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Abstract 

Background In parametric PET, kinetic parameters are extracted from dynamic PET images. It is not commonly used 
in clinical practice because of long scan times and the requirement for an arterial input function (AIF). To address 
these limitations, we designed an 18F-fluorodeoxyglucose (18F-FDG) triple injection dynamic PET protocol for brain 
imaging with a standard field of view PET scanner using a 24-min imaging window and an input function modeled 
using measurements from a region of interest placed over the left ventricle.

Methods To test the protocol in 6 healthy participants, we examined the quality of voxel-based maps of kinetic 
parameters in the brain generated using the two-tissue compartment model and compared estimated parameter 
values with previously published values. We also utilized data from a 36-min validation imaging window to compare 
(1) the modeled AIF against the input function measured in the validation window; and (2) the net influx rate ( Ki ) 
computed using parameter estimates from the short imaging window against the net influx rate obtained using 
Patlak analysis in the validation window.

Results Compared to the AIF measured in the validation window, the input function estimated from the short 
imaging window achieved a mean area under the curve error of 9%. The voxel-wise Pearson’s correlation between Ki 
estimates from the short imaging window and the validation imaging window exceeded 0.95.

Conclusion The proposed 24-min triple injection protocol enables parametric 18F-FDG neuroimaging with noninva-
sive estimation of the AIF from cardiac images using a standard field of view PET scanner.

Keywords Arterial input function (AIF), Dynamic PET, Parametric mapping, Triple injection protocol, Short window 
imaging

Background
In clinical practice, diagnostic 18F-fluorodeoxyglucose 
(FDG) positron emission tomography (PET) images 
are most commonly interpreted by visual inspec-
tion, sometimes taking into account information from 
semiquantitative standardized uptake value (SUV) 
data [1]. Parametric PET generates images of kinetic 
parameters describing FDG uptake, estimated from 
the temporal profile of changes in tissue tracer con-
centration extracted from dynamic PET data. These 
kinetic parameters represent the influx of 18F-FDG into 
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tissue, K1 (ml/g/min), efflux from tissue to blood, k2 
(1/min), the rates of phosphorylation of 18F-FDG and 
dephosphorylation of 18F-FDG-6-phosphate, k3 and k4 
(1/min), respectively, and the net influx rate, Ki , com-
puted as Ki = K1k3/(k2 + k3) in units of ml/g/min [2]. 
The parameters can be formulated as unknowns to be 
estimated in a compartmental model, as originally pro-
posed by Sokoloff et al. in 1977 [3].

Advances in PET technology now enable more 
detailed analysis of dynamic PET data and parametric 
PET [4]. These include the development of dynamic 
image reconstruction algorithms [5], time-of-flight 
PET data acquisition [6], and whole-body parametric 
imaging on commercial PET scanners [7]. Long axial 
field-of-view PET scanners have greatly enhanced PET 
capabilities in parametric PET [8]. This holds great 
promise for enhancing disease diagnosis, monitor-
ing treatment responses, and drug development [4, 5, 
9–12]. Early studies have shown that combining kinetic 
parameters and SUV data improves discrimination 
between benign and malignant lesions, enhances tumor 
grading accuracy, and provides superior clinical diag-
nostic information compared to existing SUV-based 
methods [13–18]. For example, Strauss et  al. demon-
strated that incorporating 18F-FDG PET kinetic param-
eters with the SUV significantly improved bone lesion 
classification, particularly for distinguishing grade I 
from grade III tumors, resulting in an overall diagnostic 
accuracy of 87.7%, surpassing the 74.7% achieved with 
SUV alone [16].

Although parametric PET imaging in neurology [19] 
has been thoroughly researched, it is yet to be routinely 
implemented in clinical practice. 18F-FDG PET para-
metric imaging shows promise in enhancing the diagno-
sis and monitoring of brain disorders [4]. For example, 
Kimura et  al. used PET kinetic analysis to differentiate 
CNS lymphoma from high-grade glioma, emphasizing 
the value of parameters like k3 in diagnosing CNS lym-
phoma based on distinct glucose metabolism patterns 
[20]. 18F-FDG PET parametric imaging can also assist in 
monitoring tumor therapy [21]. Nishiyama et  al. found 
that 18F-FDG PET kinetic parameters, especially k3 , 
were beneficial in the diagnosis and assessment of treat-
ment response of central nervous system lymphoma [22]. 
FDG uptake parameters correlated with the response to 
chemotherapy of lymphomas, with significant reductions 
in both K1 and k3 being observed after treatment [23]. 
Parametric PET imaging has also been employed in other 
contexts in human imaging including the visualization of 
protein targets in the brain [19], in traumatic brain injury 
[24, 25] and Alzheimer’s disease [26, 27], where it has 
provided new insights into the underlying changes asso-
ciated with these neurological conditions.

Despite its potential benefits, parametric mapping is 
not in wide clinical use [4, 5, 28, 29]. Because current 
methods require longer scan times that nonparamet-
ric imaging, resulting in lower patient throughput and 
increasing the likelihood of patient discomfort and of 
movement-related image artifacts that may contribute to 
erroneous parameter estimates [29–31]. Furthermore, an 
Arterial Input Function (AIF) is required for parameter 
estimation. Because arterial blood sampling for the esti-
mation of the AIF is invasive, adds to preparation time, 
and may have uncommon but serious complications [4, 
32], several noninvasive alternatives have been proposed 
for parametric PET imaging. An appealing, noninvasive 
alternative to arterial blood sampling is to estimate the 
AIF directly from PET images. This approach depends on 
the presence of a suitable artery within the imaging field 
and has been effectively validated for blood pools such as 
the heart [33], aorta [34], and femoral arteries [35]. The 
larger size of these vessels simplifies ROI placement and 
allows the potential omission of corrections for the par-
tial volume effect [36–40]. Additional minimally invasive 
approaches involve jointly estimating the AIF and kinetic 
parameters, with limited blood sampling [41, 42], and the 
use of a population-derived AIF [43, 44]. Directly esti-
mating the AIF from images mitigates the risk of overfit-
ting found in joint estimation methods. Furthermore, it 
eliminates the need for blood sampling and, in contrast 
to using a population-derived AIF, accommodates indi-
vidual variations in AIF shapes more effectively. In PET 
brain studies using clinical standard field-of-view scan-
ners and single-bed protocols, accurately estimating the 
AIF directly from images remains challenging. This is due 
to the absence of large blood pools in the images and the 
influence of the partial volume effect, resulting from the 
vessels’ small size in comparison to the limited spatial 
resolution of PET scanners. A ROI over large blood pools 
is less prone to partial volume effect than estimates from 
smaller vascular structures such as the carotid artery 
[37].

Long axial field of view PET/CT scanners offer the 
advantage of simultaneous brain imaging and deriving 
AIF measurements from large vascular structures like the 
aorta or left ventricle, effectively reducing partial volume 
effects [40, 45, 46]. However, despite these benefits, the 
utilization of these scanners is limited due to their small 
installed base compared to standard field of view scan-
ners, while still requiring hour-long dynamic 18F-FDG 
PET scans from tracer administration.

Recent software advancements and the adoption of 
multi-pass, multi-bed PET scanning techniques, also 
known as dynamic whole-body imaging, in standard 
field of view scanners, hold transformative potential 
in the field [7, 47]. In dynamic whole-body imaging, 
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encompassing the entire body, it commences with an 
early cardiac scan to capture the AIF peak. Subsequently, 
data are collected through multiple whole-body bed 
passes, enabling kinetic modeling via the linear Patlak 
analysis [48] to estimate the net uptake rate.

Advancements in whole-body PET/CT scanning have 
facilitated large clinical studies, as demonstrated in a 
study assessing 118 lesions in 18 patients, where the com-
bination of Ki and SUV imaging enhanced sensitivity and 
accuracy in detecting malignant lesions while reducing 
false positives [49]. Another study involving 101 patients 
demonstrated enhanced lesion contrast and reduced false 
positives compared to SUV images, providing benefits 
for specific patient groups and evaluations of treatment 
responses [11].

In whole-body 18F-FDG PET/CT scans, the AIF is usu-
ally obtained by placing ROIs over the aorta or left ventri-
cle during an early cardiac scan to capture the AIF peak. 
Subsequently, AIF shape is sampled through multiple 
whole-body bed passes [50]. However, it is important to 
note that precise estimation of individual kinetic param-
eters like K1 , k2 , k3 and k4 relies on tissue time activity 
curves obtained from early PET measurements. The cur-
rent approach in whole-body 18F-FDG PET/CT scanning 
does not allow early tissue activity curve measurement. 
As a result, this approach primarily facilitates the deter-
mination of the net influx rate ( Ki ) [51, 52]. Nevertheless, 
it requires lengthy dynamic 18F-FDG PET scans starting 
from the time of tracer administration.

We aimed to develop a parametric 18F-FDG PET brain 
imaging protocol for standard field of view scanners that 
allows estimation of individual kinetic parameters in a 
scan time comparable to that of nonquantitative imaging 
(24min)  and using AIF estimates from a cardiac ROI.

Theory: triple injection protocol
Proposed protocol
The standard parametric 18F-FDG PET brain imaging 
protocol involves a 60-min single-bed position acquisi-
tion over the brain after radiotracer injection, with arte-
rial blood sampling to measure the AIF [2]. We propose a 
triple injection PET imaging protocol (Fig. 1) comprising 

a 36-min uptake phase outside the scanner and a short 
24-min dynamic PET imaging window:

(1) The standard radiotracer dosage is divided into 
three equal doses.

(2) The first dose is injected with the patient outside 
the scanner, followed by an uptake period of 36 
min. This allows the late time points of the brain 
and heart time activity curves to be measured in the 
subsequent scans.

(3) A 3-min dynamic scan of the brain (36-39), com-
prising two 90 s frames, is then performed.

(4) The scanner bed is moved for 9 min of cardiac 
imaging (39–48 min) comprising, in sequence, 
3 × 60 s, 3 × 20 s, 4 × 30 s and 3 × 60 s frames. The 
second dose of tracer is injected at 42.5 min, during 
the cardiac scan and the 20 s frames are designed 
to capture the second peak in vascular activity. The 
9-min scan allows us to estimate 3.5 min of the tail 
of the AIF from the first injection and the initial 5.5 
min of the AIF, including its peak, from the second 
injection.

(5) The scanner bed is moved for a 12-min dynamic 
brain scan (48–60 min), comprising 2 × 90 s and 
3 × 180 s frames. The third dose of tracer is injected 
at 49 min, during the brain scan. This allows meas-
urement of the early portion of the brain time activ-
ity profile.

In the next section, we provide the justification and 
background information underlying this protocol design.

Rationale
We [52] and others [53–55] have investigated the time 
windows in 18F-FDG dynamic PET acquisitions and AIF 
measurements that are critical for accurate estimation 
of kinetic parameters. Several studies have shown that 
an initial 10–15-min scan, followed by a late 3–10-min 
scanning window, around 60 min after tracer injection, 
is sufficient for accurate estimation of kinetic parameters 
[53–55]. In a previous simulation study, we showed that, 
using Machine Learning, it is possible to reliably estimate 

Fig. 1 Schematic illustration of the proposed triple injection protocol. Shown are a 1/3 dose initial tracer injection followed by 36 min of rest 
before dynamic PET data acquisition for 24 min with two additional 1/3 dose tracer injections
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the kinetic parameters using only the first 12 min (0–12 
min) and the last 3 min (57–60 min) of the time activ-
ity curve (TAC) and AIF [52]. However, the use of two 
short acquisitions following a single tracer injection dose 
is not clinically practical because the participant must 
undergo two separate PET and CT scans separated by 
a nonscanning period, resulting in a complex workflow 
and necessitating PET image co-registration. The triple 
injection protocol allows the acquisition of scans that 
are early and late with respect to the preceding tracer 
injection, without an intervening nonscanning period. 
The model assumes that physiological steady state is 
maintained from the first injection through to the end of 
scan acquisition. Furthermore, it assumes that the rate 
of radiotracer injection remains fairly uniform across 
three separate manual injections [56]. The total time for 
the procedure was limited to 60 min to be comparable to 
standard 18F-FDG dynamic PET scanning.

To assess the reliability of estimating the AIF and 
evaluate the accuracy of kinetic parameter estimation, 
we conducted a simulation study in MATLAB® R2021b 
(MathWorks, Natick, MA). We first used 9 min of car-
diac imaging to estimate the AIF, and then examined the 
accuracy of kinetic parameter estimation using a triple 
injection protocol that totalled 24 min.

Accuracy of AIF estimation: simulation study
A simulation study was performed using MATLAB® 
R2021b (MathWorks, Natick, MA) to evaluate the reli-
ability of estimating the AIF using 9 min (3.5  + 5.5 min) 
of cardiac imaging. We simulated AIFs for three tracer 
injections of equal dose at times t1 = 0, t2 = 42.5, and 
t3 = 49 min using a model introduced by Feng et al. [57] 
and performed a convolution of the model with three 
impulse functions, each corresponding to a specific injec-
tion with a given delay. The resulting triple injection 
model-based AIF is given by:

where Cp(t) is the AIF at time t , δ denotes the Dirac delta 
function, t1 , t2 and t3 are the time delays for each injec-
tion in units of min, and A1 (kBq/ml), A2 (kBq/ml), µ1(1/
min) and µ2 (1/min) are the four AIF parameters to be 
estimated.

The AIF parameters used in the simulation were chosen 
based on Feng et al.’s published values for mean and stand-
ard deviation (SD): A1 = 263± 120 , A2 = 16± 1.32 , 
µ1 = 3.56± 1.31 and µ1 = 0.029± 0.012 [57]. We simu-
lated the time course of 81 AIFs over 60 min correspond-
ing to all possible combinations of three values for each 

(1)
Cp(t) =

1

3
(δ(t − t1)+ δ(t − t2)+ δ(t − t3))

⊗ (A1te
−µ1t + A2 e−µ2t − e−µ1t ),

parameter—mean, mean + SD and mean—SD. Sequential 
time frames of 3 × 20 s, 4 × 30 s, 3 × 60 s, 22 × 90 s, 3 × 60 
s, 3 × 20 s, 4 × 30 s, 3 × 60s, 2 × 90 s and 3 × 180 s were 
simulated. Random noise was added to each AIF accord-
ing to a previously described noise model for PET [58]:

where η is a pseudo-random number drawn from a 
Gaussian distribution, ∼ N (0, 1) , CP(t) is the noise-free 
AIF, c is a scaling factor to adjust the noise level, �t is the 
time frame interval in min. Low noise (c = 0.15) and high 
noise (c = 0.6) levels were simulated (Fig. 2a) and, for each 
noise-free AIF and each noise level, 1000 noisy measured 
AIF time courses were simulated.

AIF parameters were then estimated using 39–48 min 
of the simulated AIF, corresponding to the period of car-
diac scanning in the triple injection protocol. Nonlin-
ear least squares fitting was performed. AIF parameter 
bounds were set as 0.5 × the minimum and 2 × the maxi-
mum of the Feng function parameters used in the simu-
lation. Accuracy of parameter estimation was assessed 
using:

Area under the curve error ( AUCerror ), which com-
pares the temporal profiles of the simulated and the esti-
mated AIF over the entire 60-min window:

where AUCerror is the average percentage error of the 
area under curve (AUC) of the AIF over R random noise 
repetitions, and AUCr is the AUC of the estimated AIF 
and ÂUC is the AUC of the simulated noiseless AIF.

Normalized root-mean-square error (NRMSE) 
between the simulated noiseless AIF and the estimated 
AIF for the entire 60 min using:

where f ri   denotes estimated AIF values for the ith time 
point from rth random noise repetitions, and ̂fi is the 
simulated noiseless AIF and n is the total number of 
timepoints for AIF estimates.

Figure 1b illustrates the simulated and estimated AIFs 
for the c = 0.15 noise level. At this noise level, the esti-
mated AIF captured the shape of the true AIF. Table 1 
lists the mean AUCerror and NRMSE for both noise lev-
els and for data without noise across the 81 simulated 
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ÂUC
× 100,

(4)NRMSE =
1

R

R
∑

r=1

√

√

√

√

√

1

n

n
∑

i=1

(

f ri − ̂fi

)2

̂fi
2

,



Page 5 of 14Moradi et al. EJNMMI Research            (2024) 14:1  

AIFs. The 0.15 noise level data are more relevant for 
practical implementation of AIF estimation using a 
cardiac ROI. At this level of noise, the mean AUCerror 
was 1.96% and the mean NRMSE was 0.06. AIF estima-
tion error propagates to a similar extent to K1 estima-
tion whereas k2 and k3 estimation are less affected [59]. 
These findings indicate that the AIF can be accurately 
estimated using only the 9-min AIF window (39–48 
min) of the triple injection protocol described above.

Fig. 2 The simulated AIF for parameters A1 = 263(kBq/ml) , A2 = 16(kBq/ml) , µ1 = 3.56(1/min) and µ1 = 0.029(1/min) at low (c = 0.15) and high 
noise (c = 0.6) levels and the simulated AIF without noise are shown. b Example of the simulated and estimated AIF for c = 0.15 noise level is shown. 
Data points denoted by the ‘ + ’ and ‘●’ symbols are measurements taken from LV. Measurements from the 39-48min window (red shaded area) were 
used to estimate the entire AIF (the red dashed line). c Simulated TACs for K1 = 0.075 (ml/g/min), k2 = 0.15(1/min), k3 = 0.03 (1/min), and vb = 0.03 
at low (c = 0.1) and high (c = 0.4) noise levels and without noise. d Examples of simulated and estimated TACs at c = 0.1 noise level. Data points 
denoted by the ‘ + ’ and ‘●’ symbols are the TAC measurements. The simulated TAC from the 36–39 min and 48–60 min time frames (the blue shaded 
area) were used for parameter estimation. The simulated TAC corresponding to the ‘ + ’ symbols were used only for validation

Table 1 The mean AUCerror and NRMSE for two noise levels and 
for data without noise across the 81 simulated AIFs

Noise level (c) AIF accuracy

AUCerror(%) NRMSE

c = 0 0.2 ± 0.15 0.04 ± 0.008

c = 0.15 1.96 ± 1.49 0.06 ± 0.01

c = 0.6 8.21 ± 6.35 0.17 ± 0.08
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Accuracy of kinetic parameter estimation: simulation study
To examine the accuracy of kinetic parameter estimation 
using the triple injection protocol, TACs were simulated 
using the irreversible two tissue compartment model 
(2TCM):

where CT (t) is the measured total tracer concentration in 
tissue, Cp(t) is the AIF, t is a point in time, vp is the vol-
ume fraction of tracer in the plasma pool, and ⨂ denotes 
the convolution operation.K1 , k2 , and k3 are kinetic 
parameters defined above.

AIFs were simulated as in the previous simulation 
study, using the mean AIF parameter values from Feng 
et  al. [57] and the triple injection model-based AIF (1). 
Tissue TACs were simulated using three values for 
each kinetic parameter, chosen to span a physiologi-
cal meaningful range: K1 = 0.05, 0.075, 0.1(ml/g/min), 
k2 = 0.05, 0.15, 0.25 (1/min), k3 = 0.02, 0.03, 0.04 (1/min) 
and vb was fixed at 0.03. For each of the 27 TACs corre-
sponding to each parameter combination, we generated 
1000 TACs and added random noise using (2) with noise 
levels of c = 0.1 and c = 0.4, chosen to reflect human para-
metric PET data realistically.

We set injection times to t1 = 0 , t2 = 42.5 and t3 = 49 
min and evaluated two cases:

(1) Kinetic parameter estimation using segments of the 
TAC between 36 and 39 min and 48–60 min and 
the AIF from 39 to 48 min, as proposed in the triple 
injection protocol.

(2) Kinetic parameter estimation using the TAC 
between 48 and 60 min and the AIF from 39 to 48 
min, to verify the need for the late imaging time 
window after the first injection.

The nonlinear least square method was used to esti-
mate kinetic model parameters. We calculated the 
mean and SD of parameter estimates, the relative error 
between estimated parameters and ground truth and the 
coefficient of variation ( CVP ) for each parameter.

(5)CT (t) =
(

1− vp
)

((

K1k2

k2 + k3
e−(k2+k3)t +

K1k3

k2 + k3

)

⊗ Cp(t)

)

+ vpCp(t),

Figure 1c shows the corresponding TACs at two noise 
levels and mean, SD, relative error and CVP for parameter 
estimates at each noise level are provided in Additional 
file 1: Table S1. When 36- to 39-min and 48- to 60-min 
data were used, the mean relative error for all parameter 

estimates at both noise levels was less than ± 4% except 
for  k2 at high noise levels where the mean relative error 
was 8.8%. Omission of 36–39-min data resulted in larger 
mean error and CVP and a greater sensitivity to noise for 
estimates of individual parameters, with much less effect 
on estimates of Ki (Additional file 1: Table S2).

Methods
Human PET imaging
Study participants
Approval for this project was granted by the Human Eth-
ics Committee of the University of Queensland (2021/
HE001605). Written informed consent was obtained 
from 6 healthy male adult participants (age 22–33, weight 
45–95 kg). A summary of the participants’ information is 
provided in Additional file 1: Table S1.

PET‑CT data acquisition
Data were acquired on a Siemens Biograph Horizon PET 
scanner (Biograph Horizon 3R-VJ21C) at the Centre for 
Advanced Imaging, The University of Queensland. The 
acquisition protocol is summarised in Fig.  3 and differs 
from the triple injection protocol with the addition of 
dynamic PET data collection in the 36 min after the first 
tracer injection as a validation data set.

The total amount of 18F-FDG injected was approxi-
mately 200 MBq (total dose range: 181—203 MBq). Each 
of the three injections, comprising approximately one 
third of the total dose, was administered as an intrave-
nous bolus followed by a 50 ml saline flush. List-mode 
acquisition started at the same time as the first injection 
of 18F-FDG. As shown in Fig. 3, the 60-min data acqui-
sition consisted of a 36-min validation window (0–36 
min) and the 24-min short imaging window (36–60 

Fig. 3 Schematic illustration of the protocol used for experimental validation of the triple injection method. Timings for the validation 
and short imaging windows and of the three tracer injections are depicted
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min). Image time frames comprising 3 × 20  s, 4 × 30  s, 
3 × 60  s, 22 × 90  s, 3 × 60  s, 3 × 20  s, 4 × 30  s, 3 × 60  s, 
3 × 60s, 2 × 90 s and 3 × 180 s were then reconstructed 
using TrueX + TOF (ultraHD-PET) with eight itera-
tions and 20 subsets, a 2 mm Full Width at Half Maxi-
mum (FWHM) Gaussian filter was applied, along with 
a zoom factor of 2, resulting in images with a voxel size 
of 1.028 mm × 1.028 mm × 2.02 mm and a matrix size of 
360 × 360. Random coincidence, scatter, attenuation, and 
radioactive decay corrections were performed. To miti-
gate the effects of noise, dynamic brain images were spa-
tially filtered using a 2D Gaussian kernel in MATLAB® 
R2021b (MathWorks, Natick, MA) with the `imgauss-
filt` function FWHM of 4.11mm. The ultimate spatial 
resolution, FWHM , results from a combination of fac-
tors: the native in-plane resolution ( FWHM1 = 4.37 mm) 
[60], a contribution from reconstruction ( FWHM2 = 2 
mm), and an additional Gaussian filter ( FWHM3 = 4.1 
mm). These yields FWHM = 6.4 mm using the formula 
√

(FWHM1)
2
+ (FWHM2)

2
+ (FWHM3)

2.

Region of interests
We used a 10-mm spherical ROI over the LV in cardiac 
images, with a gap from the myocardium to minimize 
bias from myocardial activity spill-in when measuring 
the AIF [47].

Gray and white matter ROIs in the brain were manually 
segmented using the ROI freehand tool in MATLAB® 
R2021b. The corresponding TACs were extracted and 
used for kinetic parameters estimation (Additional file 2).

To validate the generated voxel-wise brain parametric 
maps, 14 ROIs comprising the caudate, cerebellum, ante-
rior cingulate, posterior cingulate, hippocampus, insula, 
putamen, occipital, parietal, lingual, midtemporal, amyg-
dala, thalamus and white matter available in the MNI 
AAL atlas [61] were segmented. The MNI T1 weighted 
MRI template was co-registered to the brain PET images 
(48–60-min averaged time frames) using SPM5 meth-
odology in the Pmod software package (PMOD 4.302, 
PMOD Technologies, Zurich, Switzerland). The transfor-
mation matrix generated was used to transform the MNI 
AAL atlas to each subject’s native PET coordinate space.

AIF estimation
Data from the 24-min short imaging window (39–48 
min, see Fig. 3) were used to estimate the AIF. The four 
Feng function parameters ( A1 , A2 , µ1 and µ2 .) were esti-
mated by fitting the triple injection model-based AIF 
(1) to the mean activity values the LV ROI in this imag-
ing window. The AIF for the 60-min imaging period was 
generated using the estimated AIF parameters and (1) to 
compare the AIF measurement in the validation window 
(0–36 min).

AIF evaluation
The AIF parameters estimated using data in the short 
imaging window were validated by using the parameters 
to generate an AIF for the 0 to 36-min validation window. 
These values were compared with measured values from 
a LV ROI using AUCerror [3] and NRMSE [4].

Kinetic parameter estimation in regions of interest
Data from the 24-min short imaging window (36–39 
min and 48–60 min, see Fig.  3) were used to estimate 
the kinetic parameters. Using the estimated AIF based 
on data between 39 and 48 min, the 2TCM (see [5]) was 
fitted to TACs obtained by averaging the voxel values in 
each ROI in the 24-min short imaging window.  K1 (ml/g/
min), k2 (1/min) and k3 (1/min) were estimated. We 
maintained a fixed blood volume fraction, vb , of 0.03 in 
brain tissue [62, 63] and assumed its constancy through-
out the entire brain [64, 65]. The net influx rate, Ki , was 
computed according to:

Kinetic parameter estimation in voxels
Voxel-wise brain parametric maps for K1 , k2 and k3 were 
generated using nonlinear least squares fitting. The TACs 
for each voxel from the 24-min short imaging window 
were extracted. The estimated AIF from data between 39 
and 48 min was used as the input function, vb was fixed 
to 0.03, and Ki for each voxel was also computed from the 
estimated kinetic parameters (refer to [6]).

Kinetic model fitting
The MATLAB® function lsqcurvefit was used to fit the 
AIF function with A1 constrained to 300—800 kBq/ml 
using the Levenberg–Marquardt algorithm. The same 
optimization algorithm was used to fit the 2TCM to 
ROI- and voxel-based TACs. Linear least squares (MAT-
LAB function lsqlin) was used to estimate Ki by Patlak 
analysis.

Validation of kinetic parameters
The estimated K1 , k2 , k3, and Ki from the averaged activ-
ity curves over gray matter and white matter ROIs, and 
the averaged kinetic parameters over 14 ROIs, gray mat-
ter ROI (from manual segmentation) and the whole brain 
from the generated voxel-wise parametric maps were 
presented as mean ± SD and compared with previously 
published values.

For further empirical validation, the parameter esti-
mates from the short imaging window were used to com-
pute Ki and this value was compared with the Ki estimate 

(6)Ki =
K1k3

(k2 + k3)

(

ml/g/min
)

.
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obtained from the validation window using Patlak analy-
sis and the measured LV-derived AIF (see Fig. 3). Patlak 
analysis was performed using 15- to 36-min data from 
the validation window to ensure that pseudo-equilibrium 
had been attained.

This validation was performed for average kinetic 
parameter estimates in ROIs and for voxel-wise param-
eter estimates.

We calculated the error between the Ki values esti-
mated from the 24-min short imaging window and the 
validation window. The Pearson correlation coefficient ( r ) 
between the two estimated Ki values was calculated for 
gray matter and white matter voxels separately. r between 
the averaged Ki values from the short imaging and the 
validation window in the 14 ROIs was also calculated.

Results
AIF estimation
Figure 4a shows the LV-derived AIF for Participant 6. The 
estimated AIFs for all participants captured the shape of 
the measured AIF in the validation window.

Table 2 summarizes the AUCerror and NRMSE for each 
participant. The average AUCerror and NRMSE across 
participants were 9.10% and 0.26, respectively. Estimates 
for the four Feng function parameters A1 , A2,µ1 and 
µ2 for each participant are provided in Supplementary 
Material, Table 2.

Kinetic parameters estimation in region of interests
Figure 4b and Fig. 4c shows gray and white matter TACs 
for the six participants (P1-P6). In general, there was 
good agreement between TACs extrapolated into the 
validation window and measured TACs. Table  3 pro-
vides fitted model parameters. K1 , k2 , and k3 estimates 

for gray matter were 0.08 ± 0.02 ml/g/min , 0.11 ± 0.03 
and 0.04 ± 0.01 1/min , respectively, clearly different 
from those of white matter which were, respectively, 
0.05 ± 0.01 ml/g/min , 0.07 ± 0.02 and 0.03 ± 0.01 1/min . 
These estimates are within ranges published previously 
[66, 67]. Values of K1 = 0.068–0.161 ml/g/min , k2 = 0.070–
0.301 1/min , k3 = 0.030–0.098 1/min have been reported 
[66] for gray matter using the 2TCM and arterial 
blood sampling. Previously reported kinetic param-
eters for white matter were K1 = 0.047 ± 0.003 ml/g/min , 
k2 = 0.07 ± 0.015 1/min , k3 = 0.035 ± 0.005 1/min [67].

Table 3 provides the estimated Ki values from the vali-
dation window (0–36 min) and the relative error of the 
Ki estimated from the 24-min shortened imaging window 
(36–60 min). Mean Ki values in the 24-min short imaging 
window for gray and white matter were 0.02 ± 0.006 and 
0.012 ± 0.004 ml/g/min , in close agreement with the vali-
dation window results of 0.019 ± 0.005 and 0.014 ± 0.003 
ml/g/min . Across participants, the averaged Ki value was 

Fig. 4 a Illustration of the estimated AIF for participant 6, b extrapolated gray matter and c white matter TACs for the six participants (P1-P6). a 
Data points denoted by the ‘ + ’ and ‘●’ symbols are measurements taken from the LV in the validation and the 39-48-min windows, respectively. 
Measurements from the 39-48min window (red shaded area) were used to estimate the entire AIF (the red dashed line). b–c The TAC measurements 
averaged over gray and white matter ROIs for the six participants (P1-P6). Data from 36-60min (blue shaded area) were used to estimate the kinetic 
parameters and recover the entire TAC (red dashed line). Measurements outside the 36-60min window were used for validation

Table 2 AUCerror and NRMSE for the six participants’ LV derived 
arterial input function

Participants AIF accuracy

AUCerror (%) NRMSE

P1 3.35 0.11

P2 9.23 0.23

P3 14.72 0.38

P4 10.37 0.40

P5 6.33 0.28

P6 10.60 0.24

Mean ± SD 9.10 ± 3.90 0.26 ± 0.09
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underestimated by around − 17% for white matter and 
overestimated by less than 2% for gray matter.

Voxel‑wise parametric mapping
Figure 5 summarizes the voxel-wise parametric mapping 
results. Figure 5a depicts maps of K1 , k2 , k3 and Ki in one 
example slice in the brain region for Participant 5 pro-
duced using 2TCM from the 24 min short window data. 
Figure 5b illustrates the Ki map generated using the Pat-
lak analysis from the validation window. Qualitatively, the 
24-min window parametric maps did not appear ‘noisy.’ 
The plots in Fig.  5c and Fig.  5d show the relationship 
between the mean Ki values generated using the 2TCM 
from the 24-min short imaging widow and using Pat-
lak analysis in the validation window in ROIs as well as 
the relationship at voxel level, separately for gray matter 
and white matter voxels. A strong correlation was found 
between the two Ki estimates (ROIs: r = 0.97, voxel-level 
gray matter: r =  0.95 and voxel-level white matter: r = 
0.95).

Table  4 provides the estimated individual parameters 
( K1 , k2 , k3 , and Ki ) for the 14 ROIs, the gray matter ROI 
and whole brain, and the estimated Ki values using Pat-
lak analysis from the validation window are provided for 
comparison. The highest K1 and k2 values were in the 
cerebellum (0.1 ± 0.04 ml/g/min and 0.16 ± 0.07 1/min ). 
These findings agree with previously reported largest 
values associated with the cerebellum, K1 = 0.101–0.13 
ml/g/min and k2 = 0.14–0.62 1/min [68]. The highest 
k3 and Ki values were in the anterior cingulate, parietal, 
putamen and insula around k3 = 0.05 1/min  and Ki = 
0.025 1/min . These values are within the range of the 
previously reported k3 = 0.035–0.061  1/min  and Ki = 
0.016–0.03 ml/g/min in the normal human brain, with 

the largest k3 and Ki found in the thalamus, parietal, cin-
gulate and insular cortex [69].

Table  4 summarizes the average Ki estimation error 
between the 24-min window kinetic parameters and 
the validation values. The greatest over estimation 
was reported in the putamen, 8%, while the great-
est underestimation was found in the white matter, − 
17.3%. In general, the Ki estimation in the gray matter 
(errors = 2.0 ± 5.0%) was more accurate than white matter 
(errors = − 17.3 ± 15.4%).

Discussion
We propose a triple injection protocol (see Fig.  1) that 
enables parametric brain imaging with 18F-FDG in a 
short (24 min) imaging window, using standard field of 
view PET scanners and an AIF noninvasively estimated 
from cardiac images.

Our simulation studies predicted that the AIF can be 
reliably estimated using only 9 min of cardiac imaging 
and a model-based input function. They also predicted 
that kinetic parameters can be estimated accurately using 
information from tissue TACs between 36–39 min and 
48–60 min of the triple injection PET imaging protocol. 
TAC data from 36–39-min stabilized parameters esti-
mates using the 2TCM.

The triple injection protocol was validated using 
dynamic PET images from 6 participants. The AIF esti-
mated using only 9 min (39–48 min) of left ventricle 
measurements achieved a mean AUCerror of 9% when 
compared with the AIF measured in the validation 
window.

Voxel-wise parametric mapping was successfully 
applied to participants’ short imaging window PET data 
(see Fig.  5a and Fig.  5b). Estimated kinetic parameters 

Table 3 Kinetic parameters estimates from gray and white matter

2TCM (short window) Patlak (validation 
window)

Relative error 
(%) in K i 
(short window 
against 
validation 
window)

K1(ml/g/min) k2(1/min) k3(1/min) K i(ml/g/min) K i(ml/g/min)

GM WM GM WM GM WM GM WM GM WM GM WM

P1 0.07 0.04 0.10 0.06 0.05 0.03 0.025 0.014 0.024 0.015 3.1 − 4.4

P2 0.06 0.03 0.08 0.05 0.03 0.02 0.015 0.007 0.016 0.010 − 1.1 − 26.0

P3 0.09 0.05 0.13 0.07 0.05 0.01 0.022 0.006 0.021 0.011 6.4 − 44.3

P4 0.07 0.04 0.10 0.06 0.05 0.03 0.025 0.014 0.024 0.015 3.1 − 4.4

P5 0.06 0.05 0.12 0.07 0.02 0.04 0.010 0.016 0.011 0.018 − 7.2 − 11.0

P6 0.10 0.06 0.15 0.10 0.04 0.02 0.021 0.012 0.020 0.014 7.0 − 13.6

Mean ± SD 0.08
 ± 0.02

0.05
 ± 0.01

0.11
 ± 0.03

0.07
 ± 0.02

0.04
 ± 0.01

0.03
 ± 0.01

0.020
 ± 0.006

0.012
 ± 0.004

0.019
 ± 0.005

0.014
 ± 0.003

1.9
 ± 5.3

− 17.3
 ± 15.4
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Fig. 5 a Illustration of axial parameter maps of K1(ml/g/min ), k2(1/min) , k3(1/min) , and Ki ( ml/g/min ) from Participant 5 produced using the 24-min 
short imaging window. b Map of Ki ( ml/g/min ) obtained using Patlak analysis of validation window data (0–36 min). c and d, respectively, 
depict plots of regional mean Ki values and voxel-wise Ki values determined using the 2TCM for short imaging window data and Patlak 
analysis for validation imaging window data in the six participants (P1–P6). c The brain Ki maps were segmented into 14 primary brain regions 
including the caudate, cerebellum, anterior cingulate, posterior cingulate, frontal, hippocampus, insula, putamen, occipital, parietal, lingual, 
midtemporal, medial temporal, thalamus and white matter, available in the MNI AAL atlas. Ki values were averaged over these ROIs. d Voxel-wise 
scatter plot. The Pearson correlation coefficient ( r  ) was calculated between the Ki estimated from the short imaging and validation windows

Table 4 Kinetic parameters estimates from 14 ROIs, gray and white matter and whole brain

2TCM (24 min short window) Patlak (validation 
window) Ki(ml/g/min)

Relative error (%) in Ki (short window 
against validation window)

Region K1(ml/g/min) k2(1/min) k3(1/min) Ki(ml/g/min)

Caudate 0.07 ± 0.02 0.11 ± 0.04 0.04 ± 0.02 0.020 ± 0.007 0.020 ± 0.006 0.5 ± 3.8

Cerebellum 0.10 ± 0.04 0.16 ± 0.07 0.04 ± 0.02 0.018 ± 0.007 0.017 ± 0.005 3.3 ± 8.5

Cingulum Ant 0.08 ± 0.03 0.12 ± 0.04 0.05 ± 0.02 0.025 ± 0.008 0.023 ± 0.006 7.2 ± 4.2

Cingulum Post 0.08 ± 0.03 0.12 ± 0.05 0.05 ± 0.02 0.021 ± 0.009 0.021 ± 0.008 1.3 ± 2.4

Hippocampus 0.08 ± 0.02 0.12 ± 0.04 0.04 ± 0.02 0.018 ± 0.007 0.018 ± 0.005 − 0.2 ± 5.3

Insula 0.08 ± 0.02 0.12 ± 0.04 0.05 ± 0.02 0.024 ± 0.007 0.022 ± 0.005 6.9 ± 3.6

Putamen 0.08 ± 0.02 0.12 ± 0.04 0.05 ± 0.01 0.023 ± 0.007 0.022 ± 0.005 8.0 ± 4.6

Occipital 0.08 ± 0.03 0.12 ± 0.04 0.05 ± 0.02 0.023 ± 0.008 0.023 ± 0.006 1.3 ± 4.1

Parietal 0.08 ± 0.02 0.1 ± 0.03 0.05 ± 0.02 0.024 ± 0.007 0.024 ± 0.006 2.0 ± 4.0

Lingual 0.09 ± 0.03 0.13 ± 0.05 0.05 ± 0.02 0.024 ± 0.007 0.023 ± 0.006 5.3 ± 3.3

Temporal Mid 0.08 ± 0.02 0.11 ± 0.04 0.05 ± 0.02 0.022 ± 0.008 0.022 ± 0.006 2.0 ± 3.6

Amygdala 0.08 ± 0.03 0.12 ± 0.06 0.04 ± 0.02 0.020 ± 0.008 0.020 ± 0.007 0.2 ± 4.5

Thalamus 0.08 ± 0.02 0.11 ± 0.04 0.05 ± 0.01 0.021 ± 0.006 0.020 ± 0.005 6.3 ± 4.2

White matter 0.05 ± 0.01 0.07 ± 0.02 0.03 ± 0.01 0.012 ± 0.004 0.014 ± 0.003 − 17.3 ± 15.4

Gray Matter 0.08 ± 0.03 0.11 ± 0.04 0.04 ± 0.02 0.021 ± 0.008 0.021 ± 0.006 2.0 ± 5.0

Whole Brain (mean) 0.08 ± 0.02 0.12 ± 0.04 0.04 ± 0.02 0.021 ± 0.007 0.021 ± 0.006 1.9 ± 5.1
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were in line with those expected for different regions in 
the brain [67, 68]. We observed disparities in mean val-
ues compared to published studies that employed high-
resolution and high-sensitivity systems [40, 56, 70]. These 
variations are likely due to the lower spatial resolution 
scanner, reduced radiotracer dosages, and smoothing 
used in our study.

We also found a strong correlation between the voxel-
wise Ki values determined using parameter estimates 
from the 2TCM in the short imaging window and val-
ues obtained by Patlak analysis in the validation window 
( r > 0.95 ). In general, the stability and accuracy of Ki 
estimates were greater in gray matter than in white mat-
ter. The larger variability in Ki in white matter may relate 
to the effects of a higher noise in low activity regions on 
parameter estimates using the 2TCM [67].

Previous studies have reported that Ki estimates from 
the Patlak analysis and 2TCM are highly correlated 
but with biases related to the time from which pseudo-
equilibrium is assumed for Patlak analysis [71]. In our 
study, Patlak analysis was performed using the 36-min 
data acquisition after the first injection in the valida-
tion window. This is comparable to the ~ 40-min imaging 
time window used in a previous study, which consisted 
of 6 min at the cardiac bed position followed by dynamic 
scanning of the whole-body [59].

Short window dynamic PET acquisitions
Double imaging window dynamic PET acquisitions 
have been previously proposed in which an initial 
10- to 15-min scan is followed by 40-min rest before 
a 5-min scan with a total scan time of around 1 h [53–
55]. Viswanath et  al. evaluated two protocols using 
18F-FDG and a long axial field-of-view PET scanner 
[54] and found that an early imaging window (0 to 
10–15 min) followed by a scan at 60–65 min led to less 
than 10% bias in estimates of Ki and K1 . In our study 
estimation of kinetic parameters using an early (0 to 12 
min) and a late (57 to 60 min) window achieved an R2 
of 0.91 but  R2 decreased to 0.51 when the late window 
was omitted [52, 72].

Despite a reduction in acquisition time, previously 
proposed double imaging window methods are not 
clinically feasible because the participant is required 
to have two separate PET and CT scans, necessitating 
PET image co-registration. This motivated us to com-
bine the two key imaging windows into one dynamic 
PET data acquisition, by appending early time point 
images after late time point images (see Fig.  1). An 
overall imaging session of around 24 min and three 
individual tracer injections were required to enable 
image-derived estimates of the AIF.

Arterial input function estimation
Our PET protocol is designed to allow images of the 
heart to be used for noninvasive estimation of the AIF 
in standard field of view scanners by moving the scan-
ner bed. This approach is clinically feasible, and enables 
K1 , k2 , k3 and Ki to be mapped. Previous approaches 
which derive the AIF from a region of interest over the 
left ventricle using a ~ 6-min acquisition over the chest 
followed by dynamic scanning of the whole-body using 
multi-bed passes including chest passes are sufficient 
for Patlak analysis [59] but the first 6 min of brain tissue 
TACs are required for accurate estimation of K1 , k2 , and 
k3 . Our triple injection protocol allows accurate left ven-
tricle derived AIF estimation from 9-min dynamic PET 
data acquired over heart (red area in Fig. 4a). The 3 min 
of dynamic images over the heart provide the AIF ‘tail’ 
from the first injection and the last 6 min, acquired after 
the second injection, captures the initial part of the AIF 
including its peak. Segments of the tissue TAC between 
0 and 12 min and 57–60 min predicted by simulations 
to be important for accurate parameter estimation were 
appended to the 9-min chest acquisitions, resulting in a 
24-min acquisition incorporating bed movement. The 
short imaging window PET protocol was able to gener-
ate K1 , k2 and k3 estimates as well as Ki estimates which 
compared well against Ki obtained using Patlak analysis 
of data from the validation window.

Wu et al. recently described a double injection protocol 
using a total body PET (uEXPLORER system). The proto-
col included a tracer injection at the beginning of experi-
ment and a single imaging window between 50 and 60 
min, during which a second injection was administered 
at 56 min [56]. A combination of population-based and 
model-based assumptions were employed in AIF esti-
mation. Wu et  al.’s method [56] only yields Ki estimates 
with the estimation error being less than 2%, compara-
ble to our error. Our protocol was designed for stand-
ard field of view scanners which currently have a much 
larger installed base than long field-of-view (total body) 
scanners.

In our study, dividing the standard radiotracer dos-
age into three injections may have compromised image 
quality with shorter frame durations. We opted for a 
20-s frame duration due to concerns about noise levels 
in images with shorter frame durations. The 20-s frames 
might not accurately capture the AIF peak, potentially 
introducing bias. Future studies could evaluate dosage 
adjustments and recently launched high-sensitivity scan-
ners [40, 45, 46, 56] may also enable shorter frame inter-
vals to more accurately capture the AIF peak.

Although there is potential for variability in injection 
rate due to manual administration of the three doses, 
diligent efforts were made to ensure consistency in the 
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injection profiles. Implementing an injector system in 
future studies could enhance precision and reduce this 
variability.

We chose a third-order Feng model over the fourth-
order Feng model [57] due to our three-injection equa-
tion’s complexity, which involved convolving three 
distinct impulse functions with the Feng model. Fitting 
the convolved fourth-order model to the short window 
AIF measurement was not feasible without extensive 
manual adjustment and strict parameter constraints. 
Hence, we opted to use the third-order model which did 
not require these manipulations. Feng et al. [57] explored 
both third- and fourth-order models and found no signif-
icant disparity in kinetic parameter estimation, especially 
with noisy data. Given our study’s short AIF measure-
ments and lower radiotracer doses, which increased 
noise levels, we considered the third-order Feng model to 
be a reasonable choice.

Although our protocol was validated for use in brain 
imaging, there is no reason why this method cannot be 
adapted for parametric imaging of other body parts and 
organs. The requirement for three separate injections is 
only likely to be a minor limitation because the same can-
nula is used. However, clinical acceptance and practical 
utility of the protocol remains to be evaluated. In addi-
tion, the effects of varying the three injected doses should 
be evaluated as this may be a consideration in clinical 
implementation.

Future directions
Our study only involved healthy participants and future 
work should investigate applications in a clinical cohort, 
such as oncology patients, and evaluate patient accept-
ance and impact on imaging throughput. A similar proto-
col may also be suitable for parametric imaging of other 
tracers.

Conclusion
Our triple injection protocol enables parametric 18F-FDG 
imaging, with noninvasive estimation of the AIF, from a 
single 24-min imaging window using a standard field of 
view PET scanner.
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