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Abstract

Background: P-glycoprotein [Pgp] dysfunction may be involved in neurodegenerative diseases, such as Alzheimer's
disease, and in drug resistant epilepsy. Positron emission tomography using the Pgp substrate tracer (R)-[''C]
verapamil enables in vivo quantification of Pgp function at the human blood-brain barrier. Knowledge of test-retest
variability is important for assessing changes over time or after treatment with disease-modifying drugs. The
purpose of this study was to assess reproducibility of several tracer kinetic models used for analysis of (R)-[''C]
verapamil data.

Methods: Dynamic (R)-[''Clverapamil scans with arterial sampling were performed twice on the same day in 13
healthy controls. Data were reconstructed using both filtered back projection [FBP] and partial volume corrected
ordered subset expectation maximization [PVC OSEM]. All data were analysed using single-tissue and two-tissue
compartment models. Global and regional test-retest variability was determined for various outcome measures.

Results: Analysis using the Akaike information criterion showed that a constrained two-tissue compartment model
provided the best fits to the data. Global test-retest variability of the volume of distribution was comparable for
single-tissue (6%) and constrained two-tissue (9%) compartment models. Using a single-tissue compartment model
covering the first 10 min of data yielded acceptable global test-retest variability (9%) for the outcome measure K;.
Test-retest variability of binding potential derived from the constrained two-tissue compartment model was less
robust, but still acceptable (22%). Test-retest variability was comparable for PVC OSEM and FBP reconstructed data.

model.

Conclusion: The model of choice for analysing (R)—[”C]verapamil data is a constrained two-tissue compartment
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Background

P-glycoprotein [Pgp] is considered to be the most
important efflux transporter at the human blood-brain
barrier [BBB] because of its high expression and its abil-
ity to transport a wide range of substrates from the
brain into the circulation and cerebrospinal fluid. Pgp
plays an important role in protecting the brain from
endogenous and exogenous toxic substances by remov-
ing them before they reach the parenchyma [1-5]. It has
been hypothesised that decreased Pgp function and/or
expression at the BBB are involved in several
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neurological disorders, such as Creutzfeldt-Jakob dis-
ease, Parkinson’s disease and Alzheimer’s disease [AD]
[6-9]. On the other hand, increased Pgp function may
be involved in drug-resistant epilepsy [10].

Over the past years, several positron emission tomo-
graphy [PET] tracers have been developed for quantify-
ing Pgp function in vivo. Of these, (racemic) [''C]
verapamil, (R)-[*'C]verapamil and [HC]-N-desmethyl-
loperamide have been used in humans [8,11-15]. Both
(R) and (S) enantiomers of verapamil are substrates for
Pgp, but (R)-["'C]verapamil is the preferred isomer for
quantification of Pgp function as it is metabolised less
than (S)-[*'C]verapamil [16,17]. (R)-[*'C]verapamil has
been widely used both in healthy controls without
[12,18-20] and with modulation of Pgp function [21,22]
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and in neurological diseases such as epilepsy [10], Par-
kinson’s disease [11] and AD [9].

Several tracer kinetic models for quantification of (R)-
[!C]verapamil data have been reported [19,23] with the
standard single-tissue compartment model [1T2k] being
used most frequently. An alternative approach is to
apply the single-tissue compartment model only to the
first 10 min after injection (1T2k') in order to mini-
mise effects of radiolabelled metabolites potentially
crossing the BBB [23]. Other studies, however, have
shown that a two-tissue compartment model [2T4k]
provides good fits to the data, and a study using spectral
analysis as well as studies in which Pgp was blocked
pharmacologically suggests that indeed two compart-
ments can be identified [9,21,23]. An important charac-
teristic of a tracer kinetic model is its test-retest [TRT]
variability. This not only determines group sizes in
cross-sectional studies, but is also particularly important
in longitudinal studies designed to assess changes over
time or after treatment with disease-modifying drugs.
To date, only one study has reported on TRT variability
of (R)-["'C]verapamil data [19]. This study, however, did
not include all tracer kinetic models mentioned above,
and TRT variability was only reported for a whole brain
region of interest [ROI]. Clearly, information about
regional TRT variability is important in order to inter-
pret changes in Pgp function in smaller anatomical
structures. Therefore, the main aim of this study was to
assess regional TRT variability of (R)-[''C]verapamil
PET data for several tracer kinetic models. In addition,
effects of correcting for partial volume effects on TRT
variability were assessed.

Materials and methods

Subjects

Thirteen healthy controls, six males and seven females,
were included (mean age 40 years, range 21 to 63
years). A subset of these data has been published pre-
viously as a part of the model development for (R)-[''C]
verapamil [19]. Subjects were recruited through adver-
tisements in newspapers and by means of flyers. All sub-
jects were screened extensively for somatic and
neurological disorders and had to fulfil research diag-
nostic criteria for having never been mentally ill. Screen-
ing procedures included medical history, physical and
neurological examinations, screening laboratory tests of
blood and urine, and brain magnetic resonance imaging
[MRI] which was evaluated by a neuroradiologist. Sub-
jects were not included if there was use of drugs of
abuse or use of medication known to interfere with Pgp
function [24,25]. Additional exclusion criteria were his-
tory of major neurological or psychiatric illness and
clinically significant abnormalities of laboratory tests or
MRI scan. Written informed consent was obtained from
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all subjects after a complete written and verbal descrip-
tion of the study. The study was approved by the Medi-
cal Ethics Review Committee of the VU University
Medical Center.

MRI

Six subjects underwent a structural MRI scan using a
1.0 T Magnetom Impact scanner (Siemens Medical
Solutions, Erlangen, Germany) and seven subjects using
a 1.5 T Sonata scanner (Siemens Medical Solutions,
Erlangen, Germany). The scanning protocol on both
scanners included an identical coronal T1-weighted 3-D
magnetization-prepared rapid acquisition gradient-echo
sequence (slice thickness = 1.5 mm; 160 slices; matrix
size = 256 x 256; voxel size = 1 x 1 x 1.5 mm; echo
time = 3.97 ms; repetition time = 2.70 ms; inversion
time = 950 ms; flip angle = 8°). The MRI scan was used
for co-registration and for ROI definition.

PET data acquisition

All subjects underwent two identical PET scans on the
same day. Scans were performed on an ECAT EXACT
HR+ scanner (Siemens/CTI, Knoxville, USA), equipped
with a neuro-insert to reduce the contribution of scat-
tered photons from outside the field of view of the scan-
ner. This scanner enables acquisition of 63 transaxial
planes over a 15.5-cm axial field of view, allowing the
whole brain to be imaged in a single bed position. The
properties of this scanner have been reported elsewhere
[26]. (R)-[*'C]verapamil was synthesised as described
previously [27]. Prior to tracer injection, a 10-min trans-
mission scan in 2D acquisition mode was performed
using three rotating ®®Ge rod sources. This scan was
used to correct the subsequent emission scan for photon
attenuation. Next, a dynamic emission scan in 3D acqui-
sition mode was started simultaneously with an intrave-
nous injection of approximately 370 MBq (R)-[''C]
verapamil. (R)-[''C]verapamil was injected at a rate of
0.8 mL-s™!, followed by a flush of 42 mL saline at 2.0
mL-s™ using an infusion pump (Med-Rad, Beek, The
Netherlands). The emission scan consisted of 20 frames
with a progressive increase in frame duration (1 x 15, 3
x 5,3 x 10, 2 x 30, 3 x 60, 2 x 150, 2 x 300 and 4 x
600 s) and a total scan duration of 60 min. During the
(R)—[HC]verapamil scan, arterial blood was withdrawn
continuously using an automatic on-line blood sampler
(Veenstra Instruments, Joure, The Netherlands [28]) at a
rate of 5 mL-min™" for the first 5 min and 2.5 mL-min™"
thereafter. At 2.5, 5, 10, 20, 30, 40 and 60 min after tra-
cer injection, continuous blood sampling was inter-
rupted briefly to withdraw a 10-mL manual blood
sample, followed by flushing of the arterial line with a
heparinised saline solution. These manual samples were
used to determine plasma to whole blood [P/WB]
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radioactivity concentrations. In addition, concentrations
of radioactive parent tracer and its polar metabolites in
plasma were determined using a combination of solid-
phase extraction and high-performance liquid chromato-
graphy, as described previously [29]. Patient movement
was restricted by the use of a head holder and moni-
tored by checking the position of the head using laser
beams.

PET data analysis

All PET data were corrected for attenuation, randoms,
dead time, scatter and decay. Images were reconstructed
using a standard filtered back projection [FBP] algo-
rithm, applying a Hanning filter with a cutoff at 0.5
times the Nyquist frequency. A zoom factor of 2.123
and a matrix size of 256 x 256 x 63 were used, resulting
in a voxel size of 1.2 x 1.2 x 2.4 mm and a spatial reso-
lution of approximately 6.5 mm full width at half maxi-
mum at the centre of the field of view. Images were also
reconstructed using a partial volume corrected ordered
subset expectation maximization [PVC OSEM] recon-
struction algorithm, a previously described and validated
method that results in improved image resolution,
thereby reducing partial volume effects [PVEs] [30-32].
Co-registration of structural T1 MRI images with corre-
sponding summed FBP or PVC OSEM reconstructed
(R)-["'C]verapamil images (frames 3 to 12) and segmen-
tation of co-registered MRI images into grey matter,
white matter and extracellular fluid was performed
using statistical parametrical mapping (SPM, version
SPM2, http://www.fil.ion.ucl.ac.uk/spm, Institute of Neu-
rology, London, UK) software. ROIs were defined on the
segmented MRI using a probabilistic template as imple-
mented in the PVElab software [33]. The following ROIs
were used for further analysis: frontal (volume-weighted
average of orbital frontal, medial inferior frontal and
superior frontal), parietal, temporal (volume-weighted
average of superior temporal and medial inferior tem-
poral), occipital, posterior and anterior cingulate, medial
temporal lobe [MTL] (volume-weighted average of hip-
pocampus and enthorinal) and cerebellum. In addition,
a global cortical region was defined consisting of the
volume-weighted average of frontal, parietal, temporal
and occipital cortices and posterior and anterior cingu-
late regions. ROIs were mapped onto dynamic PET
images, and regional time-activity curves were
generated.

The on-line blood curve was calibrated using the
seven manual whole blood samples. Next, the total
plasma curve was obtained by multiplying this calibrated
whole blood curve with a single-exponential function
derived from the best fit to the P/WB ratios. Finally, the
corrected plasma input function was generated by multi-
plying this total plasma curve with a sigmoid function
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derived from the best fit to one minus the polar fraction
[19,34].

Kinetic analyses of (R)-[''C]verapamil data were per-
formed using software developed within Matlab 7.04
(The Mathworks, Natick, MA, USA). Data were analysed
using different compartment models, schematically
shown in Figure 1, and for different outcome measures,
which have been proposed in previous studies as meth-
ods for analysing (R)-['C]verapamil data. First, (R)-[''C]
verapamil data were analysed using non-linear regres-
sion to a standard single-tissue compartment model
covering both the entire 60 min (1T2k*°) and only the
first 10 min (1T2k') of data collection, yielding K, k,,
volume of distribution V1 and the fractional blood
volume V3. In addition, standard two-tissue compart-
ment models without (2T4K) and with fixing K;/k; to
the mean whole brain grey matter value (2T4k"""ix)
were tested, yielding, in addition to the individual rate
constants K; to k, and V3, the outcome measures Vet
and non-displaceable binding potential BPyp. Goodness
of fits for the various models was assessed by means of
the Akaike information criterion [AIC] [35].

Statistical analysis

P values for assessing differences in characteristics
between test and retest scans were obtained using Stu-
dents ¢ tests. Test-retest variability was calculated as the
absolute difference between test and retest scans divided
by the mean of these two scans. Differences in TRT
variability between FBP and PVC OSEM reconstructed
data were assessed using paired ¢ tests. Furthermore, the
level of agreement between test and retest scans was
assessed using Bland-Altman analysis [36]; the difference
in values between both measurements was plotted
against their mean. Data are presented as mean + stan-
dard deviation, unless otherwise stated.

Results

Thirteen test and retest scans were performed. There
were no differences in injected dose (test 361 + 29
MBgq, retest 374 + 24 MBq; p = 0.23) and specific activ-
ity (test 44 + 13 GBq pmol ™, retest, 49 + 16 GBq pmol
1. p = 0.41) of (R)-["'C]verapamil between test and retest
scans.

Two data sets had to be excluded from further analy-
sis due to incomplete blood data. In one retest scan, the
polar and parent fractions of the last manual sample
were missing due to technical problems. Another retest
scan clearly had erroneous values for the polar fraction
of the last two manual samples. For the 11 subjects
included in the analyses, TRT variability for the parent
fraction (mean parent fraction of samples 6 and 7 at 40
and 60 min, respectively) ranged from 2% to 26% in
individual subjects, with a mean of 13 + 8%.


http://www.fil.ion.ucl.ac.uk/spm

van Assema et al. EJINMMI Research 2012, 2:1
http://www.ejnmmires.com/content/2/1/1

Page 4 of 10

K,
Cplasma » Ctissue
k2
r——----""""""""7/""""
Ki | Ky |
Cplasma I Cfree C;bound |
oo K, |
e e ——— — — — — — — — — — —
Ctissue
Figure 1 Schematic diagrams of the compartment models. In the upper diagram, a standard single-tissue compartment (1T2k) is shown. In
this study, two different implementations were used: the 1T2k*® model using 60 min of data acquisition and the 1T2k'® model using the first 10
min of data acquisition. In the lower diagram a standard two-tissue compartment (2T4k) model is shown. In this study, two different
implementations were used: the 2T4k model without and the 2T4k"™™ model with fixation of Ki/k, to the whole brain grey matter value. C,
compartment.

First, fits to the various models for the global cortical
region were assessed using AIC. The 1T2k'® model was
excluded from this analysis as it covers only 10 min
rather than the entire 60 min of data acquisition. Since
the 1T2k' model differs in the number of data points
(fewer frames and shorter scan duration) from the other
models, AIC values cannot be compared with the other
models. For FBP reconstructed data, the 2T4k"nsfix
model provided best fits in 19 out of 22 scans (86%)
according to the AIC with a mean value of -98 + 13.
The 1T2k®® and 2T4k models provided best fits in 1
(5%) and 2 (9%) out of 22 scans with mean AIC values
of -81 + 13 and -96 + 14, respectively. Examples of the
various model fits are shown in Figure 2. Similar results
were obtained for PVC OSEM reconstructed PET data,
with the lowest AIC (-103 + 11) for the 2T4k"Tnsfix
model in 17 out of 22 scans (77%). The 1T2k®® model
(mean AIC value -88 + 13) and 2T4k model (mean AIC
value -101 + 11) provided best fits in 2 (9%) and 3
(14%) out of 22 scans, respectively.

Table 1 summarises TRT variability of the various
outcome measures and parameters derived from FBP
reconstructed (R)-[''C]verapamil data for all ROIs inves-
tigated. Average TRT variability of the 1T2k*® model-
derived V7 for the global cortical brain region was 6.2%,
and regional TRT variability ranged from 5.8% in the
occipital to 8.3% in the posterior cingulate region.

Corresponding TRT variabilities of the rate constants K
and k, for the global cortical region were 9.1 and 10.0%,
respectively. Regional data are summarised in Table 2.

For the 1T2k'® model, TRT variability of the outcome
measure K; was 8.8% for the global cortical ROI and
varied from 8.6% in both temporal and occipital regions
to 12.7% in the medial temporal lobe region (Table 1).
Corresponding TRT values for Vy and k, are listed in
Table 2.

The standard 2T4k model resulted in outcome mea-
sures and rate constants that could not be determined
reliably (i.e. very high standard errors [SEs] of fitted
parameters). Therefore, assessment of TRT variability
did not seem useful. SEs of outcome parameters from
the other models were very acceptable. For example, for
the global cortical region and FBP reconstructed data,
SE values were in the range of 0.14% for Vr (1T2Kk%9),
2.7% for K; (1T2k'°), 3.3% for Vo (2T4kYT™sf%) and
3.2% for BPyp (2T4k"™™™),

For the 2T4k"Y™™ model, TRT variability of the out-
come measure BPyp, for the global cortical brain region
was 22.0%, and regional TRT values varied from 22.5%
in the occipital to 29.8% in the posterior cingulate
region (Table 1). Corresponding TRT variability of V¢
for the global cortical region was 8.9% (Table 1). TRT
values of the rate constants K, to k, for the 2T4k"Tnstix
model are given in Table 2.
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Figure 2 Examples of various fits. (A) The standard single-tissue compartment models fitted to the entire 60 min (1T2k%
the first 10 min (1T2k'°, green line) of data collection. The dashed green line represents an extrapolation of the 172k' fit, ie. data from 10 to 60
min were not used for fitting. (B) Fits obtained with the standard single-tissue compartment model (1T2k%°, red line) and the two-tissue
compartment model with fixed K;/k, QT4K™™ blue line). Fits of the unconstrained (standard) two-tissue compartment model (2T4k) were
identical to those of the 2T4kY™*™ model.
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Table 1 Test-retest variability (%) of various outcome

measures of (R)-[""

filtered back projection data

Clverapamil kinetics derived from
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Table 3 Test-retest variability (%) of various outcome

measures of (R)-[""

OSEM reconstructed data

Clverapamil kinetics derived from PVC

TRT (%) M2k 1T2k™®  2T4kV™™ 2TakV™™™  TRT (%) 1T2k*° 1T2k™ 274k 274KVTsfx
Vr Kq BPnp Vr Vr K BPnp Vr
Global 62+40 88+64 220+296 89 + 68 Global 6.3 =47 96 £ 67 227 +322 9062
Frontal 62+39 91+66 229+278 96 = 7.1 Frontal 64 + 48 92+62 247+300 9071
Parietal 60+43 91+£55 229+280 102+75 Parietal 57+37 106+71 233+310 94+57
Temporal 68+41 86+61 229+297 79+67 Temporal 72 +49 93+66 258+309 92+64
Occipital 58+47 86+76 225+274 110x74 Occipital 6.8 = 6.1 10874 232+321 100%72
Posterior cingulate 83+ 60 11.1+£88 298+370 136+388 Posterior cingulate 93 +69 133+ 10.1 335+374 131 +88
Anterior cingulate 70+£58 105+57 276+ 309 98 £ 74 Anterior cingulate 5952 142 £ 58 285+ 342 85+54
Medial temporal 78+50 127+96 255+£250 11562 Medial temporal 118 +£108 189+ 231 388+325 186+ 199
Cerebellum 68+ 66 104+78 253+£270 132£112 Cerebellum 6.3 + 45 76£56 262+309 106 =*6.1

Tables 3 and 4 provide similar data as Tables 1 and 2,
but now for PVC OSEM rather than FBP reconstructed
data. Although there was some regional variation, TRT
variability of all parameters derived from all models was
comparable, though not exactly the same as for FBP
reconstructed data. Although TRT variabilities of K;
obtained with the 1T2k'® model and BPyp and Vr
obtained with the 2T4k¥ ™™ model were slightly higher
for PVC OSEM reconstructed data, these differences
between both reconstruction methods were not statisti-
cally significant (tested using paired ¢ tests) for any of
the regions assessed. Next, the level of agreement
between test and retest scans was assessed by plotting
the difference in values between both measurements
against their mean for the various outcome measures, as
shown in Figure 3.

The global cortical brain region was the largest brain
region assessed with a mean volume of 226 + 29 mL.
Apart from the global cortical region, which consists of
six smaller brain regions, the frontal region was the lar-
gest region with a mean volume of 81 + 8 mL, whereas
the posterior cingulate was the smallest with a mean
volume of 4 + 1 mL. Figure 4 shows TRT variability as

a function of the mean ROI size for FBP reconstructed
data (Figure 4A) and for PVC OSEM reconstructed data
(Figure 4B).

Discussion

This study evaluated test-retest variability of R)-1*C]
verapamil data using several tracer kinetic models. Of
the three outcome measures that have been suggested
to reflect Pgp function, the best TRT variability was
found for Vr using the 1T2k*° model (global TRT 6%).
Using the 2T4k ™™ model, comparable TRT variabil-
ity was found for V1 (global TRT 9%), but TRT variabil-
ity for BPyp was higher (global TRT 22%). For K;
derived from the 1T2k'® model, global TRT variability
was 9%. TRT variability could not be assessed for the
2T4k model without fixing K;/k, to a global value. In a
previous study evaluating several compartment models
for (R)-[''C]verapamil data, it has also been shown that
TRT variability was substantially higher for a 2T4k
model, and in that study, it was concluded that the
1T2k model was the model of choice for analysing (R)-
["'C]verapamil data [19]. Nevertheless, in this study,
AIC analysis showed that the 2T4kV™™f* model

Table 2 Test-retest variability (%) of various (R)-[''Clverapamil rate constants derived from filtered back projection

reconstructed data

TRT (%) 1T2k5° 1T2k%° 1T2k" 1T2k™ 2T4KVTsfix 2T4KVTsfix 274KV Tsfix 274KV Tnsfix
’é ky Ve k, K, k, ks ka
Global 91+ 70 100 + 60 59 +59 92+ 51 91+ 70 192 + 271 662 + 564 606 + 450
Frontal 102 + 67 103 +57 69 + 63 92 +57 100 + 64 196 + 27.1 633 + 56.1 585 + 459
Parietal 94 + 7.1 112 +60 69 +53 81+ 7.1 92+ 75 184+270  631+558 610 +453
Temporal 80 + 64 89 + 65 68 +53 113459 101 + 63 201 + 265 757 + 573 65.7 + 479
Occipital 97 + 81 106 + 50 66 + 65 83 + 49 83+95 193+ 288 688 + 66.1 66.8 + 59.1
Posterior cingulate 99 + 103 95+78 141 + 144 168 + 14.1 98 + 83 211 + 258 779 + 654 73.7 £ 55.1
Anterior cingulate 97 + 67 116 + 66 167 + 157 207 + 181 102 + 63 178 £ 255 710+ 659 716 + 545
Medial temporal 106 + 93 111 +95 168+ 126 251+ 153 130 + 8.1 227 +276 697 + 395 60.6 + 40.3
Cerebellum 109 + 76 103 + 67 6.8 + 48 72+57 102+ 79 186+270  581+556 614+ 441
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Table 4 Test-retest variability (%) of various (R)-[''Clverapamil rate constants derived from PVC OSEM reconstructed

data
TRT (%) 1T2k%° 1T2k%° 1T2k'° 1T2k™ 2T4KVTrsfix  oTaRVTnsfix o oTgVTnsfix oy VTnsfix
K, ko Vs ky é k> ks ks

Global 99 + 80 102+ 72 74+73 97 + 63 82+ 65 219+ 261 622 +544 502 + 382
Frontal 101 +79 104 + 80 93 +92 1.1 +77 76+ 5.1 213+251 615+578  51.0+436
Parietal 107 + 81 113+69 90+ 59 115 +99 97 +78 229+260 661 +575 577 +402
Temporal 9.1 +82 116+ 68 71+58 94+ 62 80+ 72 222+261  617+526 493+ 36
Occipital 110+ 76 93+ 7.1 67 +75 97 £ 67 107 +75 231+288 600 +561 491 + 39
Posterior cingulate 134+ 115 114 + 82 156 + 10.1 177 £ 95 136+ 106 280 +274  844+571 698 + 541
Anterior cingulate 129 +93 126 + 88 138 + 86 217 +125 113 +62 233+246 747 +638 654+ 507
Medial temporal 150 +217 144 +130 258 +132 383+ 221 169+ 191  286+311  823+535 792+ 455
Cerebellum 84+ 75 102 + 68 101 + 64 106 + 6.7 72459 208+ 261  680+608  59.1 +475

provided better fits to the data than the standard single-
tissue compartment model, with substantial differences
in AIC values. Furthermore, test-retest variability and
precision of the fitted outcome measures were very
acceptable. Regarding the 1T2k'® model as proposed by
Muzi et al., TRT variability of the outcome measure K;
was moderate; the quality of the fit (over the first 10
min) was good, and a shorter scan duration is an advan-
tage, especially in certain patient groups. Nevertheless,
K; might not fully reflect Pgp function. Although a sig-
nificant increase in K; was found after Pgp inhibition,
there was an even larger increase in k3 [23]. In addition,
previous studies as well as spectral analysis have shown
that there are two compartments in (R)-[''C]verapamil
data, in healthy controls under baseline conditions, in
Alzheimer’s disease patients [9] and especially after
pharmacological blockade of Pgp [21,23]. Therefore,
despite its slightly higher TRT of Vi, the 2T4kY s
model is the tracer kinetic model of choice, even for
baseline studies in healthy controls. Although TRT
variability of BPyp was higher, TRT variability of V¢
was quite similar for the constrained two-tissue and
standard single-tissue compartment models. Therefore,
V1 derived from the constrained two-tissue compart-
ment model should be used. This has the further advan-
tage that the same model can be used in blocking
experiments, where baseline scans are compared with
scans after administration of a Pgp inhibitor, or when
comparing different groups of patients.

The present study is the first to assess TRT variability
of regional (R)-[''C]verapamil data as previous studies
have reported on total brain TRT variability only [19].
Although there is a slight decrease (approximately 5%)
in reproducibility for brain regions with the smallest
volumes, such as the anterior and posterior cingulate,
this effect is only marginal (Figure 4). The slightly
higher TRT values in the medial temporal lobe (Tables

1 and 3) may be secondary to spill over from the very
high signal in the choroid plexus.

The effect of PVE correction methods on TRT varia-
bility of (R)-[*'C]verapamil data has not been assessed
before. In the present study, images were reconstructed
using both standard FBP and PVC OSEM reconstruc-
tion algorithms [30]. PVC OSEM improves in-plane
resolution of PET images by taking the point spread
function of the scanner into account, leading to reduced
PVEs [31]. Interestingly, differences in TRT variability
between PVC OSEM and FBP reconstructed data were
only minor (Tables 1 and 3). It should, however, be
noted that only healthy controls were included, and
although the age range varied from 21 to 63 years, there
was no significant brain atrophy present on MRI scans.
The effects of PVE correction methods and their impact
on TRT variability should be assessed in future studies
in conditions where brain atrophy may be present, such
as in neurodegenerative diseases. However, as (R)-[''C]
verapamil is a tracer which has low uptake throughout
the brain and therefore shows little contrast, no major
effects from PVE correction methods should be
expected. Even in the medial temporal lobe, where the
signal was higher than in other brain regions, no
improvement in TRT variability was seen. In fact, TRT
variability in this region was higher after PVE correc-
tion. For MTL, PVE correction implies a small signal
following a large correction for PVEs. Consequently,
noise levels in the corrected MTL signal will be higher
than in other regions, resulting in higher TRT values.

In conclusion, reproducibility of (R)-["'C]verapamil
PET studies was best for V1 derived from single-tissue
(6%) and constrained two-tissue (9%) compartment
models. As the constrained two-tissue compartment
model provided the best fits to the data, it is the kinetic
model of choice with the volume of distribution Vit as
the preferred outcome measure.
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Figure 3 Bland-Altman plots for the various outcome measures derived from FBP and PVC OSEM reconstructed data. (A) 1T2k model,
Vs as outcome measure. (B) 1T2k'® model, K; as outcome measure. (C) 214K model, BP\p as outcome measure. The Greek letter delta
represents the change between test and retest values in the global cortical region. On the x-axis, the mean of test and retest values is given.
Squares, FBP data; triangles, PVC OSEM data.
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