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Abstract
Background Serum bone turnover markers offer limited insight into metabolic activity at the individual vertebra 
level in osteoporosis. This study introduces a novel image-derived bone turnover marker for individual vertebrae to 
address this limitation, utilizing volumetric density-adjusted quantitative bone single-photon emission computed 
tomography/computed tomography (SPECT/CT) with [99mTc]Tc-DPD. This retrospective study included 177 lumbar 
vertebrae from 55 postmenopausal South Korean women. The mean standardized uptake value (SUVmean, g/cm3) 
and volumetric bone mineral density (vBMD, mg/cm3) were determined within a 2-cm³ volume of interest in the 
trabecular portion of each vertebra using quantitative SPECT and CT. The density-adjusted mean standardized uptake 
value (dSUVmean) was calculated by dividing the SUVmean by the vBMD and multiplying by 1,000.

Results SUVmean correlated positively with vBMD (r = 0.60, p < 0.001). Conversely, dSUVmean correlated negatively with 
vBMD (ρ = −0.66, p < 0.001), highlighting the inverse relationship between bone mass and turnover after density 
adjustment of SUVmean. Patients with major osteoporotic fractures had lower vBMD (62.5 ± 29.4 vs. 92.3 ± 27.4 mg/cm³, 
p = 0.001) but higher dSUVmean (100.8 ± 60.7 vs. 62.6 ± 17.5, p = 0.001) compared to those without fractures, reinforcing 
the association between fracture prevalence, low bone mass, and high bone turnover.

Conclusion Volumetric density-adjusted quantitative bone SPECT/CT offers a novel image-derived bone turnover 
marker for assessing bone turnover in osteoporosis. This method provides a precise assessment of fragility at the 
individual vertebra level, which may enhance personalized osteoporosis management.
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Background
The incidence of osteoporosis and the associated socio-
economic burden of osteoporotic fracture have increased 
worldwide due to the aging population [1]. The primary 
goal of osteoporosis treatment is to minimize fracture 
risk and prevent subsequent fragility fractures, especially 
among high-risk individuals [2]. Thus, there is a high 
demand for accurate assessment of bone strength-related 
fracture risk.

Although bone mineral density (BMD), typically mea-
sured by dual-energy X-ray absorptiometry (DXA), is a 
crucial determinant of fracture risk, higher bone mass 
does not entirely eliminate fracture risk [3–5]. This has 
led to growing recognition of “bone quality” as an integral 
aspect of bone strength, distinct from bone mass. Bone 
quality encompasses various factors, including bone 
turnover, microarchitecture, mineralization, and micro-
damage [6–8]. Among them, several parameters provide 
quantitative indicators of bone turnover. Although bone 
histomorphometry is considered the gold standard for 
measuring bone turnover [9], it is invasive and not widely 
used. As a result, serum bone turnover markers (sBTMs), 
which include bone formation and bone resorption 
markers, are favored in clinical practice due to their sim-
plicity and cost-effectiveness [8]. However, sBTMs offer a 
cumulative measure of whole-body bone turnover, lack-
ing the specificity needed for individual bone assessment.

Bone scintigraphy using bone-seeking radiopharma-
ceuticals has been extensively used to track active bone 
turnover and metabolism [10]. These radiopharmaceu-
ticals bind to hydroxyapatite in bone tissue, reflecting 
osteoblastic activity and mineralization rates [11]. How-
ever, traditional bone scintigraphy produces two-dimen-
sional images primarily subject to visual analysis, limiting 
their quantitative utility. Recent advancements in imag-
ing technology, particularly the introduction of hybrid 
single-photon emission computed tomography/com-
puted tomography (SPECT/CT) system, have enabled 
three-dimensional scintigraphic imaging [12]. This allows 
for precise quantification of radiotracer activity and pro-
vides accurate anatomical information [13, 14]. CT-based 
attenuation correction in SPECT offers quantitative 
turnover rate, such as standardized uptake value (SUV), 
similar to those in static PET. Additionally, the CT com-
ponent provides bone density information in Hounsfield 
units (HU), comparable to quantitative CT (QCT) and 
BMD measurements [15, 16].

Clinically, bone SPECT/CT is valuable for differenti-
ating the cause of lower back pain and for quantitative 
analysis [17]. Previous studies have attempted to quan-
tify bone turnover in the lumbar spine (L-spine) using a 
volume of interest (VOI) approach [18–20]. These stud-
ies facilitated direct comparison with BMD and showed 
a positive relationship between SUV and L-spine bone 

density parameters. However, this contradicts the estab-
lished inverse correlation between bone turnover and 
bone mass [21, 22], suggesting that SUV alone may not 
accurately reflect bone turnover, similar to sBTMs.

The avidity of bone-seeking radiotracer at active bone 
turnover sites is influenced by the available bone surface 
or volume for tracer uptake [23, 24]. Since bone forma-
tion rate per unit of bone surface or volume equates to 
bone turnover by histomorphometry definitions [9], fur-
ther dimensional or volumetric adjustment of SUV is 
necessary for accurate normalization of turnover rates in 
individual vertebrae. Given that BMD influences tracer 
accumulation, we hypothesize that normalizing SUV by 
BMD, rather than using SUV alone, could more accu-
rately reflect the bone turnover rate at these sites. In this 
context, our study explores the feasibility of using volu-
metric bone mineral density (vBMD)-adjusted SUV from 
quantitative bone SPECT/CT as a novel marker for bone 
turnover. We aimed to elucidate its significance by corre-
lating it with the osteoporosis-related parameters.

Methods
Patient selection
We retrospectively recruited postmenopausal women 
who underwent both bone SPECT/CT of the L-spine and 
DXA within a three-month interval from May 2017 to 
August 2021 after excluding males and pre-menopausal 
women. Following the International Society for Clinical 
Densitometry recommendations [25], post-menopausal 
women with at least two vertebrae suitable for quanti-
fication without compression fractures, degenerative 
changes, or spinal implants were included. A comprehen-
sive review of electronic medical records and radiologic 
images was conducted to assess clinical characteristics as 
outlined in the Fracture Risk Assessment Tool (FRAX), 
including the presence of prevalent major osteoporotic 
fractures (MOF) in the hip, spine, radius, or humerus. 
The 10-year probability of a MOF or hip fracture was cal-
culated using the South Korean reference available on the 
FRAX website (www.sheffield.ac.uk/FRAX). Reasons for 
undergoing bone SPECT/CT were also identified. This 
study was approved by the Institutional Review Board 
(IRB No. 2020 − 1061) of our institution, and the need for 
informed consent was waived.

Bone SPECT/CT acquisition protocol and quantitative 
image analysis
All patients underwent whole-body planar scintigra-
phy at least three hours after an intravenous injection of 
approximately 740 MBq (20 mCi) of [99mTc]Tc-labeled 
3,3-diphosphono-1,2-propanodicarboxylic acid ([99mTc]
Tc-DPD). Data including patients’ body weight and 
height, initial and residual radioactivity before and after 
injection, and the timing of radioactivity measurements 

http://www.sheffield.ac.uk/FRAX
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were recorded for precise dose calculation after decay 
correction. SPECT/CT images of the L-pine and/or 
pelvis were acquired using a hybrid SPECT/CT cam-
era (Symbia Intevo 16, Siemens). For quantification, the 
99mTc activity was cross-calibrated between the dose cali-
brator and SPECT scanner. SPECT images were acquired 
over 360° using a step-and-shoot mode with 45 frames 
per detector head view, each lasting 22  s, and non-cir-
cular orbit. A non-enhanced CT scan was subsequently 
acquired with 110 kV and 40-reference mAs using adap-
tive dose modulation (CARE Dose 4D) and a slice thick-
ness of 2  mm. Images were reconstructed to generate 

attenuation-corrected SPECT data using the xSPECT-
Bone™ reconstruction algorithm (Siemens) with 1 subset 
and 24 iterations, enabling post-processed image quanti-
fication with a 256 × 256 matrix size.

For quantitative analysis, the body weight-based mean 
standardized uptake value (SUVmean, g/cm3) and mean 
HU (HUmean) of each vertebra from the first (L1) to the 
fourth (L4) lumbar vertebrae were measured by dedi-
cated software (Syngo Via, Siemens). A 2 cm3 spherical 
VOI was drawn in the trabecular center of each vertebra, 
avoiding cortical bone and the basivertebral vein (Fig. 1a).

The SUVmean equation was as follows:

Fig. 1 Representative images of the quantitation in measurable and non-measurable vertebra. (a) Example of measuring the HUmean and SUVmean param-
eters using a 2 cm3 spherical volume of interest (VOI) from L-spine SPECT/CT in one shot by a dedicated software. The image show axial and sagittal views 
with the green VOI placed in the measurable trabecular center of each L1–L3 body, while the non-measurable L4 body, with vertebral wedging and active 
degenerative changes, is also presented. (b) Example of measuring bone density parameters from QCT using a 2 cm3 cylindrical VOI in the same area as (a)
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SUVmean (g/cm3 ) =

Mean radioactivity concentration
in the volume of

interest of tissue (MBq/cm3 )

Injected dose (MBq)/Patient′s body weight (g)

QCT measurement
Using the CT component of SPECT/CT, we analyzed the 
vBMD (mg/cm3) for the same vertebral bodies retrospec-
tively using QCT Pro (Mindways Software Inc.), with asyn-
chronous phantom-based calibration. A cylindrical VOI 
equivalent to 2 cm3 was semi-automatically placed in the 
trabecular center of each vertebra and manually adjusted 
to avoid cortical bone and the basivertebral vein (Fig. 1b).

Deriving image-based bone turnover parameters
Given that trabecular bones in the vertebrae exhibit 
higher turnover rates than cortical bones and are cru-
cial in determining the response to anti-osteoporotic 
medication [26], adopting nearly simultaneous VOIs 
from SPECT and QCT for density adjustment is ideal for 
assessing bone turnover. We derived an additional vari-
able, bone density-adjusted SUVmean (dSUVmean), by mul-
tiplying 1,000 by SUVmean and then dividing the vBMD in 
each vertebra:

 
dSUVmean =

SUVmean (g/cm3 ) × 1,000
vBMD (mg/cm3 )

Similarly, HU-adjusted SUVmean (hSUVmean) was calcu-
lated by multiplying 1,000 by SUVmean and then dividing 
by HUmean:

 
hSUVmean (g/cm3 ) =

SUVmean (g/cm3 ) × 1,000
HUmean

DXA acquisition and image analysis
Areal BMD (aBMD, g/cm2) from L1 to L4 was measured 
using DXA equipment (GE Lunar Prodigy Advance). The 
region of interest (ROI) was automatically generated by 
the equipment’s software and manually adjusted by a 
skilled technologist when necessary. Trabecular bone 
score (TBS) was retrospectively analyzed from L-spine 
DXA scans using iNsight software version 3.0 (Med-
Imaps) with the ROI corresponding to those designated 
for BMD measurement.

Statistical analysis
Descriptive statistics, expressed as mean ± standard 
deviation, were used to summarize the baseline charac-
teristics of the study population. Pearson’s (r) or Spear-
man’s correlation coefficients (ρ) were employed for 
patient- and vertebra-based analyses to examine relation-
ships between variables. In the patient-based analysis, 

measured values from L1 to L4 were averaged to cre-
ate a single representative value per patient. Partial cor-
relation coefficients were additionally used to adjust for 
potential confounding factors. Group comparisons were 
conducted using the Mann–Whitney U test. A p-value of 
< 0.05 was considered statistically significant. All analyses 
were performed using SPSS version 23.0 (IBM Corp.).

Results
Baseline demographics
Figure  2 presents the patients’ recruitment process. After 
excluding males, pre-menopausal women, and those with 
non-quantifiable vertebrae, 55 postmenopausal women 
with at least two measurable vertebrae were included in the 
study. Among them, 24 patients (43.6%) had prevalent MOF. 
The baseline characteristics of the patients are summarized 
in Table 1. The majority (45/55, 81.8%) underwent SPECT/
CT due to low back or hip pain. Nine patients (16.3%) had 
a history of glucocorticoid intake, and 25 patients (45.5%) 
exhibited clinical features suggestive of secondary osteopo-
rosis, such as diabetes mellitus, Parkinson’s disease, or were 
on anticoagulation therapy. A total of 177 intact vertebrae 
were included in the quantitative analysis.

Comparison of SPECT/CT, DXA, and QCT parameters
The average value (mean ± SD) of SUVmean, HUmean, and 
vBMD from SPECT/CT for all patients was 5.2 ± 1.3  g/
cm3, 99.1 ± 39.9, and 79.3 ± 31.7  mg/cm3, respectively. 
The aBMD, T-score, and TBS values from DXA were 
0.90 ± 0.14  g/cm2, − 2.1 ± 1.1, and 1.4 ± 0.1, respectively. 
Both patient- and vertebra-based analyses demonstrated 
a very strong correlation between HUmean from SPECT/
CT and vBMD from QCT (r = 0.99, p < 0.001; r = 0.99, 
p < 0.001, respectively; Supplementary Fig. 1a and 2a) and 
a moderate-to-weak correlation between HUmean from 
SPECT/CT and aBMD from DXA (r = 0.47, p < 0.001; 
r = 0.36, p < 0.001). Additionally, dSUVmean and hSU-
Vmean showed a very strong correlation (r = 0.98, p < 0.001; 
r = 0.97, p < 0.001; Supplementary Fig. 1b and Fig. 2b).

SUVmean showed a strong positive correlation with 
HUmean (r = 0.60, p < 0.001; r = 0.60, p < 0.001) and vBMD 
(r = 0.60, p < 0.001; r = 0.60, p < 0.001) and a weak posi-
tive correlation with aBMD (r = 0.25, p = 0.062; r = 0.20, 
p = 0.009), indicating that higher bone density was gener-
ally associated with SUVmean. However, TBS showed no 
significant relationship with SUVmean (r = 0.18, p = 0.18; 
r = 0.12, p = 0.20), as depicted in Fig. 3.

Conversely, dSUVmean showed a strong negative cor-
relation with HUmean (ρ = −0.69, p < 0.001; ρ = −0.66, 
p < 0.001), vBMD (ρ = −0.69, p < 0.001; ρ = −0.66, 
p < 0.001) and a moderate or weak negative correlation 
with aBMD (ρ = −0.43, p < 0.001; ρ = −0.36, p < 0.001; 
Fig.  4). Interestingly, inverse correlations in exponential 
functions between dSUVmean and density parameters 
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(aBMD, vBMD) were observed regardless of fracture his-
tory, and these trends remained significant even after 
adjusting for age and BMI, as indicated in Table  2. The 
dSUVmean showed a weak-to-very weak negative correla-
tion with TBS (ρ = −0.37, p = 0.006; ρ = −0.18, p = 0.047).

Comparison of image-derived parameters and clinical 
factors
In terms of age, there was a moderate negative correla-
tion with both SUVmean (r = − 0.44, p = 0.001) and vBMD 
(r = − 0.59, p < 0.001), whereas dSUVmean showed a weak 
positive correlation (r = 0.34, p = 0.01). BMI did not show 
any significant correlation with these parameters. Com-
pared with patients without MOF (Table  3), those with 
prevalent MOF were older (69.6 ± 9.9 years vs. 63.5 ± 5.8 
years, p = 0.012) and had a higher 10-year probability of 
MOF (13.1 ± 6.4% vs. 7.4 ± 3.5%, p < 0.001) and hip frac-
tures (5.2 ± 4.2% vs. 2.2 ± 2.1%, p < 0.001) according to 
FRAX. They also tended to lower HUmean (78.9 ± 38.0 
vs. 114.7 ± 34.3, p = 0.001), lower vBMD (62.5 ± 29.4  mg/
cm³ vs. 92.3 ± 27.4  mg/cm³, p = 0.001), lower aBMD 
(0.85 ± 0.16  g/cm² vs. 0.93 ± 0.11  g/cm², p = 0.010), and 
lower TBS (1.34 ± 0.06 vs. 1.38 ± 0.09, p = 0.019), but 
higher dSUVmean (100.8 ± 60.7 vs. 62.6 ± 17.5, p = 0.001) 
and hSUVmean (84.6 ± 59.8  g/cm3 vs. 50.6 ± 14.7  g/cm3, 
p = 0.004) as seen in Fig. 5, while SUVmean did not show 
significant difference (5.0 ± 1.4  g/cm3 vs. 5.5 ± 1.2  g/

Fig. 2 Flow chart of patient selection

 

Table 1 Baseline characteristics of the patients
Characteristics Values 

(n = 55)
Included number of vertebrae 177
Interval between DXA and SPECT/CT (days) 18 ± 25 

(median, 
7; range, 
0–90)

Reasons for bone SPECT/CT
- Low back/hip pain 45
- Fracture 5
- Avascular necrosis of the femur 4
- Ankylosing spondylitis 1
Injected dose of [99mTc]Tc-DPD (mCi) 20.4 ± 0.9
SPECT/CT acquisition time after injection (min) 223.9 ± 21.3
Age (years) 66.2 ± 8.3
Height (cm) 155.1 ± 6.3
Weight (kg) 57.6 ± 8.5
BMI (kg/m2) 24.0 ± 3.4
Clinical features related with osteoporosis
- Smoking
- Alcohol intake
- Glucocorticoid intake
- Rheumatoid arthritis
- Secondary osteoporosis
- Osteoporosis drug intake

0
1
9 (16.3%)
4 (7.2%)
25 (45.5%)
21 (38.2%)

Presented numbers are means ± standard deviation, or proportion in percent, 
respectively

DXA = dual-energy X-ray absorptiometry; 99mTc-DPD = 99mTc-labeled 
3,3-diphosphono-1,2-propanodicarboxylic acid; BMI = body mass index
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cm3, p = 0.131). After adjusting for age and BMI, vBMD 
(r = − 0.35, p = 0.011) and dSUVmean (ρ = 0.33, p = 0.017) 
remained significantly associated with the presence of 
MOFs, while SUVmean (r = − 0.03, p = 0.83) did not demon-
strate such a relationship.

Discussion
In this study, we introduced a novel image-based param-
eter of bone turnover, the equivalent vBMD-adjusted 
SUVmean (dSUVmean), using quantitative bone SPECT/
CT. Our findings revealed an inverse correlation between 
dSUVmean and bone density parameters, supporting the 
established concept that a high bone turnover rate corre-
lates with lower bone mass. In contrast to previous stud-
ies and our findings, which showed a positive correlation 
between SUVmean and bone density parameters [18–20], 
SUVmean appears to be more influenced by bone mass. 
On the other hand, dSUVmean serves as an indicator of 

turnover rate per unit density, offering a novel perspec-
tive distinct from SUVmean. These findings underscore the 
importance of adjusting SUV for bone density to accu-
rately assess bone turnover.

Our findings align with prior research that utilized [18F]
NaF PET for evaluating bone turnover [23, 27, 28]. Frost 
et al. normalized bone turnover by using DXA-derived 
bone mineral apparent density (BMAD)-corrected 
net fluoride uptake, demonstrating higher turnover in 
osteopenic and osteoporotic groups compared to the 
normal group [23]. These findings are consistent with 
our observations, emphasizing the importance of density 
adjustment for accurate bone turnover assessment. How-
ever, BMAD remains a surrogate measure [29], whereas 
our study utilized direct vBMD measurements from 
the same VOI, providing more precise data. Addition-
ally, the dynamic [18F]NaF PET approach has practical 

Fig. 3 The graphs show the correlations of SUVmean with vBMD, aBMD, and TBS using Pearson’s correlation coefficient. Panels (a-c) represent the patient-
based analysis, and panel (d-f) represent the vertebra-based analysis
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limitations, including extended acquisition time and the 
necessity for input function.

Our study expands the foundational SPECT-only 
works of Front et al. [30] and Israel et al. [31]. They dem-
onstrated the potential of SPECT for quantifying bone 
metabolism but lacked the precision offered by CT inte-
gration. Key advancements in our methodology include 

improved quantitation accuracy through CT-based atten-
uation correction and density adjustment, higher reso-
lution for defining a region of interest in the trabecular 
bone with detailed anatomical information from CT, and 
the use of advanced algorithms, such as xSPECT-Bone™, 
for more reliable value, SUV.

Our approach of adjusting SUV for vBMD using 
quantitative bone SPECT/CT is cost-effective and effi-
cient. Unlike usual static SUV measurement [32], which 
assumes a soft tissue density of approximately 1  g/cm³, 
our method corrects for the inherent differences in bone 
density. This adjustment is crucial for accurately reflect-
ing bone turnover. However, static bone SPECT/CT mea-
surements face challenges such as partial volume effects, 
non-specific tracer binding, and signal noise, which must 
be considered.

The inverse relationships between the dSUVmean and 
density parameters (aBMD or vBMD) mirror those 

Fig. 4 The graphs show the correlations of dSUVmean with vBMD, aBMD, and TBS using Spearman’s correlation coefficient. Panels (a-c) represent the 
patient-based analysis, and panel (d-f) represent the vertebra-based analysis

 

Table 2 Partial correlation coefficients among quantitative 
parameters of bone strength corrected for age and BMI
Coefficients aBMD vBMD SUVmean dSUVmean

aBMD 1.0
vBMD 0.54** 1.0
SUVmean 0.18 0.47** 1.0
dSUVmean −0.41** −0.64** 0.16  1.0
**Significance at the 0.01 level

BMI = body mass index; aBMD = areal bone mineral density; vBMD = volumetric 
bone mineral density; SUVmean = mean standardized uptake value; dSUVmean = 
bone density-adjusted SUVmean



Page 8 of 10Lee et al. EJNMMI Research           (2024) 14:75 

between sBTM and bone strength parameters [21, 22]. 
The significant inverse correlation between dSUVmean and 
vBMD aligns with the established non-linear relationship 
between fracture risk and bone density [33], suggesting 
dSUVmean could serve as a potential new biomarker, or 
imaging bone turnover marker (iBTM). Further research 
is needed to explore the characteristics of iBTM and its 
potential clinical applications, such as diagnosing meta-
bolic bone diseases, predicting fracture risk in osteopo-
rosis, and monitoring therapy efficacy [34].

Patients with prevalent MOF exhibited traits similar 
to those noted in prior studies, such as lower BMD, TBS, 
and advanced age [35], alongside lower SUVmean and 
higher dSUVmean, supporting the link between high bone 
turnover, low bone mass, and spinal fractures [36].

Previous studies often used inconsistent VOIs that 
included the cortical bone and/or basivertebral vein 
[18–20]. In contrast, we exclusively measured SUV from 
the trabecular center, using a VOI nearly identical to 

Table 3 Comparison of parameters between the groups upon MOF
Parameters With MOF (n = 24) Without MOF (n = 31) p-value
Included number of vertebrae 3.0 ± 0.8 3.4 ± 0.8 0.080
Interval between DXA and SPECT/CT (days) 13.7 ± 23.8 20.9 ± 25.6 0.109
SPECT/CT start time after injection (min) 226.5 ± 17.9 222.0 ± 23.6 0.259
Age (years) 69.6 ± 9.9 63.5 ± 5.8 0.012*

Height (cm) 155.1 ± 6.3 156.0 ± 6.0 0.255
Weight (kg) 57.6 ± 8.5 59.3 ± 7.8 0.066
BMI (kg/m2) 24.0 ± 3.4 24.4 ± 3.1 0.377
Smoking 0 0 1.00
Alcohol intake 0 1 0.379
Glucocorticoid intake 5 (20.8%) 4 (12.9%) 0.435
Rheumatoid arthritis 3 (12.5%) 1 (3.2%) 0.193
Secondary osteoporosis 11 (45.8%) 14 (45.2%) 0.961
Osteoporosis drug intake 12 (50.0%) 9 (29.0%) 0.116
10-year probability of MOF (%) 13.1 ± 6.4 7.4 ± 3.5 < 0.001**

10-year probability of hip fracture (%) 5.2 ± 4.2 2.2 ± 2.1 < 0.001**

T-score of L-spine −2.48 ± 1.25 −1.73 ± 0.92 0.006**

aBMD of L-spine (g/cm2) 0.85 ± 0.16 0.93 ± 0.11 0.010*

vBMD of L-spine (mg/cm3) 62.5 ± 29.4 92.3 ± 27.4 0.001**

aBMD of femur neck (g/cm2) 0.71 ± 0.09 0.78 ± 0.11 0.057
TBS 1.34 ± 0.06 1.38 ± 0.09 0.019*

SUVmean (g/cm3) 5.0 ± 1.4 5.5 ± 1.2 0.131
HUmean 78.9 ± 38.0 114.7 ± 34.3 0.001**

dSUVmean 100.8 ± 60.7 62.6 ± 17.5 0.001**

hSUVmean (g/cm3) 84.6 ± 59.8 50.6 ± 14.7 0.004**

Presented numbers are means ± standard deviation, or proportion in percent, respectively
**Significance at the 0.01 and *significance at the 0.05 level

MOF = major osteoporotic fracture; DXA = dual-energy X-ray absorptiometry; BMI = body mass index; aBMD = areal bone mineral density; vBMD = volumetric bone 
mineral density; TBS = trabecular bone score; SUVmean = mean standardized uptake value; HUmean = mean Hounsfield unit; dSUVmean = density-adjusted SUVmean; 
hSUVmean = HU-adjusted SUVmean

Fig. 5 The graphs show the differential values of SUVmean (a), vBMD (b) and dSUVmean (c) in patient-based analysis according to the major osteoporotic 
fractures (MOF) status. Box plots display the median, interquartile range, and outliers
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conventional QCT [15], likely resulting in more accurate 
density adjustment.

Quantitative L-spine SPECT/CT has significant oppor-
tunistic value for osteoporosis screening, offering one-
shot information on bone density and quality-related 
markers [37, 38]. However, precise radioactivity mea-
surement, standardized image acquisition, and accurate 
quantitative data from both SPECT and CT components 
are essential prerequisites for this application [39].

This study has limitations, including a small sample size 
of postmenopausal Asian women, limiting the general-
izability of the results. Future research should establish 
normal SUV values with a coefficient of variance accord-
ing to radiotracer, age, sex, and race. Additionally, due to 
the retrospective nature of this study, we could not com-
pare dSUVmean with sBTM. Finally, the semi-automatic 
VOI drawing limited the representation to a restricted 
trabecular area in the spine. A more refined VOI encom-
passing the entire trabecular area would be preferable 
[40].

Conclusion
Volumetric density-adjusted quantitative bone SPECT/
CT offers a novel image-derived bone turnover marker 
for assessing bone turnover in osteoporosis, providing 
a precise assessment of fragility at the individual verte-
bra level, which may enhance personalized osteoporosis 
management.
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