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Abstract

Background: Arterial spin labeling magnetic resonance imaging (ASL-MRI) has been recognised as a valuable
method for non-invasive assessment of cerebral blood flow but validation studies regarding quantification accuracy
by comparison against an accepted gold standard are scarce, especially in small animals. We have conducted the
present study with the aim of comparing ASL flow-sensitive alternating inversion recovery (FAIR)-derived
unidirectional water uptake (K1) and 68Ga/64Cu microsphere (MS)-derived blood flow (f ) in the rat brain.

Methods: In 15 animals, K1 and f were determined successively in dedicated small animal positron emission
tomography and MR scanners. The Renkin-Crone model modified by a scaling factor was used for the quantification
of f and K1.

Results: Below about 1 mL/min/mL, we obtain an approximately linear relationship between f and K1. At higher flow
values, the limited permeability of water at the blood brain barrier becomes apparent. Within the accessed dynamic
flow range (0.2 to 1.9 mL/min/mL), the data are adequately described by the Renkin-Crone model yielding a
permeability surface area product of (1.53 ± 0.46) mL/min/mL.

Conclusion: The ASL-FAIR technique is suitable for absolute blood flow quantification in the rat brain when using a
one-compartment model including a suitable extraction correction for data evaluation.

Trial registration: 24-9168.21-4/2004-1 (registered in Freistadt Sachsen, Landesdirektion Dresden)

Keywords: Arterial spin labeling, Cerebral blood flow, Positron emission tomography, Kinetic modeling, Blood brain
barrier

Background
Arterial spin labeling magnetic resonance imaging (ASL-
MRI) has been widely recognised as a valuable method
for non-invasive assessment of regional cerebral blood
flow (rCBF) [1-4]. Similar to 15O-water positron emission
tomography (PET), the method is based on the assump-
tion of free (or at least very high) diffusibility of water
between blood and tissue. In contrast to PET, however,
the relevant time scales for the measurement are much
shorter (of the order of a few seconds) due to the rapid free
decay of the longitudinal magnetisation of magnetically
tagged water. At the same time, the temporal resolution is
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much higher than in PET. For these reasons, it is not clear
to what extent the simple Kety-Schmidt model [5,6] suf-
fices for reliable perfusion quantitation with ASL. Several
refinements and modifications of the basic model have
been proposed in the literature [7-9].
Regarding human imaging, ASL nowadays is in general

applied in a qualitative way only using regional image con-
trast as a relative measure of perfusion differences. On the
other hand, a number of studies have compared ASL-MRI
to other methods, notably 15O-water PET [10-12] and
found reasonable or even good quantitative concordance
between MR- and PET-derived rCBF. The principal feasi-
bility of quantitative ASL in humans might become espe-
cially interesting in view of the recent advent of combined
PET/MRI systems, offering the perspective of combined
functional imaging utilising both modalities.
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With respect to small-animal imaging, however, there
still seems to exist a marked deficit of validation studies
demonstrating the quantitative accuracy of ASL, and reli-
able data are scarce [7,13,14]. Moreover, there are indica-
tions that water diffusibility across the blood brain barrier
(BBB) is severely reduced in the rat brain [15,16] with cor-
responding implications for blood flow quantitation with
ASL.
We, therefore, consider the validity of ASL for rCBF

quantitation in small laboratory animals, which still is not
proven conclusively. We have thus conducted the present
study with the aim of comparing the flow-sensitive alter-
nating inversion recovery (FAIR) technique in the rat
brain with microsphere-derived rCBF.
Radioactively labeled microspheres are an accepted gold

standard for perfusion quantification due to the well-
understood behaviour of microspheres in the vascular bed
and the inherent ease of quantitation of radioactive tracer
amounts. In the current investigations, we used dedicated
small animal PET imaging for in-vivo quantification of the
microsphere experiments. In order to double-check the
PET results, the microspheres were labeled not only with
PET isotopes but also with a fluorescent dye. This allowed
two independent measurements of the number of micro-
spheres trapped in the capillary bed, namely in-vivo with
PET and ex-vivo via direct counting of microspheres in
the brain sections.

Methods
Microsphere labeling
Human serum albumin microspheres (HSAMS) (20
μm, 1 mg ∼ 160 000, ROTOP Pharmaka AG, Ger-
many) were mixed in proportion 1:70 with p-SCN-
Bn-NOTA. Afterwards, chelator-bound microspheres
(NOTA-HSAMS) were labeled with X-SIGHT Large
Stokes Shift Dye (XS670) (Carestream Health Deutsch-
land GmbH, Stuttgart, Germany) under reduced light
conditions according to producer specification. Both,
chelator preparation and labeling procedure, were per-
formed under strict exclusion of metals (plastic vessels
and coated spatulas).
Gallium-68 (half-life, 68 min) was eluted as

[68Ga]GaCl3 with 1 M HCl from a 68Ge/68Ga-generator
(iThemba Labs, Republic of South Africa) and concen-
trated via an ion exchange column to a volume of 300
μL. NOTA-XS670-HSAMS were washed (centrifugation
14,800 rpm, 10 s) with 1 mL of water and 1 mL 2 M
NH4OAc. The pH of the [ 68Ga]GaCl3 solution was set up
to 4.2 to 4.4 using 2 M NH4OAc and added to the washed
microspheres. The labeling was carried out at 37°C for
20 min in thermomixer. Labeling yields were determined
by measuring of the microspheres and comparing the
activity of the supernatant after centrifugation of three
times washed [68Ga]Ga-NOTA-XS650-HSAMS using

0.1% Tween 80 (Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) in E153 (Serumwerk Bernburg, Germany). This
method resulted in reproducible high yields of ≥ 95%
microsphere-associated activity. The [68Ga]Ga-NOTA-
XS670-HSAMS were washed directly before application,
reaching a radiochemical purity higher than 99%.
Copper-64 (half-life, 12.7 h; produced in cyclotron

‘Cyclone 18/9’ of the HZDR according to the proce-
dure reported previously [17,18]) as aqueous solution of
[ 64Cu]CuCl2 was adjusted with 2 M NH4OAc to pH
5.5. The NOTA-XS670-HSAMS were washed with 2 M
NH4OAc. Then, the [ 64Cu]CuCl2 solution was added to
the microspheres and incubated at 37°C for 20 min in the
termomixer. Labeling yields were determined in the same
way as for 68Ga.
Ten animals were investigated with 68Ga-labeled micro-

spheres, and eight animals with 64Cu-labeled micro-
spheres. The radionuclide was chosen according to avail-
ability, where 64Cu was preferred because of its longer
half-life. The chosen radionuclide determines the order of
MR and PET measurements, but the altered time of the
PET measurement does not affect the derived flow val-
ues (which are those present at the time of microsphere
injection, see below).

Animal preparation
Animal husbandry
The local animal research committee approved the ani-
mal facilities and the experiments according to institu-
tional guidelines and the German animal welfare reg-
ulations (reference number 24-9168.21-4/2004-1). The
experimental procedure conforms to the European Con-
vention for the Protection of Vertebrate Animals used
for Experimental and other Scientific Purposes (ETS No.
123), to the Deutsches Tierschutzgesetz, and to the Guide
for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (DHEW Publica-
tion No. (NIH) 82-23, Revised 1996, Office of Science and
Health Reports, DRR/NIH, Bethesda, MD 20205).

Surgery
Male Wistar rats (Wistar Unilever, HsdCpb:WU, Harlan
Winkelmann, Borchen, Germany) weighting 379 ± 65 g
(mean ± SD, n = 18) were anaesthetised with desflurane
(approximately 7% in 0.6 L/min air and 0.4 L/minO2). The
guide value for breathing frequency was 65 breaths/min.
Animals were put in the supine position and placed on a
heating pad to maintain body temperature. The sponta-
neously breathing rats were treated with 100 units/kg hep-
arin (Heparin-Natrium 25000-ratiopharm, Ratiopharm,
Germany) by subcutaneous injection to prevent blood
clotting on intravascular catheter. The Lignocaine 1%
(Xylocitin loc, Mibe, Germany) was injected into the right
groin. A patch of skin and fat tissue next to the groin
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was removed and blood vessels were separated from sur-
rounding tissue. The distal end of the artery was ligated
with suture. A heparin filled catheter (0.8 mm Umbilical
Vessel Catheter, Tyco Healthcare, Ireland) was connected
to the syringe and inserted through an incision in the
clamped artery. Finally, the distal ligation was tied to
the cannula. Then, the syringe for withdrawing the ref-
erence arterial blood samples was attached to a Standard
Infuse/Withdraw PHD 22/2000 Syringe Pump (Harvard
Apparatus, Massachusetts, USA).
The installation of the cardiac ventricle catheter was

performed in several steps previously described. The
catheter was afterwards connected to the blood pres-
sure monitoring device, and the cannula was advanced
towards the heart. The catheter insertion proceeded until
the blood pressure signal vanished. The catheter was then
retracted 2 mm, and the end of caudate ligation was
tied around by a rostal knot. The blood pressure device
was then replaced by the syringe containing the micro-
spheres. The syringe for reference arterial blood samples
was attached to a Standard Infuse/Withdraw PHD 44
Syringe Pump (Harvard Apparatus, USA). The position
of the cannula in the left ventricle was confirmed by
computer tomography (CT) (Skyscan 1178, Skyscan, Bel-
gium). The syringe with the microspheres (approximately
160,000 microspheres in 1 mL E-153) was sonicated at
room temperature and quickly connected to the ventric-
ular catheter. The syringe pump for extraction of the
arterial reference blood sample was started with a speed of
0.5 mL/min and continued over 2 min. The microspheres
were injected 0.5 min after starting the reference blood
sampling with a rate of 1 mL/min.

Experimental protocol
The experimental protocol is summarised in Figure 1.

Microsphere injection
64Cu-labeled microspheres (48 ± 27 MBq; 148,755 ±
49,103 microspheres; 8 animals) and 68Ga-labeled micro-
spheres (190 ± 79 MBq; 149,068 ± 34,530 microspheres;
10 animals) were injected resulting in 4.1± 1.7MBq 64Cu-
and 13.2 ± 9.6 MBq 68Ga activity, respectively, in the PET
field of view. After injection of the microspheres, the ani-
mal was placed on a dedicated heated animal bed allowing
both MRI and PET imaging without animal reposition-
ing. After stabilisation of the animal over 5 min, the MRI
or PET investigations were performed. Animal prepara-
tion and tomographic imaging procedure took about 3 h
(MRI, 120 min; PET, 60 min). The body temperature and
heart and breath rates of the animals were monitored by a
MR-compatible small animal monitoring and gating sys-
tem (SAM system, model 1025/1025L, SA Instruments
Inc, USA) during the MRI and PET examinations. The
temperature of the animals was stabilised by adjusting the

temperature of the animal bed. Breathing and heart beat
rates were stabilised by controlling the amount of inhaled
anaesthetic gas.
PET imaging had to be performed prior to MR imag-

ing for the animals injected with 68Ga-labeled micro-
spheres due to the limited radioactive half-life of this
isotope. MR imaging was performed first for animals
injected with 64Cu-labeled microspheres. After the com-
pletion of all measurements (PET, MRI), the animal
was killed, and the brain was extracted and weighed.
Radioactivity was measured in a dose calibrator cross-
calibrated to the PET scanner (Isomed 2000, Med Nuklear
Medizintechnik, Germany). The dose calibrator was also
used for the radioactivity measurements of the micro-
sphere standard and the reference blood sample. Finally,
the brain was quickly frozen by immersion in isopen-
tane/dry ice solution and temporarily stored (less than
24 h) until it was sliced into 40-μm thick sections in a
cryostat microtome (Leica CM1850, Leica Mikrosysteme
Vertrieb GmbH Mikroskopie und Histologie, Germany).
Each section was placed on a microscope slide (Carl
Roth GmbH + CO. KG, Germany). Cryosectioning of
the brain and fluorescence examination (FE) took around
5 to 6 h.

MRI examination
Measurements were performed with a 7 T small ani-
mal MRI system (BioSpec 70/30, Bruker, Germany), with
the vendor provided ASL protocol using a FAIR tech-
nique with an adiabatic hyperbolic secant inversion pulse
(length-bandwidth product 120) and echo planar imaging
acquisition (spin echo, TE = 14.67 ms, TR = 9,000 ms, NA
= 5, NR = 1). During each experiment, the rat was placed
in the middle of the homogeneous field of the resonator,
prone with head first, and the rat head coil (RAT-BR Q-
REC (SN) 300-1H, Bruker BioSpinMRI GmbH, Germany)
placed just above the brain. T2-weighted 2D and 3D
images were acquired (turbo rapid acquisition with refo-
cused echoes (RARE)-T2: TE = 11 ms, TR = 2,742 ms, NA
= 3, rare factor = 8, FOV = 40 × 40 × 1 mm, matrix =
128×128×13, inter-slice distance = 1.5 mm; turboRARE-
3D: TE = 9 ms, TR = 1,500 ms, rare factor = 16, FOV =
40 × 40 × 40 mm, matrix = 128 × 128 × 128). These data
were used for spatial registration of the MR and PET data
sets and selection of individual slices for the ASL mea-
surements. Single-shot/multi-phase ASL measurements
(inversion recovery time (TIR) = 26 ms, increment of TIR
= 200 ms, number of TIR = 22) were performed in two
transaxial slices intersecting the central region of the brain
and the cerebellum (Bregma – 3.8 ± 0.5 and – 9.68±
0.5 mm, respectively). Time points of the T1-relaxation
curve were collected successively for each voxel of both
planes which took 33 min (2 × 16.5 min). The result-
ing relaxation data were evaluated with in-house software
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Figure 1Work flow of the performed experiments.

written in the R programming language [19], yielding
parametric maps of tissue perfusion.

PET examination
The in-vivo distribution of radiolabeled microspheres
was assessed with small animal PET (microPET P4,
Siemens Medical Solutions, Germany) by acquiring a
static 60 min frame and by performing ROI (region of
interest) analysis in the 3D tomographic data (FOV =
76.8 × 76.8 × 7.62 mm, maximum a posteriori image
reconstruction, matrix = 256 × 256 × 63) corrected for
attenuation using an 10 min scan with a point source
(57Co). A common animal bed was used in the MRI
and PET examination, and repositioning of the animal
on the bed was avoided which ensures good hardware-
based coregistration of both investigations. Residual mis-
alignment was corrected by manual registration between
the anatomical MR and PET images with the ROVER

software (ABX GmbH, Radeberg, Germany) [20] using
MR as the reference image. The activity distribution
was analysed in ROIs, matching those used in the ASL
measurements.

Fluorescence examination
Selected sections obtained from cryosectioning of the
brain were examined with an optical imaging system (FX
Pro, Carestream Health Deutschland GmbH, Stuttgart,
Germany), and the number of microspheres in each
section was counted manually on screen. The relevant
sections were selected by visual comparison with the
anatomical MRI slices obtained during the MRI examina-
tion of the respective animal. For each MRI slice (thick-
ness 1 mm), a range of 25 consecutive sections (thickness
0.04 mm) was selected. The accuracy of the spatial cor-
respondence between brain sections and MRI slices was
about 0.5 mm.
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Reference blood samples were dried on filter paper (Carl
Roth GmbH + Co. Kg, Germany) and analysed using the
technique mentioned above. This enabled the determina-
tion of the number of microspheres in 1 mL blood. From
the separately determined total radioactivity of the blood
sample, the average activity bound to a single microsphere
was then calculated.

Data evaluation procedures
Data integrity check
Data integrity was first checked by comparing the total
radioactivity in the brain determined in two independent
ways:

• FE: direct counting of microspheres in all brain
sections

• PET: whole brain ROI

The FE-derived activities were, moreover, compared
with ex-vivo measurements of the brain activity (EXT) in
a dose calibrator after brain extraction. For all animals, FE
and EXT correlated very well (Pearson correlation 0.99),
demonstrating the validity of the FE-based evaluation.
Direct in-vivo counting of the fluorescent microspheres

could be carried out in 13 out of 18 animals. The FE-
and PET-derived total brain activities were then com-
pared. Out of the 13 assessed animals, three animals were
excluded where the difference between both values was
larger than 25%.
For the ten animals passing this check as well as for the

remaining five animals where FE could not be performed,
we then checked for sufficient stability of temperature
(35◦C to 37◦C), respiration (51 to 89 breaths/min), and
heart rate (192 to 388 bpm) during all measurements. It
turned out that the long duration of the two successiveMR
measurements of both selected slices in each animal partly
led to sizable fluctuations of these physiological parame-
ters between the MR measurements (and in comparison
to the PET measurement). This affected the cerebellum
slice MR measurement in five animals. These measure-
ments were therefore excluded from further evaluation.
Moreover, we had one drop out by technical failure of a
single slice MR measurement in one of the animals.
Altogether, we could include data from 15 out of 18

investigated animals, excluding six out of a total of
15 · 2 = 30 slices (five due to instabilities of physiologi-
cal parameters, one technical drop out). The comparison
between microsphere-derived perfusion and ASL thus
encompassed a total of 24 brain slices.

Image coregistration
For all 15 animals included in the final evaluation, MR
and PET image volumes were spatially registered using
the ROVER software. Perfusion quantitation was then

performed separately in the PET and ASL-MR data for the
two slices which had been selected for the ASL measure-
ments. The quantitation was performed as described in
the following.

ASL-FAIRmeasurements
ASL uses magnetically labeled arterial water protons for
perfusion measurements in a fashion principally simi-
lar to 15O-H2O PET, although time scales, magnitude of
the flow-sensitive signal, and type of labeling are quite
different.
The FAIR technique (see Figure 2) uses slice-selective

inversion labeling of the targeted slice (including a small
neighbourhood of ± 1 mm at a target slice thickness of
1 mm) and independent global inversion labeling which
covers the whole animal (or at least a sufficiently large
fraction, ensuring that no unlabeled blood enters the
imaged slice during the measurement, in our case the first
4.5 s after inversion). We describe the transport kinetics

Figure 2 Schematic diagram of the FAIR technique. Blood flows
up through the artery into the imaged slice. Two images are acquired:
a selective inversion image, where spins are labeled with a 180° pulse
in the selected plane and a nonselective image, where the whole
volume is labeled with 180°.
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of the water molecules with a one-tissue compartment
model, but we account for the possibility of limited first-
pass extraction across the BBB by introducing a flow-
dependent uptake rate K1 and a tissue clearance rate k2
which have the flow-independent ratio

Vd = K1
k2

, (1)

representing the volume of distribution of water in tissue.
K1 is related to blood flow by

K1(f ) = E(f ) · f , (2)

where E(f ) is a flow-dependent extraction fraction, which
becomes equal to 1 if the BBB is considered perfectly
permeable for water.
We use the abbreviation

m(t) = M0 − M(t)
2

(3)

for (half ) the difference between equilibrium magneti-
sation M0 and the instantaneous value M(t) at time t
after complete inversion, i.e. m(0) = M0 and m = 0 at
equilibrium. Using further

ρ = 1
T1

(4)

for the T1-related relaxation rates, we arrive at this dif-
ferential equation for the ASL one-tissue compartment
model [21]

dm(t)
dt

= K1ma(t) − ρsm(t) with:m(0) = M0, (5)

wherema is the arterial input function, ρs = k2 +ρ0 is the
apparent, and ρ0 the true T1-relaxation rate in tissue. For
our FAIR measurements, the input function is assumed to
be equal to zero in the selective measurement and equal to

ma(t) = ma0 e−ρat = M0
Vd

e−ρat (6)

in the global measurement, where ρa is the T1-relaxation
rate in the incoming arterial blood. We assume that
the tissue-to-blood ratio of the saturation magnetisation
equals the distribution volume of water.
From these equations, we obtain the tissue response

curves ms(t) and mg(t) for selective and global measure-
ment, respectively. ms is mono-exponential with relax-
ation rate ρs. mg is a weighted sum of two exponentials
with numerically similar rate constants ρs and ρa, respec-
tively. Since the resulting curve is practically indistin-
guishable from a single exponential, mg(t) is adequately
described by a single effective relaxation rate ρg . Going
back to the actual magnetisation M(t) (see Equation 3),

we obtain the following operational equations modeling
the measured relaxation curves:

Ms(t) = M0 · (
1 − 2 · e−ρst)

Mg(t) = M0 · (
1 − 2 · e−ρg t) .

The three parameters M0, ρs, and ρg are determined
independently for each voxel with a simultaneous least
squares fit of these equations to the measured selective
and global relaxation curves.
Further computation leads to this relation between the

experimentally accessible relaxation rates, ρs and ρg , and
the tissue clearance rate k2 [22-24]:

k2 = ρa
ρg

· (ρs − ρg). (7)

from which K1 follows (assuming Vd and ρa are known):

K1 = Vd · k2 = Vd · ρa
ρs − ρg

ρg
(8)

In our data evaluation, we have used the value T1a =
1/ρa = 2.0 s [25] and different Vd values, representative
of cortex and cerebellum, for the two investigated slices,
namely Vd = 0.95 mL/mL (Bregma-3.8 mm) and 0.88
mL/mL (Bregma-9.68mm), respectively [26]. For compar-
ison with themicrospheremeasurements, the resultingK1
values were finally averaged over the respective slices.

Microspheremeasurements
Blood flow quantification with microspheres requires
arterial injection of suitably sizedmicrospheres (upstream
of the target organ) which are then trapped completely
during the first pass through the capillary bed. Assum-
ing uniform radioactive labeling of all microspheres, the
measured level of radioactivity in a tissue sample is pro-
portional to the number of microspheres. The relation
between accumulated activity A [Bq] in the given sam-
ple volume and total blood flow F (mL/min) through the
sample is given by

A = F ·
∫ ∞

0
ca(t)dt, (9)

where ca(t) is the time dependent concentration of
microsphere-associated radioactivity in the arterial blood
(Bq/mL). Plotting ca(t) over time, the integral in Equation
9 is simply identical to the area under the curve. Assuming
sufficient mixing of the microspheres in the left ventricle,
ca(t) is the same for all arteries, and the blood flow Ft in
a target region can be derived by comparison of the tar-
get region activityAt with a ‘reference organ’ obeying, too,
Equation 9. This reference is created by drawing arterial
blood samples at a known fixed flow rate Fr and measur-
ing the activity Ar in the resulting reference blood sample.
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Then, the following relation directly follows:

At
Ar

= Ft · ∫ ∞
0 ca(t)dt

Fr · ∫ ∞
0 ca(t)dt

= Ft
Fr

and, thus,

Ft = Fr
Ar

· At . (10)

In the context of PET, it is more reasonable to use
regional activity concentrations ct (Bq/mL), i.e. activity
per unit volume of perfused tissue, which is the quan-
tity actually measured by PET and to normalise the blood
flow to unit volume accordingly. Using the symbol f for
this normalised blood flow (mL(blood)/min/mL(tissue)),
Equation 10 is replaced by

f = Fr
Ar

· ct , (11)

where, in our case, f is identical to the rCBF. As can
be seen, the measurement requires to continuously draw
an arterial blood sample at the fixed flow rate Fr and
measurement of the total activity Ar in the resulting sam-
ple. Sampling has to start before the first microspheres
arrive at the sampling site and to continue until the last
microspheres have passed by. The tissue radioactivity
concentration ct was determined in several ways for cross-
validation purposes. First, ct was determined in vivo in
the reconstructed 3D PET image volume for the relevant
slices (corresponding to those for which the ASLmeasure-
ments were performed) via suitable ROI definition as well
as for the whole brain. In 9 out of the 15 animals which
were included in the final data evaluation (see section
data integrity check), we were also able to perform ex-vivo
radioactivity measurements of the whole brain using a
dose calibrator. Finally, the brains were analysed after sec-
tioning by direct counting of the fluorescent microspheres
(FE) and conversion of the number of microspheres to
amount of activity using the known average amount of
radioactivity bound to a single microsphere: 0.316± 0.198
kBq for 64Cu, and 1.248 ± 0.495 kBq for 68Ga. The tis-
sue weights were converted to tissue volumes assuming a
density of 1.04 g/mL [27].

Comparison of ASL andmicrospheremeasurements
For comparison of the ASL-derived uptake K1 and the
microsphere-derived blood flow f, we use the Renkin-
Crone model which provides this relation for the flow-
dependent extraction E in Equation 2 [28,29]:

E(f ) = 1 − e−
PS
f (12)

which leads to

K1(f ) = f
(
1 − e−

PS
f

)
, (13)

where PS is the permeability surface area product of water
at the BBB. In order to account for potential bias intro-
duced by errors in the chosen value of the constant factor
Vd · ρa appearing in Equation 8, we augment this formula
by an additional scaling factor N :

K1(f ) = N · f
(
1 − e−

PS
f

)
. (14)

We have used Equations 13 (free parameter: PS) and 14
(free parameters: N and PS) for least squares fits of the
ASL-derived K1 values vs. the microsphere-derived flow
values.

Results
Figure 3 shows an example of the spatially coregistered
MS-derived perfusion distribution (f ) and ASL-derived
unidirectional water uptake (K1) for the animal from
Figure 4. Due to the rather limited statistical accuracy of
these images (and the limited number of microspheres in
the corresponding brain sections used for direct micro-
sphere counting), we compared only the slice averages of
these data. The transaxial slice thickness was 1 mm in
MRI and 3 mm in PET. The larger slice thickness for PET
is a consequence of the inferior spatial resolution of this
method and does affect, to some extent, the accuracy of
spatial correspondence between both data sets.
The obtained 24 pairs of slice-averaged perfu-

sion/uptake values were further evaluated by least squares
fits of the model Equations 13 and 14 to these data. The
results are shown in Figure 5.
Both fits exhibit comparable overall quality, but intro-

duction of the scaling factor N does lead to a slight
reduction of the residual standard error (sum of squared
residuals divided by degrees of freedom of the respective
fit) which was 0.216 and 0.206 for standard and modi-
fied Renkin-Crone model, respectively. Especially notable
is improvement at low flows where the standard fit tends
to underestimate the measured data. We, therefore, adopt
the fit including the scaling parameter as our final result.
The resulting fitted parameters are

N = 1.25 ± 0.17
PS = (1.53 ± 0.46) mL/min/mL.

It is, moreover, apparent from Figure 5 that there is no
systematic difference between the results obtained with
64Cu (circles) and 68Ga (triangles), respectively.

Discussion
In human brain studies, the capability of ASL to provide
perfusion values which are consistent with those deliv-
ered by 15O−H2O PET can be considered established
[10-12,30]. The situation is less clear in small animal imag-
ing, however. Despite the fact that there are many studies
reporting on the use of ASL in pre-clinical imaging, there
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Figure 3 Direct comparison of the two sections marked onMR-anatomical image on the top. (A) radioactively labeled microsphere
distribution measured by PET overlayed with MR-anatomical image (B) and ASL perfusion parametric image (C).

are only very few investigations regarding the quantitative
accuracy of ASL-derived perfusion values [7,8,13,14].
We have, therefore, conducted the present study with

the aim of evaluating the quantitative accuracy of one
common ASL technique, namely ASL-FAIR, for brain
imaging in rats by a direct comparison with radioactive
microspheres which are an accepted gold standard for
perfusion quantification.
Our final results are presented in Figure 5 together

with fits of two related models to the data. Although
there is substantial scatter, we observe a clear monotonic
relation between MS-derived brain perfusion f and ASL-
derived unidirectional water uptake K1. Each data point
results from averages over spatially registered transaxial
brain slices with comparable thickness (1 mm in MRI,
3 mm in PET). The points can, therefore, be consid-
ered as representing the slice averages of the respective
parameter (f and K1). It would have been desirable to
compare f andK1 also on a regional basis within the slices.
However, the limited number of microspheres present
in a single slice does not allow a reliable determina-
tion of perfusion values for different slice regions. The

substantial dynamic range of the MS-derived flow (and
the ASL-derived K1) values (ranging from about 0.2 to 1.9
mL/min/mL) might be surprising since no special mea-
sures were taken to achieve different flow levels in the
different animals. The range can be explained by observ-
ing that the investigated animal group was heterogeneous
with respect to age and weight and, more importantly,
that the animal preparation (notably catheterisation and
anaesthesia) does necessarily influence the individual
animals differently.
The resulting large variability of the resting blood flow is

actually advantageous in the present investigation since it
made additional intervention (pharmacological or pacing)
aiming at variation of blood flow unnecessary.
The observed correlation between f and K1 is approxi-

mately linear as can be seen by comparison with the line of
identity in the plots. At high flow values, however, there is
some indication that the data deviate systematically from
the line of identity as is to be expected if the permeabil-
ity of water at the BBB is limited. At low flows, there
is, moreover, a slight tendency of the ASL-K1 values to
overestimate the MS-derived perfusion.
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Figure 4 Transaxial (top), coronal (middle), and sagittal (bottom)
views of the rat brain. The regions selected for ASL-MRI are
indicated in a separate color map.

The latter effect can easily be explained by observing
that we had to fix two quantities, namely Vd and ρa
in Equation 8 in order to derive K1. These values are
not known precisely, and this uncertainty does introduce
potential bias in the K1 estimate. We account for this bias
bymodifying the standard Renkin-Crone formula through
multiplication with a scale factor N whose adjustment in
the fit can compensate for this bias. The resulting value,
N = (1.25 ± 0.17), can be interpreted as an indication
that the chosen value of the product Vd · ρa is too high by
about 25 ± 17% which seems perfectly possible: reducing
both Vd and ρa by about 10% would suffice to eliminate
the observed bias.
A similar K1(f ) dependency (K1 slightly overestimating

blood flow at low flow rates and increasingly underes-
timating it beyond f = 1 mL/min/mL) has been also
reported by Parkes and Tofts who used single compart-
ment fits to simulated signal curves generated with a

two-compartment model proposed by these authors (see
Figure 4a in [31]). They, moreover, report a field strength
dependency of the deviations from the line of iden-
tity which should decrease at decreasing field strength.
All deviations, including the overestimate at low flows,
are interpreted as a consequence of the one compart-
ment model simplification. Although the simulations are
not directly comparable to the present study (and the
used one-compartment operational equation differs from
ours), the qualitative agreement with our fitted K1(f )
curve is remarkable.
Adopting our approach of including the additional

model parameterN in the fit, we obtain PS = (1.53±0.46)
mL/min/mL as our best estimate of the PS-product of
water at the BBB of the rat. Although the statistical uncer-
tainty of this result is large (30%), this result is comparable
to the available information regarding this parameter.
In a PET study, Herscovitch and Raichle [32] reported a

value of PS = (1.04 ± 32) mL/g/min for water at the BBB
of rhesus monkeys. Takagi and coworkers [33] performed
ASL measurements at the rat brain and report 1.71 ± 0.86
mL/g/min. Parkes and Tofts [31] also referred to earlier
publications where the values in whole human brain var-
ied from 0.9 to 1.7min−1 with a mean value of 1.2min−1

[34,35]. We, therefore, consider the consistency of our
result with the previously reported figures as indication
that our description of the water kinetics with diffusion
limited one-compartment model is adequate.
Consequently, we consider our results as proof that the

ASL-FAIR technique is suitable to quantify brain perfu-
sion in the rat at low, normal, and moderately increased
flows (up to about 2 mL/min/mL). At higher flows, the
limited permeability leads to increasingly reduced first-
pass extraction of water across the BBB, and the measured
K1 becomes increasingly insensitive to further increases
in blood flow. Below about 2 mL/min/mL, an extraction
correction can be performed with the help of Equation
14 using the fitted values of PS and N (but note that N
is directly proportional to the chosen value of Vd · ρa: if
a different value were chosen for this product N would
have to be adjusted accordingly). Although we consider
our results as adequate proof of the quantitative capabil-
ities of ASL-FAIR for perfusion measurements in the rat
brain, it should be noted that our investigation has several
obvious limitations.
The major concern which could be raised regards the

fact that MS- and ASL-investigations might not probe the
same physiologic state of the animal.MS-derived f reflects
a snapshot of the blood flow level a few seconds after
MS injection. ASL, on the other hand, required about 15
min measurement per slice (more than half an hour for
both investigated slices) and was, moreover, performed
sequentially with the MS-investigation (before or after
MS, depending on radioactive label, see Figure 1). The
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Figure 5 Least squares fit of the Renkin-Crone model to the data. Left: standard Renkin-Crone model (Equation 13). Right: Renkin-Crone model
with additional scaling factor (Equation 14).

ASL-measurements thus provide time-averages which
are, moreover, measured at rather different time points
than theMS-derived flow. Of course, much care was taken
to ensure stable physiologic conditions as far as possible,
but residual variability cannot be excluded. We presume
that part of the scatter in Figure 5 can be attributed to
this residual variability and does not reflect the inher-
ent limit of achievable statistical accuracy either with
MS or ASL. There is, however, no reason to expect a
systematic change (increase or decrease) of the flow level
between both measurements since stable physiological
conditions were closely monitored in each animal. As a
further check, we performed a separate MR experiment
in a single (identically treated) animal, which underwent
four repeated ASLmeasurements over amuch longer time
period (2 h, 20 min) which yielded a constant K1 value
of 1.2 mL/min/mL to within 8% (data not shown) which
provides an estimate of the actually occurring perfusion
changes in the given experimental setup. Moreover, PET
and MR were performed in different order depending on
the radioactiveMS label used in the respective experiment
without causing visible differences between both tracers
in Figure 5. This is further evidence that no systematic
flow change takes place between PET and MR measure-
ment and that no sizable bias is present in the analysed f
vs. K1 correlation.
A further potential limitation of our study is the fact

that we only compared slice averages of the target param-
eters (f ,K1). While the slice thickness was comparable
in MS and ASL (1 mm vs. 3 mm), the actual reso-
lution mismatch implies a certain limitation of spatial
correspondence. This, too, will contribute somewhat to
the scatter in Figure 5. A spatially resolved comparison

within the imaging planes was not performed since the
combined image quality of MS and ASL was considered
insufficient for such a comparison; also, regional differ-
ences were visible, notably in the ASL measurements. We
believe that restriction to spatially averaged data does not
adversely affect our accuracy: the MS-derived perfusion
is simply related linearly to tracer uptake, and the slice
averaged MS-associated radioactivity corresponds to the
actual average perfusion in that region. The situation is
markedly different for ASL. Therefore, the ASL data were
quantified on a per-voxel basis and only averaged after-
wards in order to obtain the correctly averaged uptake
parameter K1.
Another restriction is the fact that the investigated flow

range is limited to perfusion values below 1.9 mL/min/mL
and that data above 1.0 mL/min/mL are scarce while
exhibiting large fluctuations. Consequently, the derived
PS value is not very precise, and validity of the Renkin-
Crone assumption cannot be proven unambiguously. It,
thus, would be desirable to perform further experiments
targeting especially the high flow range.
A final important issue concerns the models applied for

quantification of f and K1. While quantification of the MS
data is completely straightforward and mathematically
simple, quantification of the ASL data requires selection
among quite a number of different modeling approaches
[21-24,36-38].
We essentially follow the approach described in [22]

which leads to Equation 8. Since it is possible that
the one-compartment Kety-Schmidt model leads to
underestimation of perfusion at high flow values due to
limited permeability of the BBB to water [9,39], we do
not postulate that the resulting parameter K1 is identical
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to tissue perfusion f , but allow for a Renkin-Crone type
relation between K1 and f . The underlying assumption of
this approach is that even in the presence of limited per-
meability, the kinetics is reasonably well described by a
one-compartment model. We believe that this is reason-
able at least as long as the PS product is higher than or
comparable to the relevant flow levels. Treating the cap-
illary as a separate identifiable kinetic compartment (see,
e.g. [23,24]) is of course possible, and different approx-
imations and limiting cases have been investigated [31].
Given the limited statistical accuracy of the experimen-
tal data there is, in our view, no realistic possibility of
identifying f and PS (plus the vascular fraction) simul-
taneously in the data (this assessment is in accord with
[16]). The only really visible effect of limited PS is a
reduction of tissue uptake K1 relative to f at elevated
flow levels.
By independently measuring f via the MS experiments,

we were able to determine experimentally the relation
between f and the effective K1. This relation, as presented
in Figure 5, is reasonably described by a Renkin-Crone
type formula (Equation 13 or 14) which supports the
above conjecture that our one-compartment description
is adequate. We note that the Renkin-Crone relation is
not compatible with the two-compartment model which
would yield a different expression for the flow depen-
dent extraction (and a different numerical value for PS),
namely E(f ) = PS/(f + PS). We believe the Renkin-
Crone model to be more reasonable since it accounts for
the arterio-venous concentration gradient in the capillary
(it can be considered as a simple variant of a distributed
model) instead of making the rather strong assumption
that the capillary reacts as a well-mixed compartment
(which obviously is not really the case). The statistical
accuracy of our data, however, is insufficient to decide
between the two alternative expressions for the function
E(f ). Still, this question is irrelevant as long as the objec-
tive of the experiment is not to determine the PS product
itself.We take the point of view that the one-compartment
model combined with the Renkin-Crone formula regard-
ing the flow dependence of the unidirectional uptake
rate K1 of the compartment model is phenomenolog-
ically sufficient for description of the data and for
derivation of quantitative perfusion values from the ASL
measurements.

Conclusions
The ASL-FAIR technique is suitable for absolute blood
flow quantification in the rat brain when using a one-
compartment model including a suitable extraction cor-
rection for data evaluation.
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Boś et al. EJNMMI Research 2012, 2:47 Page 12 of 12
http://www.ejnmmires.com/content/2/1/47

13. Walsh EG, Minematsu K, Moore SC: Radioactive microsphere validation
of a volume localized continuous saturation perfusion
measurement.Magn ResonMed 1994, 31(2):147–153.

14. Pell GS, King MD, Proctor E, Thomas DL, Lyghgoe MF, Gadian DG, Ordidge
RJ: Comparative study of the FAIR technique of perfusion
quantification with the hydrogen clearance method. J Cereb Blood
FlowMetab 2003, 23:689–699.

15. Silva AC, Zhang W, Williams DS, Koretsky AP: Estimation of water
extraction fractions in rat brain using magnetic resonance
measurement of perfusion with arterial spin labeling.Magn Reson
Med 1997, 37:58–68.

16. Carr JP, Tessier DJ, Parker GJ:What levels of precision are achievable
for quantification of perfusion and capillary permeability surface
area product using ASL?Magn Res Med 2007, 58(2):281–289.
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