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protein inhibition tracers in enhancing thyroid 
health assessment
Yuhua Wang1,2, Ye Liu1,2, Huixia Geng1,2 and Wanchun Zhang1,2*   

Abstract 

Background The diagnostic accuracy of  [18F]-fluorodeoxyglucose  ([18F]-FDG) positron emission tomography imaging 
in accurately identifying thyroid lesions is limited, primarily due to the physiological uptake of normal head and neck 
tissues and inflammatory uptake in lymph nodes. Since fibroblast activating protein is highly expressed in tumors 
and largely unexpressed in normal tissues, quinoline-based fibroblast activating protein inhibitors (FAPI) have 
emerged as promising tools in the diagnosis of cancer and other medical conditions. Several studies have reported 
on the feasibility and value of FAPI in thyroid cancer.

Main body In this narrative review, we summarize the current literature on state-of-the-art FAPI positron emission 
tomography imaging for thyroid cancer and fibroblast activating protein-targeted radionuclide therapy. We provide 
an overview of FAPI uptake in normal thyroid tissue, thyroid cancer and its metastases. Additionally, we highlight 
the difference between FAPI uptake and  [18F]-FDG uptake in thyroid lesions. Furthermore, we discuss the therapeutic 
value of FAPI in iodine-refractory thyroid cancer.

Conclusion The utilization of fibroblast activating protein inhibitors in thyroid cancer holds significant promise, offer-
ing clinicians valuable insights for more precise diagnose choices and treatments strategies in the future.

Keywords Fibroblast activation protein, Fibroblast activation protein inhibitors, Thyroid cancer, Positron emission 
tomography

Background
Cancer development occurs within complex environ-
ments, encompassing both tumor cells and the surround-
ing stroma. The "seed and soil" theory, proposed in 1889, 

laid the foundation for understanding tumor metastasis 
evolving into the key theoretical framework known as 
the tumor microenvironment (TME) [1]. The significance 
of the supporting stroma becomes apparent when the 
tumor mass exceeds 1–2 mm, constituting a substantial 
portion of the lesion, often surpassinging the tumor’s 
own volume [2]. Central to the TME, cancer-associated 
fibroblasts (CAFs) play a key role in facilitating can-
cer cell proliferation, augmenting both proliferative and 
migratory capabilities, and metastatic dissemination. 
Notably, fibroblast activating protein (FAP), a specific 
marker for CAFs, exhibits elevated expression within 
fibroblasts across numerous solid malignant tumors [3, 
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4]. Within tumor tissues, FAP engages signaling path-
ways that govern tumor cell invasion and metastasis, 
stimulating the proliferation and malignant transfor-
mation of neighboring epithelial cells, inducing tumor 
immune escape, participating in neovascularization, etc. 
Overexpression of FAP in solid malignant tumors corre-
lates with poor overall survival and lymph node metas-
tasis [5]. Leveraging the distinct expression patterns of 
FAP between normal tissue and tumors, FAP inhibitors 
(FAPI) with high affinity for FAP have emerged as radio-
ligands for imaging and therapy [6]. The biodistribution 
of FAPI PET/CT imaging within cancer closely mir-
rors FAP expression within tissues [4]. Clinically reli-
able diagnosis of primary tumors, metastatic lesions, and 
involved lymph nodes is critical for formulating effective 
treatment strategies, encompassing tumor staging and 
therapeutic choices. Notably, FAP expression strongly 
correlates with tumor size, lymph node metastasis, and 
TNM classification [7–9]. Currently, FAPI shows utility 
in the diagnosis of diverse cancers including lung, pan-
creatic, colon, and liver. Moreover, it is being employed 
in salvage therapy for advanced diseases due to its high 
contrast attributes. In the context of thyroid papillary 
carcinoma, which exhibits fibrosis [10], mesenchymal 
stem cells highly express FAP [11]. This expression cor-
relates with TNM stage and lymph node metastasis [7]. 
Thus, radionuclide-labeled FAPI also finds applications 
in differentiated thyroid cancer, especially in cases of 
iodine-refractory thyroid cancer. This review summarizes 
the application of cutting-edge FAPI-PET imaging tech-
niques for diagnosing thyroid cancer and its potential in 
FAP-targeted radionuclide therapy.

Main text
FAPI uptake in the normal thyroid
Immunohistochemical studies have demonstrated posi-
tive expression of FAP in papillary thyroid carcinoma 
(PTC), while remaining absent in the follicular epi-
thelium and stromal cells of the normal thyroid [7–9]. 
According to these findings, the thyroid should not 
be visibly detected on FAPI imaging, however, a level 
of controversy persists within the literature regarding 
this assertion. Notably, the physiological biodistribu-
tion of  [177Lu]-FAPI signifies that FAPI is not involved 
in thyroid glands [12]. In a study detailing  [68Ga]-FAPI 
uptake in healthy tissues of cancer patients, the thyroid 
gland exhibited low uptake of  [68Ga]-FAPI, character-
ized by a median standardized uptake value (SUVmax) of 
2.02[13]. This is consistent with the findings of another 
study [14] where the median SUVmax for  [68Ga]-FAPI 
uptake within the thyroid gland of patients with diverse 
solid tumors was 1.36 ± 0.26. Conversely, an investigation 
of the physiological tracer uptake of  [18F]-FAPI revealed 

evident uptake within the thyroid [6]. The average SUV-
max for the thyroid in this study reached 5.7 ± 3.6, sur-
passing prior observations. It is noteworthy that among 
the study participants, only seven out of twenty under-
went ultrasound and thyroid function examinations. 
Further examination of  [99mTc]-FAPI SPECT/CT imag-
ing showed mild uptake within the thyroid gland, which 
was comparatively lower than in other organs. Impor-
tantly, this uptake demonstrated a decreasing trend as 
the drug injection time was extended [15]. Dynamic 
PET/CT scans involving  [68Ga]-FAPI have also shown a 
higher SUVmean for the thyroid in comparison to most 
other organs, yet this value gradually declined over time 
[16]. Additionally, a gender-based difference was noted in 
 [68Ga]-FAPI uptake, with males exhibiting higher uptake 
during the initial time points when compared to females 
[16]. Existing studies have suggested distinct biological 
distribution of  [18F]-FAPI-42 and  [68Ga]-FAPI-04 within 
normal organs. This variation could potentially be related 
to the different lipophilicities of the chelating agents used 
in these compounds [17]. In summary, the inconsisten-
cies observed in FAPI uptake across thyroid tissues in the 
aforementioned studies may stem from multiple factors, 
including differences in tracers, gender-specific varia-
tions and disparities in imaging time.

FAPI uptake in thyroid cancer and metastatic lesions
Fibrosis is a characteristic feature of papillary thyroid 
carcinoma. Notably, papillary mesenchymal stem cells 
within this context exhibit elevated FAP expression com-
pared to their non-carcinogenic thyroid mesenchymal 
stem cell counterparts [11]. Several studies have sug-
gested the presence of FAPI uptake within thyroid cancer, 
with a median SUVmax of 3.3[18]. This aligns with the 
average uptake of  [68Ga]-FAPI in DTC in another study 
(SUVmax < 6) [19]. Importantly, the expression of FAP 
demonstrates good predictive value for external thyroid 
invasion, BRAF mutation, and lymph node metastasis 
[20]. In light of these findings, a pertinent question arises: 
can FAPI imaging serve as a predictive tool for disease 
prognosis and assist in guiding the management of thy-
roid cancer?

Following surgery, radioactive iodine therapy, and thy-
roid hormone suppression, the majority of differentiated 
thyroid cancer (DTC) patients experience successful out-
comes, with over 95% achieving a 20-year survival rate 
[21]. However, approximately 20% of cases encounter 
local recurrence, while 10% face distant metastasis [22]. 
Among these scenarios, around two-thirds of the cases 
transition into radioiodine-refractory thyroid cancer 
(RR-DTC) during subsequent follow-up, characterized 
by a loss of iodine uptake capacity, rapid disease progres-
sion, and a 10-year survival rate of less than 10% [22, 23]. 
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FAP expression is also observable within the majority of 
metastatic and RR-DTC lesions [24, 25]. The extent of 
FAP expression in the surrounding matrix of these meta-
static, recurrent thyroid cancer, and RR-DTC cases corre-
lates with the degree of FAPI uptake. Lesions exhibiting a 
high level of FAPI uptake show an accelerated short-term 
growth rate [25].

Several studies have applied FAPI imaging to the explo-
ration of thyroid metastases and have demonstrated a 
high detection rate [25, 26]. When focusing on recur-
rence and metastases, local recurrence exhibits the 
highest degree of FAPI uptake, surpassing that of lymph 
nodes, bones, pleura, and the lungs [27]. Furthermore, 
the SUVmax within positive lesions shows a positive 
correlation with lesion size [27]. FAPI PET/CT imag-
ing offers distinct advantages over FDG in the context 
of TNM staging for nasopharyngeal carcinoma [28, 29]. 
Therefore, FAPI PET/CT imaging might hold potential in 
identifying the TNM stage of thyroid cancer.

Comparing FAPI and  [18F]‑FDG uptake
The early detection of cervical lymph node metastases is 
crucial in the management of DTC. When the tumor is 
situated in the upper third of the thyroid lobe or if the 
count of central lymph node metastases exceeds three, 
vigilance must extend to the lateral compartment due to 
its susceptibility to lateral lymph node metastasis [30]. 
Notably,  [18F]-fluorodeoxyglucose  ([18F]-FDG) PET/CT 
imaging often encounters challenges in accurately iden-
tifying lesions; this is primarily attributed to the physi-
ological uptake of normal head and neck tissues and the 
inflammatory uptake of lymph nodes [17]. Considering 
that FAPI is a novel PET tracer in cancer imaging, numer-
ous studies have undertaken comparisons between FAPI 
and FDG, with several directly comparing the two radio-
active tracers in the contest of thyroid cancer. In delin-
eating neck lesions, the sensitivity of  [68Ga]-FAPI PET/
CT was 83%, surpassing the 65% achieved by  [18F]-FDG 
[24]. The positive predictive value (PPV) of  [68Ga]-FAPI 
for diagnosing lymph node metastases was 86.49, which 
outperformed the 68.09 recorded for  [18F]-FDG [31]. A 
comparison between  [68Ga]-FAPI and  [18F]-FDG imag-
ing in thyroid postoperative patients revealed that FAPI 
exhibited a higher count of displayed lesions compared to 
FDG. Additionally, the newly identified lesions were pri-
marily cervical lymph nodes, boasting a sensitivity of 83% 
[24]. Another study [32] even identified inguinal lymph 
node metastasis using FAPI imaging, which eluded 
detection by  [18F]-FDG imaging. Furthermore, the SUV-
max of  [68Ga]-FAPI in DTC metastatic lateral cervi-
cal lymph nodes of DTC surpassed that of  [18F]-FDG 
[24]. This trend was echoed in the context of lymphatic 
lesions, where the SUVmax of  [18F]-FAPI exceeded that 

of  [18F]-FDG [27]. However, a separate study reported 
no significant difference in SUVmax values for lymph 
node metastases between  [68Ga]-FAPI and  [18F]-FDG 
[31]. Despite variations in SUVmax values reported by 
these studies, the diagnostic efficiency of FAPI imaging 
remains robust due to its favorable target-background 
profile.

Research indicates that  [68Ga]-FAPI imaging is not infe-
rior to  [18F]-FDG when applied to patients with recurrent 
papillary thyroid carcinoma who were previously treated 
with radioiodine [33]. For patients experiencing hema-
tobiochemical recurrence in DTC, the SUVmax values 
of recurrent lesions detected by  [68Ga]-FAPI outperform 
those of  [18F]-FDG, and this difference is statistically 
significant [33]. A similar trend was also noted in cases 
of local recurrence lesions in DTC with associated bio-
chemical elevation, as assessed through both  [18F]-FAPI 
and  [18F]-FDG [27]. Therefore, FAPI imaging can prove 
useful for DTC patients with elevated Tg or TgAb levels.

In cases of distant metastases, lungs and bones are 
common sites of metastasis in DTC patients. The PPV 
of  [68Ga]-FAPI in diagnosing bone metastases was found 
to be significantly higher compared to  [18F]-FDG [31]. 
This study revealed that the difference in SUVmax val-
ues for bone metastases was markedly higher when 
measured with  [68Ga]-FAPI than with  [18F]-FDG. How-
ever, in terms of lung metastases, this difference was 
not significant [31]. Nevertheless, another study [24] 
reported a contrasting conclusion, asserting that the 
 [68Ga]-FAPI-derived SUVmax was significantly higher in 
lung metastases than one derived from  [18F]-FDG, but 
with no significant difference observed in bone metasta-
ses. Adding to the complexity, another study [27] showed 
that the median SUVmax and median TBR of lung lesions 
were lower when measured with  [18F]-FAPI in compari-
son to  [18F]-FDG. Given the divergent findings reported 
in these studies, it is evident that further research should 
be conducted to attain a clearer understanding of these 
variations and their underlying mechanisms.

Brain metastasis stemming from DTC is associated 
with a poor prognosis, with an incidence of approxi-
mately 1.09% and an increasing trend in recent years [34]. 
The application of  [18F]-FDG in brain metastasis cases is 
hindered by the elevated brain background activity. Due 
to its higher image contrast,  [68Ga]-FAPI has the capa-
bility to identify brain lesions that may go unnoticed in 
 [18F]-FDG imaging [29, 32]. The heightened sensitivity 
of FAPI imaging in comparison to  [18F]-FDG presents a 
promising attribute for evaluating brain metastases.

Research findings highlight that FAPI imaging has 
the potential to identify more thyroid cancer-associated 
metastases than  [18F]-FDG [32]. Moreover, it can be 
utilized in conjunction with  [18F]-FDG, leading to the 
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enhanced detection of metastatic foci [33]. A notewor-
thy case study involving a DTC patient following radi-
oiodine therapy demonstrated negative uptake in liver 
and bone metastases through  [18F]-FDG imaging, while 
 [68Ga]-FAPI imaging showed mild uptake in the same 
regions [35]. This observation suggests that  [68Ga]-FAPI 
may offer valuable insights for the restaging of metastatic 
DTC cases. Of note, FAPI imaging primarily illuminates 
the tumor stroma, while FDG imaging visualizes tumor 
cell glycolysis [2]. Therefore, FAPI imaging presents sub-
stantial advantages over FDG imaging in detecting thy-
roid cancer metastases.

FAPI in other thyroid diseases
It is important to note that FAP expression can be 
increased not only within malignant lesions but also in 
non-cancerous pathologies. Focal thyroid uptake of FAPI 
can also signify benign conditions. For instance, the pres-
ence of thyroiditis, can lead to FAP expression in fibro-
blasts surrounding clusters of lymphocyte infiltration 
[36]. Furthermore, diffuse thyroid uptake of FAPI is com-
monly associated with thyroiditis. Liu et al. [14] reported 
diffuse  [68Ga]-FAPI uptake in the thyroid among 39 
out of 815 (4.8%) patients, and this uptake was nearly 
always associated with thyroiditis. The median SUVmax 
was 4.15[14]. Another study reported similar levels of 
 [68Ga]-FAPI SUVmax in thyroiditis cases [37]. Immune-
related thyroiditis (irT) emerges in tumor patients after 
treatment with immune checkpoint inhibitors (ICIs). 
This condition is characterized by early onset thyrotoxi-
cosis followed by a rapid progression to hypothyroidism. 
This becomes especially rapid in cases where a combina-
tion of anti-CTLA-4 and anti-PD1 therapy is employed 
[38]. When these patients undergo  [68Ga]-FAPI PET/
CT imaging, the thyroid gland exhibits diffuse uptake 
[14], with the highest SUVmax reported in the literature 
reaching 23.5 [39]. Importantly, the thyroid uptake tends 
to be relatively low when the PET/CT scan interval is 
shorter after immunosuppressive treatment [14].

In addition to thyroiditis, it is worth highlighting 
that thyroid lymphoma can also show diffuse abnor-
mal uptake of  [68Ga]-FAPI [40]. Moreover, benign thy-
roid lesions exhibiting increased  [68Ga]-FAPI uptake are 
common. For instance, in one study, the median SUV-
max for such lesions was 3.64 [18]. In a case of thyroid 
nodular goiter characterized by fibrosis and calcification, 
 [68Ga]-FAPI uptake was observed with a SUVmax of 7.7 
and a TBR of 5.5[41]. Even follicular thyroid adenoma 
can exhibit elevated  [68Ga]-FAPI uptake [42], potentially 
attributed to fibrous tissue hyperplasia within the tumor. 
Consequently, it is imperative to exercise caution and 
consider these factors when interpreting FAPI uptake in 
the thyroid.

Correlation of FAPI with genetic and serological indicators
Numerous studies have explored the correlation between 
 [68Ga]-FAPI imaging and serological markers. The degree 
of  [68Ga]-FAPI uptake appears to lack a connection with 
the severity of thyroiditis, levels of TSH, and TPOAb [14]. 
Fu et al. [43] observed that FAPI uptake did not signifi-
cantly vary among patients with various Tg levels. This 
led them to speculate that FAP expression might not be 
closely associated with Tg levels. Likewise, another study 
showed that serum TSH, Tg and TgAb levels in patients 
did not markedly impact the uptake of  [18F]-FAPI in 
thyroid cancer lesions [27]. However, the relationship 
between FAPI imaging and Tg levels remains a point of 
contention. Chen et  al. [25] reported that patients with 
intense FAPI uptake lesions exhibited elevated Tg levels, 
while those with lower uptake of  [68Ga]-FAPI displayed 
lower Tg levels. The positivity rate of  [68Ga]-FAPI seemed 
to rise in tandem with increasing Tg levels, reaching 
100% when Tg exceeded 300 [33]. Moreover, the TBR of 
 [18F]-FAPI appeared to vary across different biomarker 
levels in one study [27]. Hence, the interplay between 
FAP expression and Tg or TgAb levels requires further 
exploration.

In addition to serological markers, gene expression 
appears to influence FAPI uptake. It was reported [44] 
that the prevalence of the BRAFV600E mutation is signif-
icantly associated with elevated FAP expression in human 
PTCs. Specifically, PTCs carrying the BRAF mutation 
showed higher FAP expression both within tumor cells 
and in the surrounding stromal cells. Consequently, FAPI 
uptake was notably higher in the BRAFV600E mutation 
group when compared to the wild-type group [27].

In conclusion, it is evident that both blood biochem-
istry and gene expression can potentially influence FAPI 
imaging outcomes.

Therapeutic effect of FAPI on thyroid cancer
Radioiodine treatment is the mainstay adjuvant approach 
in the management of intermediate and high-risk dif-
ferentiated thyroid cancer. However, as thyroid cancer 
advances, a decrease in sodium iodine transporters and 
an upregulation of glucose transporter-1 (GLUT1) often 
lead to the development of RR-DTC [45]. In response 
to this challenge, multikinase inhibitors (MKIs) have 
emerged as therapeutic options for such patients. Nev-
ertheless, a subset of individuals might not experience 
effective responses to MKIs, and a considerable propor-
tion of them encounter treatment-related adverse events 
(AEs).

Thanks to its high-contrast, FAP is recognized as an 
appealing target for radionuclide therapy [46, 47]. The 
use of FAPI-based radio-ligands to target the TME has 
been explored in certain patients with advanced cancer, 
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displaying promising feasibility [48]. FAP expression has 
been observed in RR-DTC lesions [24, 25], and FAPI 
imaging has shown concentrated radioactive uptake 
within these lesions [25]. Based on these observations, 
 [177Lu]-FAPI has recently been utilized in treating RR-
DTC [12, 49].  [177Lu]-FAPI whole-body scintigraphy has 
revealed robust radiotracer uptake within metastatic 
DTC lesions post-therapy. Notably, a patient achieved 
stable disease, coupled with a reduction in analgesic 
scores [49]. A significant reduction in Tg levels among 15 
RR-DTC patients was also observed following treatment, 
and none experienced severe grade III/IV hematological, 
renal, or hepatotoxicity adverse events [12]. These find-
ings suggest that  [177Lu]-FAPI therapy holds potential as 
a valid treatment option for advanced DTC patients.

Conclusions
The role of  [18F]-FDG imaging in the diagnosis and pre-
operative staging of thyroid cancer has been limited. Cur-
rent literature suggests that FAPI labeled with  [68Ga] or 
 [18F] offers superior diagnostic value for thyroid cancer 
and its metastases compared to  [18F]-FDG. As a result, 
there is potential for the application of FAPI imaging in 
the preoperative staging of thyroid cancer. Moreover, 
the substantial FAP expression in thyroid metastatic 
lesions suggests that FAP is a potential therapeutic tar-
get. In this context, the use of  [177Lu]-FAPI holds promise 
to emerge as a significant treatment avenue for patients 
with RR-DTC.
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