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Abstract 

Background  68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and meta-
static prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified 
as standard uptake values (SUVs) for clinical decision-making. However, analysis of dynamic images characterizing 
both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This 
study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-
three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-min dynamic 68Ga-PSMA-11 
pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate- to high-risk prostate cancer. 
Three kinetic models—a reversible one-tissue compartment model, an irreversible two-tissue compartment model, 
and a reversible two-tissue compartment model, were evaluated for their goodness of fit to lesion and normal refer-
ence prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic mod-
eling techniques were compared for reference prostate tissue and lesion regions of interest.

Results  Supported by goodness of fit and information loss criteria, the irreversible two-tissue compartment model 
optimally fit the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) 
and semiquantitative measures (SUV and %ID/kg) when compared with reference prostatic tissue. The two-tissue 
irreversible tracer kinetic model was consistently appropriate across prostatic zones.

Conclusions  An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. 
Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor 
from normal prostate tissue.

Keywords  68Ga-PSMA-11 PET, Tracer kinetic model, Compartmental model, Graphical model, Patlak analysis, Primary 
prostate cancer, Dynamic imaging

Background
Prostate cancer has an estimated lifetime incidence of 1 
in every 9 men, but it is estimated that between 20 and 
40% of serum PSA-motivated prostate cancer evaluations 
reflect low-grade, non-malignant changes [1, 2]. Surgery 
and radiotherapy significantly reduce the prevalence of 
metastatic disease progression, but may also cause erec-
tile dysfunction and/or urinary incontinence [3]. Appro-
priately specific diagnostics can reduce the incidence of 
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overtreatment and improve patient-specific outcomes. 
Positron emission tomography (PET) imaging with the 
urea-based prostate-specific membrane antigen (PSMA) 
targeted 68Ga-Glu-NH-CO-Lys-(Ahx)-HBED-CC (68Ga-
PSMA-11) has greatly improved the diagnosis and treat-
ment planning for prostate cancer, as upregulated PSMA 
expression has been linked with aggressive or advanced 
disease [4, 5].

The 68Ga-PSMA-11 tracer standardized uptake value 
(SUV) correlates with pathological Gleason grade and 
can support surgical planning as well as detect nodal 
metastases and biochemical recurrence [6, 7]. SUVs are 
commonly favored for their ease of clinical implemen-
tation, but SUVs depend on accurate dose and scanner 
cross-calibration, the time between injection and imag-
ing, image acquisition characteristics (scanner, scatter/
attenuation correction, reconstruction, frame duration), 
patient weight and radiopharmaceutical distribution 
characteristics, and may be affected by patient motion or 
partial volume effects. Additionally, 68Ga-PSMA-11 does 
not accumulate in muscle or adipose tissue, and SUV 
body mass normalization may increase the variability of 
uptake calculations [8]. Differences in acquisition and 
reconstruction parameters can also make the comparison 
of SUVs across different patients and acquisition time-
points error-prone, especially when numerical cutoffs are 
used [9].

Kinetic modeling of tracer binding interactions reduces 
the impact of errors associated with patient weight, 
uptake timing, and dose calibration [10]. Unlike SUV 
analysis and simple static images, dynamic PET imaging 
with 68Ga-PSMA-11 may be used to distinguish physi-
ologic differences in receptor-ligand affinity, receptor 
availability, and ligand delivery and extraction, which are 
considered in aggregate with SUV analysis [11]. These 
physiologic parameters provide additional information 
which can improve tissue characterization [12, 13]. How-
ever, few studies have compared compartmental models 
for 68Ga-PSMA-11, and there is not a clear consensus for 
whether a reversible or irreversible two-tissue compart-
mental model optimally suits 68Ga-PSMA-11 PET data 
[14, 15].

68Ga-PSMA-11 is rapidly cleared from the blood, and 
blood metabolite components may be assumed negligi-
ble for the compartmental model [16]. This study aimed 
to verify the findings by Ringheim et al. and confirm the 
use of an irreversible two-tissue compartment model for 
68Ga-PSMA-11 PET analysis [15].

Methods
Patients
Eighteen men with a total of 23 lesions were included 
in this retrospective evaluation (NCT04936334), after 

two patients were removed from the study cohort due 
to excessive motion during imaging. This study was 
approved by the institutional review board, and informed 
consent was obtained for all individuals prior to imaging. 
Men with histologically-proven prostate cancer who were 
scheduled for prostatectomy were eligible for this study 
if they were over the age of 18 and had at least NCCN 
intermediate-risk disease or 3 cores of at least Gleason 
3 + 4 disease. Patients needed to be able to lay still for the 
entire 60-min PET/CT scan and were excluded if they 
had received treatments with ionizing radiation within 
the past 30  days. Following prostatectomy, all prostates 
were analyzed as whole-mount pathological specimens 
by a board-certified pathologist. Whole-mount patholog-
ical findings served as the reference standard for regional 
tissue classification. The study patients had elevated 
serum PSA values (median 6.8, range 4.1–20.6  ng/mL) 
and enlarged prostates (median 40.4  mL, range 27.3–
89.4 mL) and were primarily white (17/18). The median 
patient age was 65 (range 52–75), and the median patient 
body weight was 90.7 kg (range 63.5–132.0 kg). A more 
complete charting of patient demographics is contained 
in Table 1.

PET/CT acquisition protocol
Patients received a 55-min dynamic PET scan acquired in 
list-mode, centered over the pelvis. Images were acquired 
with a Siemens Biograph Vision 600 Edge scanner (Sie-
mens Healthineers, Knoxville, USA). The 68Ga-PSMA-11 
radiopharmaceutical was prepared as previously 
reported [17, 18]. At the start of the PET scan, patients 
received a bolus injection of [68Ga]-PSMA-11 (median 
183.5  MBq, range 170.6–186.1  MBq), followed by a 
10 mL saline flush. PET images were reconstructed with 
a 3D ordered-subsets expectation maximization (OSEM) 
algorithm with point-spread function (PSF) and time of 
flight (TOF) [3i5s, 3.5  mm FWHM spatial resolution, 
210  ps temporal resolution, 1.42 × 1.42 × 3.0  mm voxels, 
5 mm Gaussian smoothing]. The images were corrected 
for decay, attenuation, scatter, dead time, random coin-
cidences and were detector-normalized. The PET images 
were then processed into 40 temporal frames (12 × 5  s, 
12 × 10 s, 6 × 20 s, 10 × 300 s).

Computed tomography (CT) images were 
acquired sequentially with the PET scan (120  kV 
peak, 330  ms exposure time, 658  mA tube current, 
0.98 × 0.98 × 1.00 mm voxels, 500 mm field of view) using 
a soft tissue kernel (Br38).

Image analysis
The reconstructed PET/CT images were analyzed by a 
board-certified nuclear medicine physician and a board-
certified urologist using in-house software (Q-Image) 
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built using IDL (L3Harris Geospatial, Boulder, CO, USA). 
Forty cubic millimeter (~ 50 voxel) spherical reference 
regions of interest (ROIs) were sampled in the central, 
peripheral, and transitional prostatic zones in the left 
and right hemispheres. Separate ROIs were also con-
toured under physician guidance for the index lesion, 
contralateral reference region, and secondary lesions 
when present, as shown in Fig. 1. Accuracy of PET region 
placements in reference prostate and lesion was retro-
spectively confirmed with post-surgical whole-mount 
pathology specimens interpreted by a board-certified 
pathologist. Time-activity curves (TACs) were extracted 
in Bq/mL units. SUVs were calculated using the final 

15  min of the scan, and mean SUV was calculated for 
each ROI.

Image‑derived input function
The image-derived input function (IDIF) was calculated 
using in-house software built in IDL. A linear segment 
of the iliac artery (approximately 20.0  mm) was identi-
fied on a bolus phase PET image (approximately the first 
60  s of data acquisition). Profiles across the vessel were 
generated at each location along the length of the vessel 
that fell within the boundaries of the iliac artery segment. 
Each profile was fit with a vessel profile model (vessel 
width step function convolved with scanner resolution 

Table 1  Patient characteristics, injected doses, and summary pathology classification

PSA—prostate-specific antigen. The lesion locations are described as the anatomical left (L) or right (R) central zone (CZ), transitional zone (TZ), or peripheral zone (PZ) 
based on postsurgical whole-mount pathology

Subject Age Prostate volume 
(cc)

PSA (ng/mL) Subject Weight 
(kg)

Injected dose 
(MBq)

Number of 
lesions

Lesion location 
(Gleason grade 
group)

1 69 35.2 9.6 108.4 183.2 1 RTZ (2), RCZ (1)

2 62 36.1 20.6 132.0 180.6 1 LPZ (3)

3 69 60 9.8 76.2 183.5 1 RCZ (4), RPZ (3)

4 69 39.1 5.6 97.5 183.2 1 LPZ (3)

5 63 30 4.2 79.4 181.3 1 LPZ (2)

6 57 28.5 5.6 90.7 170.6 1 RPZ (2)

7 52 27.3 6.2 111.1 171.7 2 RTZ (2), RPZ (2), LTZ (2)

8 57 51 10.8 108.0 182.4 2 LCZ (2), LTZ (2), RPZ (2)

9 64 43.8 4.8 83.9 185.0 1 RPZ (3)

10 66 59.4 18.5 88.5 185.0 1 LPZ (3)

11 53 37.9 9.2 91.2 183.9 1 LCZ (3)

12 69 66.5 8.7 63.5 184.6 1 LPZ (3)

13 60 41.6 4.5 92.1 186.1 1 RPZ (2)

14 75 37.4 6.6 81.7 184.6 1 LPZ (2)

15 58 62.8 6.7 112.0 185.7 1 RPZ (2)

16 66 41.9 6.8 90.7 183.2 2 LCZ (2), RPZ (1)

17 66 89.4 7.3 69.0 184.3 2 RTZ (2), RPZ (2)

18 67 72.6 4.1 88.0 183.5 2 RPZ (2)

Fig. 1  10 mm spherical VOI placements for artery (left), normal prostate tissue (middle), and lesion (right). An early bolus phase image was used 
to locate the external iliac artery. All three displayed images are 40–55 min PET frames overlaid with CT. Scale bar is in units of kBq/mL
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kernel) to estimate the vessel diameters. The average ves-
sel diameter was then used to generate a 3D vessel model 
with a background region that was large enough to cap-
ture all signal spillover into the vessel region. An arterial 
input function volume of interest (VOI) was then placed 
at the center of the vessel region to eliminate resolution 
distortions that would occur near the edges of the vessel 
segment. Simulated PET images were generated by con-
volving the 3D vessel and background regions individu-
ally, which were used to estimate the contribution of each 
region to the arterial input function VOI. The individual 
contributions represented the fraction of the arterial 
blood signal that contributed to the arterial input func-
tion VOI (FA) and the fraction of the background region 
signal that contributed to the arterial input function 
VOI (FB). The estimation of resolution distortion cor-
rected arterial blood concentration CA(t) was calculated 
using the following equation for each image frame where 
CVOI(t) is the tracer concentration in the arterial input 

function VOI, CT(t) and VT are the tracer concentra-
tion and volume of the combined artery and background 
region, VB is the volume of the background region, and 
VA is the volume of the arterial input function VOI.

An example of the resolution distortion correction 
algorithm is demonstrated in Fig. 2.

Kinetic analysis and model validation
Three different kinetic models were evaluated in this 
analysis: a reversible one-tissue compartment model 
with two-rate constants (1T2k), an irreversible two-tissue 
compartment model with three-rate constants (2T3k), 
and a reversible two-tissue compartment model with four 
rate constants (2T4k). 68Ga-PSMA-11 was assumed to be 

CA(t) =

CVOI (t)
FB

− CT (t)
VT
VB
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FB
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Fig. 2  Representation of the resolution distortion correction method for estimating the IDIF. A 20 mm segment of the iliac artery was manually 
defined in a region with homogenous background signal. Profiles across the vessel were generated at each location along the length of the vessel 
segment. Each profile was fit with a vessel profile model to estimate the vessel diameters. The mean vessel diameter estimate was then used 
to generate a 3D vessel model. Simulated PET images were generated by convolving the 3D vessel and background model to estimate resolution 
distortion correction factors (shown in upper right for a single patient). Resolution-distortion corrected time-activity curves (lower right) 
for the vessel region were then generated using the distortion correction factors and original time-activity curves. IDIF—image-derived input 
function. RDC—resolution distortion corrected. VOI—volume of interest
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uniformly distributed in plasma with no uptake into red 
blood cells. Whole blood was weighted by an assumed 
38% hematocrit, and no metabolite components were 
included [15]. Model optimality was evaluated based on 
chi-square goodness-of-fit criteria and the Akaike infor-
mation criterion (AIC), consistent with other studies [9]. 
The 2T3k model net influx rate Ki = K1k3/(k2 + k3) and 
distribution volume Vd = K1/(k2 + k3) were evaluated 
from the full compartmental model as well as the Patlak 
graphical method [19]. A full tabulation of model param-
eters can be found in Table 2.

Statistical analysis
Statistical tests were performed with GraphPad Prism 
9.5.0 (GraphPad, San Diego, California, USA). Signifi-
cance was set at 5%, and all variables are reported with 
median and range or mean and standard deviation. The 
distributions of all numerical variables were tested for 
normality. Kinetic and semiquantitative parameters were 

compared for lesion, and reference tissue regions using a 
patient-wise paired Šídák’s test for multiple comparisons. 
Linear models and Pearson correlations were calculated 
to assess the association between compartmental param-
eters, Patlak graphical parameters, and SUVs. The kinetic 
models were compared for goodness of fit across the 
central, transitional, and peripheral prostate, and kinetic 
parameters were compared for consistency across the 
three prostate zones.

Results
Model selection
Example VOI placements for artery, reference prostate, 
and lesion are shown in Fig. 1. A sample extracted TAC 
and modeled curve fits are demonstrated for a lesion 
and reference prostate in Fig. 3. Chi-square goodness of 
fit and AIC values for the 1T2K, 2T3K, and 2T4K com-
partmental models are shown in Fig. 4. All three mod-
els performed similarly for prostate and reference tissue 

Table 2  Parameter definitions

Parameter Definition Calculation Units

K1 Rate constant, transfer of tracer from plasma to first tissue compartment Modeled mlblood
mltissue·min

k2 Rate constant, transfer of tracer from first tissue compartment to plasma Modeled min−1

k3 Rate constant, transfer of tracer from first tissue compartment to second tissue compartment Modeled min−1

k4 Rate constant, transfer of tracer from second tissue compartment to first tissue compartment Modeled min−1

Ki Net tracer influx rate Ki =
K1k3

(k2+k3)
mlblood

mltissue·min

Vd Distribution volume of tracer Vd =
K1

(k2+k3)
mlblood
mltissue

SUV Standardized uptake value SUV =
CPET(t)

Dose/BodyMass
−

%ID/kg Percentage of total injected dose per kilogram of tissue %ID/kg =
CPET(t)
Dose

−
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Fig. 3  Comparison of three tracer kinetic model fits for the reference prostate and two lesions originating from subject 17. Model configurations 
include a one-tissue (1T) and two-tissue (2T) compartment model, with two, three, or four parameters (2K, 3K, 4K, respectively). SUV for the lesion 
was 3.0
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regions, with a �AIC of 2.0 for the 2T3K model and a 
�AIC of 4.0 for the 2T4K model, in reference to the 
1T2K exchange model. Therefore, despite similar �AIC 
criteria values between successively parametrized mod-
els, the 2T4K model did not adequately improve the 
TAC fit when corrected for additional parameter bias, 
relative to the 1T2K model according to rules estab-
lished by Burnham and Anderson [20]. Relative X2 
goodness-of-fit criteria support the use of the 2T3K 
and 2T4K models, as X2 is significantly reduced for the 
2T3K ( X2

diff = 14.76 , dfdiff = 1 , p < 0.001 ) and 2T4K 
( X2

diff = 14.43 , dfdiff = 1 , p < 0.001 ) models relative to 
the 1T2K model, but not relative to each other 
( X2

diff = 0.33 , dfdiff = 1 , p = 0.564 ). Therefore, the com-
bination of AIC and X2 goodness-of-fit criteria favors 
the use of the 2T3K model for 68Ga-PSMA-11.

Parametric evaluation
An assessment of lesion and reference prostate param-
eter correlations is shown in Fig.  5. Strong correlations 
were observed between K1 and Vd for reference prostate 
tissue (Pearson r = 0.82). Additionally, the net influx rate, 
Ki , demonstrated a strong correlation (Pearson r > 0.7) 
with SUV in reference prostate and lesions, whether it 
was calculated by full compartmental analysis or Pat-
lak graphical analysis. Accordingly, the Pearson correla-
tion between the compartmental model Ki and Patlak 
graphical model Ki was 0.91 in reference prostate and 
lesion. However, there was a moderate positive correla-
tion between the full compartmental model Vd and the 
Patlak model Vd, especially within the reference prostate 
(Pearson r = 0.61). In lesions, compartmental model rate 
constants were uncorrelated or weakly correlated with 
uptake measures (Ki, SUV, Patlak Ki, Pearson |r|< 0.4).
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Linear regressions between SUV, Ki , Patlak Ki , Vd , and 
Patlak Vd are shown in Fig. 6 and Additional file 1: Fig. S1 
for combined lesion and prostate, demonstrating large 
coefficients of determination between SUV, Ki, and Patlak 

Ki. However, differential uptake patterns can be observed 
between SUV and Patlak Ki images, as shown in Fig. 7.

SUV and %ID/kg serve as measures of 68Ga-PSMA-11 
accumulation in static images, but quantification of 
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(equation shown) are displayed as a solid green line, with 95% confidence bands in dashed green. P values indicate a test of significant non-zero 
regression slope
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uptake with %ID/kg yielded less variance than with SUV 
for both tumor and reference prostate (Table  3). For 
tumors, mean SUV was 6.7 ± 3.8, while mean %ID/kg was 
7.2 ± 3.5. In normal prostate, mean SUV was 2.4 ± 0.6 vs. 
a mean %ID/kg value of 2.6 ± 0.5. In both cases, the mean 
%ID/kg is higher than SUV, while the variance in %ID/kg 
is reduced relative to SUV.

Median, mean ± standard deviation, and first and third 
quartile parameter values are charter for reference pros-
tate tissue and lesions in Table 3. Patient-matched lesion 

and reference prostate parameter values are displayed in 
Additional file 1: Fig. S2. Significant differences between 
parameter values for lesion and reference prostate are 
noted for K1, k2, k3, Ki, and SUV in Table 4, while no sig-
nificant differences in Ki and Vd estimates were observed 
between compartmental and Patlak models. Addition-
ally, temporal variations in normal prostate and lesion 
SUV are compared in Fig. 8, demonstrating a plateau in 
uptake from 30 to 55  min post-injection. Despite para-
metric differences between lesion and reference prostate, 

Fig. 7  Comparison of SUV and Patlak Ki 
68Ga-PSMA-11 images. The top row shows parametric images alone, and the bottom row is overlaid with CT 

at 50% opacity

Table 3  Median parameter values from 23 lesions in 18 patients

Shown are comparative median, mean ± standard deviation, first, and third quartile parameter values in lesions and reference prostate tissue. SUV and %ID/kg values 
are from static images of data from 40 to 55 min post-injection

Shown are median [mean ± standard deviation, first quartile—third quartile] value comparisons for lesion and normal prostate. Semiquantitative values include the 
standard uptake value (SUV) and percent injected dose per kilogram (%ID/kg). Quantitative parameters include the kinetic two-tissue, three-rate constant model 
parameters, net influx rate ( Ki ), distribution volume ( Vd ), Patlak model net influx rate (Patlak Ki ), and Patlak distribution volume (Patlak Vd)

Parameter Lesion (n = 23) Reference prostate (n = 18)

SUV 5.73 [6.74 ± 3.83, 3.84–8.47] 2.34 [2.36 ± 0.59, 1.91–2.65]

%ID/kg 6.64% [7.21 ± 3.47%, 4.77%–8.74%] 2.59% [2.58 ± 0.50%, 2.35%–2.91%]

K1 0.112 [0.123 ± 0.058, 0.087–0.137] 0.089 [0.090 ± 0.034, 0.075–0.104]

k2 0.182 [0.247 ± 0.245, 0.110–0.292] 0.317 [0.317 ± 0.094, 0.254–0.369]

k3 0.032 [0.035 ± 0.029, 0.019–0.038] 0.020 [0.020 ± 0.010, 0.011–0.026]

Ki 0.0152 [0.0174 ± 0.0108, 0.0109–0.0217] 0.0052 [0.0052 ± 0.0028, 0.0033–0.0063]

Vd 0.471 [0.653 ± 0.580, 0.360–0.652] 0.266 [0.278 ± 0.095, 0.205–0.325]

Patlak Ki 0.0147 [0.0165 ± 0.0102, 0.0099–0.0188] 0.0047 [0.0054 ± 0.0038, 0.0028–0.0070]

Patlak Vd 0.458 [0.741 ± 0.688, 0.403–0.742] 0.266 [0.281 ± 0.101, 0.193–0.329]
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no significant differences in zone-specific kinetic rate 
constants or model goodness of fit were observed (Addi-
tional file 1: Figs. S3 and S4).

Discussion
The results of this study support the use of a two-tissue, 
three-parameter kinetic model for characterizing the 
pharmacokinetics of the 68Ga-PSMA-11 radiopharma-
ceutical. 68Ga-PSMA-11 exhibits free binding to the 
extracellular domain of PSMA and slow cellular internal-
ization [21, 22], thus providing a physiological basis for 
the irreversible two-tissue compartment model and Pat-
lak analysis. Patlak analysis generates estimates of Ki and 
Vd through a single linear regression to a subset of late-
timepoint data, whereas tracer kinetic modeling uses the 
full temporal image series to estimate individual kinetic 
model rate constants. Therefore, tracer kinetic modeling 
may provide a more robust approach to kinetic analysis 

when image data are available from the time of tracer 
injection.

Although the Akaike information criterion suggested 
that maximal information was preserved by the 1T2k 
model, chi-square goodness-of-fit criteria suggested that 
the 1T2k model did not appropriately fit 68 Ga-PSMA-11 
time-activity curves. Therefore, the 2T3k model is opti-
mal based on dual consideration of the Akaike informa-
tion criterion and chi-square goodness-of-fit criteria. 
Previous kinetic evaluations of 68  Ga-PSMA-11 for pri-
mary prostate cancer have supported the 2T3k or the 
2T4k kinetic models, but the findings of this study are 
consistent with the analysis in high-risk patients estab-
lished by Ringheim et  al. [14, 15, 23]. In comparison 
with other primary evaluations of 68 Ga-PSMA-11 kinet-
ics, the median PSA of patients reported in this study is 
reduced (6.8  ng/mL) versus Sachpekidis et  al. (24.1  ng/
mL) and Ringheim et  al. (8.64  ng/mL). Additionally, 
11/18 patients possessed favorable intermediate grade 

Table 4  Comparison of semiquantitative and quantitative parameter values between reference prostate and lesion

Significance level is set at 0.05 and is corrected for multiple comparisons with the Šídák correction. ns indicates nonsignificant p value greater than the significance 
threshold. p < 0.01 is indicated by **, and p < 0.0001 is indicated by ****

Šídák’s multiple comparisons test Summary Adjusted P Value

Reference Prostate K1 vs. Lesion K1 ** 0.0080

Reference Prostate k2 vs. Lesion k2 ** 0.0084

Reference Prostate k3 vs. Lesion k3 ** 0.0080

Reference Prostate Ki vs. Lesion Ki ****  < 0.0001

Reference Prostate Vd vs. Lesion Vd ****  < 0.0001

Reference Prostate SUV vs. Lesion SUV ****  < 0.0001

Reference Prostate Patlak Ki vs. Lesion Patlak Ki ****  < 0.0001

Reference Prostate Patlak Vd vs. Lesion Patlak Vd ****  < 0.0001

Reference Prostate Ki vs. Prostate Patlak Ki ns  > 0.9999

Reference Prostate Vd vs. Prostate Patlak Vd ns  > 0.9999
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disease, in comparison with the greater proportion of 
high-risk disease in other kinetics studies [15, 23].

Kinetic parameters ( K1, k2, k3,Ki ) exhibited significant 
differences between lesion and reference prostate tis-
sue, as demonstrated by patient-wise comparison (Fig. 6, 
Additional file  1: Fig.  S2) and statistical comparisons 
(Table 4). The compartmental model rate constants were 
also consistent with the ranges reported by Ringheim 
et  al., but reduced net tracer influx (Ki) and k3 in this 
study likely reflect differences in patient disease severity 
[15]. Parameter differences between lesion and reference 
prostate remained significant, regardless of whether Ki 
estimates were obtained by full compartmental models 
or Patlak graphical analysis. Ki values obtained through 
compartmental modeling and Patlak analysis were cor-
related for reference prostate tissue and lesions (Pearson 
r = 0.91).

Consistent with other reports, lesion Ki values cor-
related strongly with SUV for compartmental (Pearson 
r = 0.94) and Patlak (Pearson r = 0.85) models, indicating 
that 40–55 min post-injection SUV metrics provide simi-
lar information as Ki values for lesion detection [15, 23]. 
Maximal SUVs have also been found to correlate with 
immunohistochemical PSMA expression and histopa-
thology in patients with prostate cancer [24, 25]. There-
fore, it is unlikely that Ki provides additional information 
beyond that of either the percentage of the injected dose 
per kilogram or the measured SUV, simpler methods 
which are readily implemented in many clinical work-
flows. Instead, further studies are required to assess if 
Ki-based images have utility in imaging of cancers with 
lower levels of PSMA expression or in the early detec-
tion of disease, where improvements in lesion-to-normal 
tissue contrast, as demonstrated in Fig.  7, may be more 
impactful toward differentiating lesions from the image 
background.

Although Ki (Patlak and full compartmental analy-
sis) correlated strongly with SUV, individual compart-
ment rate constants (K1, k2, k3) demonstrated minimal 
to slightly negative correlation with SUV. Table  2 and 
Table 4 demonstrate that K1 and k3 are significantly ele-
vated in lesions, while k2 is significantly decreased. These 
findings are consistent with increased PSMA expression 
and PSMA-11 internalization on the prostatic epithe-
lium. The relative reduction in k2 in lesions conflicts with 
previous reported trends [15]. However, the high overall 
estimation variance across all tracer kinetic parameters 
likely reflects the heterogeneity of prostate cancer across 
subjects in this study. The analyzed lesions ranged from 
Gleason Grade Group 1 to 4, representing a greater focus 
on intermediate-risk disease than in previous studies, 
possibly contributing to the observed differences.

Table 3 and Fig. 8 demonstrate that relative to SUV, the 
%ID/kg has reduced parameter variance. Thus, in quan-
tification of 68Ga-PSMA-11 uptake, body mass normali-
zation in the SUV calculation introduces biological noise 
that reduces diagnostic utility. These observations indi-
cate that 68Ga-PSMA-11 uptake quantification as %ID/
kg is preferred when using 68Ga-PSMA-11 PET uptake 
thresholds for discrimination of disease. Additionally, 
reference prostate and lesion uptake plateaus beyond 
30  min, with peak lesion-to-reference prostate z-scores 
occurring at 45  min post-injection. Although discord-
ant with EANM/SNMMI 68Ga-PSMA-11 image acquisi-
tion guidelines, this finding supports reports indicating 
that tumor visibility is improved in the 30–45 min win-
dow [15, 26–30]. With stable tracer uptake during the 
30–55  min window, optimal image acquisition depends 
largely on count statistics and operational logistics rather 
than time of acquisition in the first hour post-injection.

As illustrated in Additional file  1: Figs.  S3, S4, there 
were no statistically significant differences between com-
partmental rate constants, compartmental model Ki , or 
Vd between normal prostatic tissue in the central, tran-
sitional, and peripheral prostatic zone. Additionally, the 
chi-square goodness-of-fit criterion was consistent across 
all prostatic zones, indicating that the model is appropri-
ate regardless of prostatic location. This observation is 
in contrast to previously reported findings by Pizzuto 
et  al. [31] who reported that 68Ga-PSMA-11 accumula-
tion is higher in the central zone than in the transition or 
peripheral zone. However, the finding was reported dur-
ing staging for high-risk disease and thus could be attrib-
utable as a feature of aggressive disease. In our study, 11% 
(2/18) patients met or exceeded the average SUVmean 
reported by Pizzuto et al. in the central zone.

Pelvic 68Ga-PSMA-11 dynamic PET scans are chal-
lenging to analyze because the iliac arteries are small in 
caliber compared to larger ventricular blood pools. In 
this study, a resolution distortion correction method was 
employed to estimate the artery blood input function 
based upon the 3-dimensional imaging characteristics of 
the PET scanner and the local tissue geometry around a 
segment of the iliac artery. As a retrospective study, arte-
rial blood samples were not available to use as a reference 
standard to validate the resolution distortion correction 
method in these patient studies. The resolution distortion 
correction algorithm was applied to each frame in the 
dynamic image sequence to generate an arterial blood 
input function. This method assumed that the back-
ground region surrounding the selected vessel segment 
was homogeneous. Contamination of the background 
region from small vessel branches or non-homogenous 
tissues in the proximity of the vessel would result in 
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biased correction factors. For this study, iliac artery seg-
ments were carefully selected in each patient to minimize 
background region contamination from adjacent tis-
sues. Since the vessel and background VOI model were 
defined on an early phase image, patient motion would 
potentially impact the accuracy of the estimated correc-
tion factors.

This study, although consistent with other literature 
reports in its findings, has several limitations which 
should inform its interpretation. The patients enrolled 
in this study all had biopsy-proven disease, and there-
fore, no healthy control patients were included in the 
study. Reference prostate was sampled contralaterally to 
lesions under the guidance of board-certified physicians 
with knowledge of post-surgical pathology, minimizing 
the risk of microscopic disease invasion of control tis-
sue. Despite a limited sample size, the study still provided 
statistical power to suggest optimal model configuration 
and kinetic parameter differences between lesion and 
reference prostate. Additionally, the scope of patients 
included in this study is primarily limited to intermedi-
ate-risk disease, and only patients who were candidates 
for prostatectomy received 68Ga-PSMA-11 PET/CT 
scans. The study included no low-risk patients, and only 
a single high-risk patient. Additionally, the demograph-
ics of patients meeting the study risk criteria were highly 
racially homogeneous. The present study was performed 
on presurgical research scans and did not acquire list-
mode data past 55 min. Thus, the kinetics and late time-
frame SUV images are temporally constrained and do not 
fully probe the timeframes recommended by EANM and 
SNMMI [26].

Conclusion
The two-tissue compartment model with irrevers-
ible binding is appropriate for kinetic analysis in 
68Ga-PSMA-11 imaging and is applicable to central, 
transitional, and peripheral prostate, regardless of tumor 
involvement. Kinetic parameters (K1, k2, k3) are useful for 
distinguishing prostate cancer lesions from normal pros-
tatic tissue, and kinetic parameters provide information 
about tissue physiology that is independent from SUV-
based metrics and Patlak (Ki) net influx rate. Assessment 
of static images with %ID/kg reflects tumor uptake with 
less intrinsic variance than SUV.
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