection of (+)-['>*I]IV-OH and (+)-["*"1]pIV in

tumor-bearing mice

Time of post-injection

Analog Tissue 10 min 1h 3h 24 h

(+)-['°1] IV-OH Blood 128 (0.13)* 1.04 (0.10)* 043 (0.09)** 0.00 (0.00)*
Tumor 955 (0.64)** 545 (0.70) 257 (041) 0.06 (0.04)**
Liver 7.82 (032)* 9.80 (0.94)** 281 (0.33)* 0.06 (0.03)*
Kidney 3501 (2.83)* 15.30 (1.80) 489 (0.87)** 004 (0.01)*
Intestine 526 (061)* 7.96 (0.72)* 484 (0.95) 0.14 (0.02)*
Spleen 1(1.24) 184 (0.11)* 060 (0.12)* 0.01 (0.02)*
Pancreas 2504 (2.40)* 12.80 (0.97)* 294 (0.49)* 001 (0.01)*
Lung 9.74 (1.59)* 1.85 (0.18)* 063 (0.11)* 0.01 (0.02)*
Heart 357 (0.40)* 0.78 (0.05)* 0.27(0.00)** 0.01 (0.01)*
Stomach? 8 (0.36) 062 (0.18) 055 (0.25) 003 (0.02)*
Brain 4 (0.50)* 1.04 (0.08)* 0.22 (0.02)* 0.00 (0.00)*
Muscle 220 (0.58) 045 (0.03)* 0.26 (0.10) 0.01 (0.01)*

H)-1piv Blood 045 (0.03) 0.28 (0.02) 0.17 (0.01) 0.50 (0.01)
Tumor 7.20 (0.40) 579 (037) 6.46 (3.42) 6.81 (2.60)
Liver 9.83 (0.39) 1331 (1.25) 13.05 (0.46) 10.28 (0.59)
Kidney 1847 (1.59) 2(1.90) 737 (0.89) 6.15 (0.30)
Intestine 1(0.78) 514 (0.12) 320 (0.13) 259 (0.24)
Spleen 2(1.09) 899 (1.00) 404 (0.30) 252 (0.23)
Pancreas 16.58 (1.82) 1.94 (2.50) 27.35 (0.24) 27.36 (0.70)
Lung 26.10 (3.39) 1313 (3.29) 6.59 (0.56) 3.01 (0.46)
Heart 866 (0.81) 555 (0.70) 11(037) 0.96 (0.07)
Stomach? 107 (032) 0.73 (0.26) 062 (0.19) 049 (0.06)
Brain 6.02 (0.74) 647 (0.73) 412 (0.30) 222 (0.10)
Muscle 203 (0.53) 162 (0.22) 072 (0.29) 042 (0.03)

Data are expressed as percent injected dose per gram tissue. Each value represents the mean (SD) for three or four animals. *Data are expressed as percent
injected dose. Significance was determined using paired Student's t test (*p < 0.01 vs. (+)-['>"l]pIV, **p < 0.05).

for sigma-1 receptor was same degree as that of (+)-
vesamicol (K; = 19.1 nM), which is a parent compound,
and was less than that of (+)-pIV (K; = 1.30 nM [22]).

A lower log P value of (+)-["**I]IV-OH (1.13 + 0.01)
by the introduction of the hydroxyl group compared with
that of (+)-["**I]pIV (2.08 + 0.02 [23]) was expected
to improve biodistribution of radioiodinated vesamicol
analogs as imaging agents. The value was less than we
expected because the calculated log P value for IV-OH
and pIV were 4.06 and 4.45, respectively, using CS
ChemDraw Ultra software (Cambridge Soft Corporation,
Cambridge, MA, USA). Certainly, the accumulation of
radioactivity in the liver does not depend only on the
physicochemical characteristics. It is known that sigma
receptors are highly expressed in the liver [29]. Although
the accumulation of radioactivity in the liver should
be partly related to the affinities for sigma receptors,
in this study, the lower hepatic uptake and the higher
renal uptake of (+)-["*’IIIV-OH at early time points

after injection compared with those of (+)-["*'I]pIV
in the biodistribution experiments (Table 2) could be
partly explained because of the lower lipophilicity of
(+)-[**°1]IV-OH. The suggestion is consistent with the
previous reports that decreasing the lipophilicity of radio-
labeled compounds resulted in lower hepatic uptake [30].
In the biodistribution experiments in tumor-bearing
mice, (+)-[**°I]IV-OH showed higher radioactivity uptake
in the DU-145 tumor than we expected. Actually, at
10-min post-injection, (+)-[***1]IV-OH showed signifi-
cantly higher uptake than (+)-[**'I]pIV although the
affinities for the sigma receptors of (+)-IV-OH were
lower than were those of (+)-pIV. The exact causes of the
high uptake (+)-[**°I]IV-OH in tumor are not clear, but
one cause could be because of the higher radioactivity of
(+)-[***IIIV-OH in blood than that of (+)-[**'I]pIV at
10-min post-injection. Moreover, we assumed that the high
uptake of (+)-[**’I]IV-OH in tumor may also be derived
from other mechanisms except via sigma receptors.
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However, in the cellular uptake study with the DU-145
cells in vitro, the cellular uptake of (+)-[**’I]IV-OH was
remarkably inhibited in the presence of haloperidol (10
uM) in the culture medium (Figure 3A). In the blocking
study, the co-injection with excess amounts of sigma
ligands significantly decreased the tumor/blood uptake
ratio of radioactivity (Figure 4A). These results indicate
that the high uptake of (+)-[**I]IV-OH in the DU-145
tumor is mainly caused via sigma receptors. In the uptake
study with the DU-145 cells in vitro, the specific uptake,
which is defined by subtracting uptake with haloperi-
dol as non-specific uptake, of (+)-['*’I]JIV-OH at 15-min
after incubation was almost the same as that of
(+)-[**1]pIV (Figure 3A). The result also supports the
high tumor uptake of (+)-[***1]IV-OH in the biodistribution
experiments.

Table 3 Analysis of metabolites after intravenous
injection of (+)-['>’I]IV-OH in tumor-bearing mice

Time of post-injection

Tissue 10 min 1h

Blood 17.0 (9.0) 09 (1.0)
Tumor 93.1 (43) 70.2 (5.6)
Liver 54 (74) 0.1 (0.2)
Kidney 198 (3.7) 26 (1.8)
Brain 964 (1.1) 73.7 (84)

Data are expressed as percent of intact (+)-['*I]IV-OH. Each value represents
the mean (SD) for three samples.

Meanwhile, (+)-["**I]IV-OH cleared faster from the
tissues, and almost no radioactivity was observed in any
tissue at 24-h post-injection while (+)-["*'I]pIV tended
to remain in most tissues. This could be partly because
of the difference in metabolism rates. In the blood,
liver, and kidney, almost no intact (+)-[**’I]IV-OH was
observed at 1-h post-injection (Table 3). On the other
hand, large proportions of radioactivity existed in an
intact form in almost all tissues except blood at 1-h post-
injection of (+)-["*1]pIV [23]. Accordingly, the metabol-
ism of (+)-['*°I]IV-OH should be faster than that of
(+)-["*'1]pIV. Furthermore, the difference of the clear-
ance rate from tissues between (+)-[**’I]IV-OH and
(+)-[P)pIv might be partly because of the difference of
the affinity for sigma receptors. Namely, the faster clear-
ance of (+)-[**°I]IV-OH might be partly from the lower
affinity of (+)-[**°1]IV-OH for sigma receptors than that
of (+)-["*'I]pIV. Actually, in the washout experiments in
the cell uptake study, more (+)-[**°1]IV-OH was released
from the DU-145 cells compared to that of (+)-[**’I]pIV
after changing to fresh media (Figure 4B).

In the in vitro binding assay, (+)-IV-OH preferred the
sigma-1 subtype, but the selectivity was not so high
(approximately 6.4-fold). (+)-IV-OH may bind to not
only the sigma-1 receptor but also to the sigma-2 recep-
tor in tumor because the sigma-1 and sigma-2 receptors
are highly expressed on DU-145 cells [31]. In the block-
ing study, the decrease of tumor/blood uptake ratios of
(+)-[***I1IV-OH between haloperidol and SA4503 were
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almost the same (Figure 4A, SA4503 binds mainly to
sigma-1, and haloperidol is a nonselective sigma ligand
[32].) Therefore, the results suggest that (+)-[**°1]IV-OH
ought to mainly bind to the sigma-1 receptor. Mean-
while, in the blocking study for the liver, SA4503 did not
inhibit liver uptake of (+)-['**I]IV-OH (Figure 4C). How-
ever, this result should not be simply accepted. Accumu-
lations of radiotracers in the liver with co-injection of
blocking compounds were affected by not only the affin-
ities for receptors but also the physiochemical character-
istics of the tracer and the competitive inhibition of
uptake or metabolism by the blocking compounds, etc.
In fact, it was reported that the uptake of radioactivity in
the liver after injection of a radiolabeled sigma-1 ligand
with high affinity was not reduced by blocking study using
haloperidol [33].

Conclusions

In conclusion, these results indicate that (+)-IV-OH has
potential as a sigma receptor imaging agent because of
its high tumor uptake via sigma receptor, lower hepatic
uptake, and faster clearance from the tissues in tumor-
bearing mice compared to that of radioiodinated (+)-pIV.
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