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Background
Tetracycline (Tet)-On and Tet-Off systems have been 
widely used in biomedical research as an important tool 
allowing for controlled gene expression in eukaryotic 
cells and organisms [1–4]. Those systems become effec-
tive upon binding of a tetracycline class antibiotic [5], 
either by switching off gene expression in a so-called Tet-
Off system or by inducing gene expression in a Tet-On 
system, wherein a mutant reverse Tet-regulated trans-
activator is employed [6, 7]. This non-invasive approach 
has found wide application in gene therapy and signal 
cascade activation monitoring, as well as in cell motility 
tracking studies [8]. Ideally, such system should allow for 
expression of potentially antigenic proteins in immune 
competent hosts without triggering an immune response. 
However, inducible systems require high degrees of bio-
compatibility and target-to-background contrast and 
sensitivity [9].

The prostate-specific membrane antigen (PSMA; 
also known as glutamate-carboxypeptidase II—GCPII; 
NAALADase; folate hydrolase I—FOLH1) has been 
widely studied as a drug target for prostate cancer imag-
ing and therapy [9–12]. This enzyme is highly expressed 
in most metastatic prostate cancers. Favourable results in 

a phase 3 therapeutic trial, using  [177Lu]Lu-PSMA-617, 
were recently reported [13], and several 18F- and 68 Ga-
labelled agents are finding widespread use for diagnostic 
imaging, with high tumour-to-background ratios allow-
ing for disease detection in most cases of prostate cancer 
(> 90%) [14–27]. PSMA imaging benefits from enzyme 
internalization upon binding radiotracers, allowing cel-
lular retention to improve imaging contrast [28–32]. 
Castanares et al. reported favourable results using PSMA 
as a reporter gene using adenoviral gene transfer using 
HCT116 cells, with improved target-to-background 
ratios over the human sodium iodide transporter and the 
mutant herpes simplex virus type I thymidine kinase [33].

The aim of this study was to evaluate the feasibility of 
non-invasive monitoring of inducible gene expression 
using PSMA as a reporter probe. Such a reporter system 
could be useful to track inducible gene expression in vivo 
for research applications. For this purpose, we studied the 
doxycycline-induced expression of human prostate-spe-
cific membrane antigen (hPSMA) in a murine TRAMP-
C2 cell line, which does not constitutively express PSMA 
[34–37].

Methods
Cell lines and generation of TRAMP‑C2 clones expressing 
PSMA
TRAMP-C2 cells acquired from American Type Culture 
Collection (ATCC) and cultured according to ATCC 
specifications. The TRAMP-C2 cells were transduced 
with a customized lentiviral vector carrying tetracycline 
(syn. doxycycline-; “DOX”) inducible PSMA expression 
system. Creating a DOX-inducible expression system was 
performed as follows: First, PSMA was sub-cloned out of 
an expression plasmid EX-G0050-Lv205 (GeneCopoeia, 
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Inc.) with EcoRI and BamH1 and ligated into the tar-
get pLVX-TRE3G vector. Next, the ligated product was 
transformed into E.  coli strain DH5alpha for plasmid 
amplification and verification using restriction digests 
and gel electrophoresis. To produce lentiviruses, the pro-
tocol provided by Clonetech was employed. The lentiviral 
vector plasmid DNA (PSMA pLVX-TRE3G and pLVX-
Tet3G) was diluted with water and added to a tube of 
Lenti-X Packaging Single Shots provided by Clonetech, 
and vortexed at high speed. After incubating at room 
temperature, samples were added dropwise to the 293 T 
(HEK 293 T) cell culture dishes at 70% confluence. Fol-
lowing 12 h of incubation at 37 °C, 20%  O2, and 5%  CO2 
in a water-jacketed incubator, fresh complete growth 
medium was replaced and incubated at 37  °C and 5% 
 CO2. At 72 h after the start of transfection, the lentiviral 
supernatants were harvested and filtered through 0.45-
µm filter to remove cellular debris. The filtered pLVX-
Tet3G and PSMA pLVX-TRE3G supernatants were 
stored at -80 0C, thawed slowly on ice, and added to the 
TRAMP-C2 cells at 70% confluence, at a 1:1 ratio with 
4-µg/mL polybrene. The cells were transduced for 12  h 
at 37 °C and 5%  CO2 in a water-jacketed incubator, after 
which the culture medium was discarded and replaced 
with fresh growth medium.

Assessment of in vitro induction of PSMA expression by flow 
cytometry
The resulting bulk PSMA TRAMP-C2 population was 
incubated by adding doxycycline at varying concentra-
tions up to 1 µg/ml (2 µM) and incubating for 18 h. For 
the purpose of flow cytometry analysis, the cells were 
seeded in V-bottom 96-well plates and pretreated with 
1-μg/ml doxycycline hydrochloride (Sigma-Aldrich, St. 
Louis MO, USA), 18–24  h before the flow cytometry 
study. Media were removed, and cells were washed with 
DPBS (Gibco, Carlsbad, CA, USA) supplemented with 2% 
foetal calf serum and 0.02%  NaN3, prior to and following 
a 1-h-long incubation in the dark with 1 ug/ml of Alexa 
Fluor® 488 anti-human PSMA Antibody (BioLegend, San 
Diego, CA, USA) per  106 cells. LNCaP cells (maintained 
in RPMI media supplemented with 10% FBS and 1% 
penicillin/streptomycin) and wild-type TRAMP-C2 cells 
were used as positive and negative controls, respectively. 
Additional negative controls were “unstained” cells—
treated with 100–200 μl/well of DPBS with 2% foetal calf 
serum and 0.02%  NaN3, and isotype controls, incubated 
for 1 h with 1 µg/ml Alexa Fluor® 488 Mouse IgG1, κ Iso-
type Ctrl (FC; Biolegend, San Diego, CA, USA), as well as 
cells without doxycycline pre-treatment. Flow cytometry 
runs were performed on q FACScalibur flow cytometer 
(Becton, Dickinson and Co., Franklin Lake, NJ, USA). 

Data were analysed using FlowJo software (FlowJo LLC, 
Ashland, OR, USA).

The “bulk” PSMA TRAMP-C2 cells were then isolated 
into single-cell clones by limiting dilution in multiple 
96-well plates. This method was used to generate a clonal 
populations, each arising from a single cell. Over the 
next 2 weeks, these single cells were cultured with G418 
(500 µg/mL) and puromycin (3 µg/mL) to isolate clones 
that have “medium”- and “high”-level PSMA expression. 
Out of the 25 clones that were tested, four highly express-
ing populations (designated as clones 1, 14, 16, and 19) 
were isolated for further experiments. Clones 14 and 
19 were validated to be “intermediate” expressors while 
clones 1 and 16 were high expressors. Protein expression 
was validated through immunoblotting, using  [177Lu]Lu-
PSMA-617. The four isolated clones were initially main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 5% heat-inactivated FBS, 5% Nu-
Serum IV, 1% penicillin/streptomycin, 0.005-mg/mL 
bovine insulin, and 10-nmol/L dehydroisoandrosterone 
(DHEA) [41], and after 1 week, 300 ug/ml of geneticin 
(G418) was introduced to the media. Cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% FBS and 1% penicillin/strepto-
mycin. The cells were confirmed pathogen-free using the 
IMPACT I PCF profile test (IDEXX BioAnalytics).

Assessment of in vivo induction of PSMA expression
All mouse experiments were approved by the Animal 
Care Committee of the University of British Columbia. 
10 ×  106 cells of each of the four clones 1, 14, 16, and 19 in 
100 μl of media and Matrigel (1:1) were subcutaneously 
inoculated over the left shoulder of male NOD.Cg-Rag1t-

m1Mom  Il2rgtm1Wjl/SzJ (NRG) mice of 12 weeks of age and 
older (Jackson Laboratory, Bar Harbor, ME, USA), using 
a 25-gauge needle. The mice were maintained in a patho-
gen-free animal facility with restricted access on a 12:12 
light cycle, monitored for tumour size, weight, and gen-
eral signs of illness. Five–8 weeks post-inoculation, mice 
with tumour volume of at least 200  mm3 were selected 
for in vivo imaging and biodistribution studies with the 
18F-labelled radiotracer DCFPyL [11, 20–22, 42]. A group 
of mice was pretreated with 50-µg doxycycline per g body 
weight in 100–200-μl DPBS intraperitoneally, every 24 h 
for 3 days prior to the study. Additional mice were used 
as controls and did not receive the antibiotic prior to the 
study. All animals were randomized to the various groups 
without considering any other variable than the mini-
mum tumour size. The weight of the mice was 33 ± 3 g at 
the time of biodistribution. For each clone, a minimum 
of four mice without administered doxycycline and nine 
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mice with administered doxycycline were used for activ-
ity biodistribution in organs. The investigators were not 
blinded as to which group the animals belonged to dur-
ing the experimental procedures or data analysis.

For each clone, one mouse was randomly selected for 
micro-PET-CT imaging before and after doxycycline 
induction. The mice were intravenously injected with 
1.47 ± 0.28  MBq of  [18F]DCFPyL for biodistribution 
studies. Ex  vivo biodistribution studies were performed 
immediately post-CO2 euthanasia (following anaesthe-
sia in 2% isoflurane in oxygen). Organs were harvested, 
weighed, and counted on a PerkinElmer WIZARD 2480 
gamma counter (PerkinElmer Inc., Waltham, MA, USA). 
Organ uptake was calculated in per cent injected activ-
ity per gram of tissue (%ID/g), and an unpaired Student’s 
t-test was performed using GraphPad Prism 8 (GraphPad 
Software Inc., San Diego, CA, USA) with tumour uptake 
post-doxycycline induction in the test group and tumour 
uptake without doxycycline induction in the control 
group. The cutoff for significance was a p-value under 
0.05.

For imaging, at least one mouse from each group was 
randomly selected to be used before and after tetracy-
cline induction so that the animal served as its own con-
trol. For both imaging sessions, the mice received and 
5 ± 0.86  MBq of  [18F]DCFPyL. Following baseline imag-
ing in the absence of tetracycline, the mice recovered 
from anaesthesia and were treated with 50-µg doxycy-
cline per g body weight in 100–200-μl dPBS intraperito-
neally, every 25 h for 3 days prior to the subsequent study.

PET-CT images were acquired one hour post-tracer 
injection using Siemens Inveon micro-PET-CT scan-
ner (Siemens Medical Solutions, Knoxville, TN, USA) 
and analysed using the Inveon Research Workplace (Sie-
mens Medical Solutions, Ann Arbor, MI, USA). PET-CT 
images were compared side by side for the same mouse 
before and after induction using the same uptake bar 
with colour spectrum corresponding to the percentage of 
injected activity per gram tissue.

Results
Detectable hPSMA in TRAMP‑C2 cell lines
The results of in vitro flow cytometry of a representative 
example of a parental clone are shown in Fig. 1 as histo-
gram plots of cell count versus FITC fluorescence. The 
results of flow cytometry from the four clones are avail-
able in Additional file  1: Fig. S1. Except for the LNCaP 
cells as positive control, doxycycline-untreated cells 
showed identical negative PSMA-expressing profiles 
for unstained, isotype-stained, and anti-PSMA-stained 
tests. Upon doxycycline induction, all four clones showed 
increase in PSMA expression upon doxycycline induc-
tion with a shift in mean channel fluorescence signal for 

anti-PSMA-stained populations, except the negative con-
trol (wild-type TRAMP-C2 cells).

In vivo PSMA expression in immunocompromised mice—
radiopharmaceutical biodistribution and PET‑CT imaging 
studies
Uptake of  [18F]DCFPyL in NRG mice followed a simi-
lar pattern of distribution in different organs as in stud-
ies using LNCaP cells [43], with higher degrees of 
variability in uptake in adrenal (2.17 ± 2.3% ID/g) and 
seminal glands (5.04 ± 12.32% ID/g) due to possible urine 
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Fig. 1 Flow cytometry results of PSMA expression. PSMA‑expressing 
clones were isolated from the “bulk” population. The histogram 
shows a representative clone (clone 16) with high expression 
under doxycycline induction (blue) compared to non‑induced 
control (red)
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Fig. 2 In vivo PSMA expression levels in different clones 
before and after doxycycline induction. Transfected TRAMP‑C2 clones 
express PSMA upon doxycycline induction in vivo. Unpaired t‑tests 
for all four clones showed a p‑value of < 0.0001 when comparing 
radioactivity uptake of  [18F]DCFPyL in mice with or without 
pre‑treatment with doxycycline. The figure shows the %ID/g 
of tumour uptake in the induced (doxycycline) mice compared 
to the control group for clone 16
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contamination of these organs during harvesting. Pre-
treatment with doxycycline significantly impacted the 
level of  [18F]DCFPyL uptake in tumours (Fig. 2). Clone 19 
showed significantly lower uptake (Additional file 1: Fig. 
S2). An unpaired t-test resulted in p-values under 0.0001 
for all four clones, when comparing uptake levels without 
induction versus post-induction. PET-CT images of four 
mice, each inoculated with a different clone, confirmed 
this finding when images before and after induction were 
compared. In addition, tumours could only be visualized 
with high tumour-to-background ratio after undergo-
ing induction with intraperitoneal doxycycline injection 
(Fig. 3 and Additional file 1: Fig. S3).

Discussion
Both in  vitro and in  vivo, our experiments confirmed 
viability of the cells in vivo and the inducibility of PSMA 
expression in all four transduced TRAMP-C2 clones.

A limitation of our study was that we did not perform 
a comprehensive evaluation of the kinetics of protein 
induction which could provide useful information on 
the duration of protein induction and rate of resolution 

[7]. We did not perform further isolation of high PSMA-
expressing uniform clonal populations, marked by reli-
ably uniform protein expression and uptake patterns that 
could be used for therapy studies. Finally, blinding the 
investigators as to which group the animals belonged to 
would have further improved the study design by avoid-
ing selection bias.

No adverse reactions were seen with the tumour model, 
and the uptake in other organs followed a similar pat-
tern as LNCaP-bearing mice. This confirms the potential 
of PSMA as a reporter gene to monitor successful gene 
transfer and induction in  vivo. Several new treatment 
strategies that rely on direct, viral, or cell-based gene 
therapies are being used in clinical practice or investi-
gated in clinical trials [49, 50]. From CAR-T cells, mRNA 
vaccines, oncolytic viruses, and various viral vectors, the 
ability to monitor in  vivo, non-invasively, gene expres-
sion in  vivo, either in preclinical models or clinical tri-
als, can be useful to improve the design of gene transfer 
methods and protocols. For example, studying kinetics 
can provide information about viability and proliferation 
of the engineered cells [51]. In addition, tracers targeting 

Fig. 3 Comparison of PET‑CT images before and after doxycycline induction. Comparison of PET‑CT images before (left) and after (right) 
doxycycline induction in a representative mouse (clone 16). Uptake in the tumours was only visualized after doxycycline administration. The 
spectrum bar has a range 0–7.1%ID/g for PET (yellow/red tones). The tumour is indicated with a blue arrow
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PSMA, such as  [18F]DCFPyL used in our studies, are 
becoming widely available, improving the feasibility of 
reporter gene monitoring for clinical research studies. 
In our case, we developed this approach as part of estab-
lishing an immunocompetent tumour model that can 
expresses PSMA expression in  vivo. As an initiate step, 
this study serves as proof-of-concept that PSMA imaging 
can be used as a reported gene to monitor inducible gene 
expression in vivo.

Conclusion
Our aim was to demonstrate the feasibility to use non-
invasive imaging to monitor doxycycline-dependent 
PSMA expression in  vivo. Flow cytometry studies con-
firmed that all the parental clones provided to us were 
suitable for proceeding with in animal experiments. Proof 
of induction in vivo was confirmed by ex vivo biodistri-
bution data and in  vivo imaging. Collectively our data 
show that there is a significant increase in the uptake of 
radiotracers post-PSMA induction confirming the appli-
cation potential of this model as an effective reporter for 
tetracycline-induced gene expression in vivo.
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