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Abstract 

Background This study aimed to assess whether a combined model incorporating radiomic and depth features 
extracted from PET/CT can predict disease-free survival (DFS) in patients who failed to achieve pathologic complete 
response (pCR) after neoadjuvant chemotherapy.

Results This study retrospectively included one hundred and five non-pCR patients. After a median follow-up 
of 71 months, 15 and 7 patients experienced recurrence and death, respectively. The primary tumor volume under-
went feature extraction, yielding a total of 3644 radiomic features and 4096 depth features. The modeling procedure 
employed Cox regression for feature selection and utilized Cox proportional-hazards models to make predictions 
on DFS. Time-dependent receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) 
were utilized to evaluate and compare the predictive performance of different models. 2 clinical features (RCB, cT), 4 
radiomic features, and 7 depth features were significant predictors of DFS and were included to develop models. The 
integrated model incorporating RCB, cT, and radiomic and depth features extracted from PET/CT images exhibited 
the highest accuracy for predicting 5-year DFS in the training (AUC 0.943) and the validation cohort (AUC 0.938).

Conclusion The integrated model combining radiomic and depth features extracted from PET/CT images can 
accurately predict 5-year DFS in non-pCR patients. It can help identify patients with a high risk of recurrence 
and strengthen adjuvant therapy to improve survival.
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Introduction
Breast cancer is the most commonly diagnosed cancer 
in women, posing a significant threat to their health and 
survival [1]. Locally advanced breast cancer is conven-
tionally treated with neoadjuvant chemotherapy (NAC) 
[2]. Pathological complete response (pCR) after NAC is 
associated with improved disease-free survival (DFS) and 
overall survival (OS) outcomes [3–7]. For patients who 
do not achieve pCR, accurate prognostic assessment is 
crucial in determining appropriate treatment escalation 
or de-escalation, minimizing overtreatment for those 
with favorable prognosis and intensifying adjuvant ther-
apy for those with an unfavorable prognosis to enhance 
survival. Known prognostic factors for breast cancer 
include age, axillary nodal status, tumor size, pathology, 
grade, and peritumoral lymphatic and vascular invasion 
[8]. Residual cancer burden (RCB) scores are commonly 
used as an independent predictor of survival. A higher 
RCB grade indicates a poorer prognosis [9]. The RCB 
scoring system focuses solely on the pathological fac-
tors related to tumors and lymph nodes after NAC. To 
enhance prognostic accuracy, the combination of multi-
ple prognostic indicators has been advocated, as shown 
in recent studies [10].

The National Comprehensive Cancer Network 
(NCCN) Task Force recommends 18F-2-deoxy-2-fluoro-
d-glucose (FDG) positron emission tomography/com-
puted tomography (PET/CT) assessment for patients 
with locally advanced tumors that have higher risks of 
distant metastases due to nodal involvement [11]. PET/
CT has distinct advantages over traditional imaging tech-
niques because it provides information about the tumor’s 
metabolic and biological aspects characteristics and the 
patient’s prognosis [12, 13]. Notably, PET texture analy-
sis has been instrumental in providing critical prognostic 
information for solid tumors [14, 15].

Radiomics is a nascent area of research that transforms 
medical imaging features into quantifiable data used in 
decision support systems [16]. By improving knowledge 
of tumor behavior, radiomics holds promise to guide 
patient management at the bedside [17], thus bringing 
personalized medicine closer to reality [18]. Moreover, 
radiomics provides a comprehensive and non-invasive 
assessment of tumors, eliminating the need for inva-
sive biopsies and reducing the potential for sampling 
errors [19]. Deep Learning (DL) is a method that directly 
extracts characteristics from images to produce faster 
and more precise results when compared to classical 
Machine Learning. DL models are capable of acquiring 
hierarchical characteristics from the image data through 
multiple layers, which operate in a depth-based man-
ner for feature acquisition [20]. In recent research stud-
ies [21–23], DL has exhibited favorable performance 

concerning the detection and diagnosis of cancer. Nev-
ertheless, the utilization of PET/CT radiomics and deep 
features for prognosis prediction in non-pCR breast can-
cer patients remains underexplored.

Hence, our study aimed to develop an integrated 
model, encompassing clinicopathologic factors, radiomic 
features, and depth information from baseline PET/CT 
scans. This combined model seeks to provide accurate 
long-term survival predictions for non-pCR patients, 
identifying high-risk populations and informing future 
treatment decisions.

Methods and materials
Patients
This retrospective study included 105 newly diagnosed 
stage II-III breast cancer patients who underwent PET/
CT examination at Guangdong Provincial People’s Hos-
pital between January 2009 and December 2014. All 
patients received surgical treatment after completing 
NAC. The present study obtained approval from the 
Institutional Review Board of Guangdong Provincial Peo-
ple’s Hospital. This study was performed following the 
Declaration of Helsinki’s principles and requirements. 
As this was a retrospective study, formal consent was not 
obtained.

Eligible patients were female, aged 18 years and above, 
with histologically confirmed invasive breast cancer and 
clinically staged as T2-4N0-3M0 or T1cN1-3M0. Addi-
tionally, patients must have undergone PET/CT before 
receiving NAC and were confirmed as non-pCR after 
curative surgery following NAC completion. Patients 
who underwent direct surgical treatment, exhibited dis-
tant metastases, suffered from bilateral breast cancers, or 
had a previous history of breast cancer were excluded.

Tissue type, nuclear grading, hormone receptor expres-
sion, proliferative activity (Ki67), and human epidermal 
growth factor receptor 2 (HER2) status were recorded, 
and patients were classified based on St. Gallen molecu-
lar subtypes [24]. Immunohistochemical (IHC) markers 
for estrogen receptor (ER), progesterone receptor (PR), 
and HER2 were used to categorize patients into the fol-
lowing three molecular subtypes: luminal (ER-positive 
and/or PR-positive and HER2-negative), HER2-enriched 
(HER2-positive regardless of hormone receptor sta-
tus) and triple-negative (ER-negative, PR-negative, and 
HER2-negative).

Breast cancer diagnosis and neoadjuvant chemotherapy 
regimen
The IHC results were judged using specific criteria. 
ER and PR positivity were defined as tumor cell nuclei 
with ≥ 1%, while those with < 1% were considered nega-
tive. HER2-positivity was defined as HER2 (+++), 



Page 3 of 11Zheng et al. EJNMMI Research          (2023) 13:105  

whereas HER2 (−) and HER2 (+) were considered 
HER2-negative. HER2 (++) required examination using 
fluorescence in situ hybridization (FISH) for HER2 gene 
expansion to enhance its detection. Gene amplification 
determined HER2-positive status, otherwise, it was con-
sidered negative. IHC results and non-pCR status were 
determined by our pathologists with 10  years of work 
experience. All NAC regimens were administered accord-
ing to NCCN recommendation guidelines. Patients with 
HER2-positivity also received HER2-targeted therapy. 
Surgical excision was performed 2–3  weeks after com-
pleting NAC.

Follow‑up evaluation
All patients were subject to postoperative follow-up 
starting from the day of their surgical intervention. Dur-
ing the five years following surgery, patients were exam-
ined every three to six months and had mammograms 
done once a year. Physical examinations and mammo-
grams were conducted regularly on the patient for up to 
a decade following their surgical intervention. CT, PET/
CT, or tissue biopsy was utilized to diagnose recurrence 
in cases where it was suspected. Recurrence was defined 
as any unambiguous evidence of the appearance of new 
cancer foci in a previously deemed disease-free patient. 
The duration of DFS was calculated by measuring the 
time from surgical intervention until the first evidence of 
cancer recurrence, death, or the latest clinical encounter 
confirming the absence of disease.

PET/CT imaging
To prepare for the scan, all patients were required to fast 
for a minimum of 6 h. Blood glucose levels must be below 
10.0 mol/L before injection and the FDG dose is 7.4 MBq 
/kg. After intravenous injection, the patient rests in a 
dark room for 60  min before undergoing a 3D PET/CT 
measurement (Biograph16, 120  keV, 50  mAs). The CT 
scan was performed initially, covering the area from the 
proximal thighs to the head. PET data were then acquired 
over the same extent, after the CT scan, at a rate of 
2–3 min per bed position. The process of analyzing PET 
and CT images that had been co-registered was executed 
utilizing a specialized workstation.

Image segmentation and preprocessing
The analysis and interpretation of the PET/CT images 
were performed by two experts in nuclear medicine. 
Using software (3D-Slicer), a large three-dimensional 
area of interest (3D-ROI) was plotted in each patient 
around the original breast lesion. The determination 
of ROI was done using a semi-automatic segmentation 
algorithm to ensure reproducibility and reliability. The 
open-source software 3DSlicer (https:// www. slicer. org) 

is widely used for volume analysis of imaging data [25]. 
Then, the two expert doctors manually adjusted the ROI 
measurement to ensure measurement reliability. If there 
was a 5% difference between the two doctors, A senior 
nuclear medicine scientist would review and determine 
ROI. The details on image pre-processing are shown in 
the Additional file 1: S4.

Feature extraction
In this study, 3644 radiomic features and 4096 depth fea-
tures were extracted from PET/CT images and ROI. We 
used PyRadiomics (https:// github. com/ Radiomics/PyRa-
diomics) to obtain radiomic features that adhere to the 
Imaging Biomarker Standardization Initiative [26]. PyRa-
diomics provides advanced computational capabilities for 
image analysis, enabling the extraction of a multitude of 
features from images through sophisticated processing 
and filtering techniques. The ResNet 101 algorithm was 
used for depth feature extraction. A detailed descrip-
tion of deep neural network to extract depth features in 
the Additional file  1: S5. To address concerns regarding 
overfitting owing to the high dimensionality of avail-
able features, a random split in a 7:3 training and vali-
dation dataset ratio was performed. The training cohort 
in this study comprised 73 patients, whereas the valida-
tion cohort had 32 patients. Feature selection and model 
construction were performed according to the training 
cohort.

Feature selection and construction of five predictive 
models
To ensure feature stability within the ROI, we randomly 
selected 30 patients and conducted two separate ROI 
segmentation procedures performed by different radiolo-
gists. Then interclass correlation coefficient (ICC) of each 
feature was calculated. We employed the U test to select 
features exhibiting significant distinctions with progno-
sis to identify prognosis-correlated features. The Boruta 
method was used to calculate each feature’s Shapley value 
and the max shadow value. When a Shapley value was 
higher than the max shadow value, the corresponding 
feature was selected for further analysis. Finally, we used 
univariate analysis and the multivariate Cox analysis with 
multiple comparison correction to reduce the amounts 
of features. Then we used the final feature sets to con-
struct models. After multivariate Cox analysis, 2 clinical, 
4 radiomic, and 7 depth features were retained. Clini-
cal features were retained to build two clinical models 
for predicting prognosis. Radiomic and deep prognosis 
models were built by using radiomic and depth features 
respectively. A combined model incorporating all avail-
able features was ultimately developed to predict progno-
sis. The procedure is summarized in Fig. 1.

https://www.slicer.org
https://github.com/
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Fig. 1 Outline of the workflow from tumor segmentation, feature extraction, selection, and model construction, evaluation
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Statistical analysis
The Mann–Whitney U test was used to compare their 
inter-group difference. Univariate and multivariate 
analysis was conducted using the Cox proportional risk 
model to estimate the association between selected fea-
tures and DFS. Hazard ratios (HR) and 95% confidence 
interval (CI) of each variable were obtained. A p < 0.05 
was considered statistically significant. Detailed informa-
tion is presented in Additional file 1: Table S1. We used 
time-dependent receiver operating characteristic (ROC) 
curves and the area under the ROC curve (AUC) to eval-
uate and compare the predictive performance of different 
models. Decision curve analysis (DCA) was employed to 
assess the strength and clinical relevance of the models.

Results
Patient and tumor characteristics
This retrospective study analyzed data from 105 female 
non-pCR breast cancer patients who underwent NAC, 
with 73 patients allocated to the training group and 32 
patients assigned to the validation group. Patients were 
diagnosed at a mean age of 47 years and followed up for 
a median of 71  months. Among the patient population, 
47 were diagnosed with clinical stage II disease, while 58 
were diagnosed with clinical III stage disease. At the time 
of the last follow-up, 15 disease relapses and 7 deaths 
occurred, while 83 patients were alive without disease 
recurrence. Clinicopathologic features, including molec-
ular subtypes, RCB score, menstrual status, and SUV, 
among other parameters, are presented in Table 1.

Feature extraction and selection for model construction
3644 radiomic features and 4096 depth features were 
extracted. To ensure the reproducibility of the features, a 
total of 1945 ineligible features with an ICC < 0.75 were 
excluded. The Mann–Whitney U test showed that 1536 
features were significantly associated with prognosis. 
Then we performed independent Boruta feature selec-
tion. The Boruta method was used to select the impor-
tant and robust features with higher Shapley values 
than the max shadow value by 1000 internals bootstrap. 
Finally, we used univariate analysis and the multivari-
ate Cox analysis to reduce the amounts of features. We 
extracted and retained 4 radiomic features and 7 depth 
features. The results of univariate analysis and the multi-
variate Cox analysis with multiple comparison correction 
are presented Additional file 1: S3.

The radiomic features constitute a diverse set of fea-
ture groups, encompassing a range of methodologies 
including first-order statistical analysis and shape-based 
analysis. Detailed descriptions of these features can be 
obtained from Additional file 1: Table S2. Based on Cox 

analysis method, 4 radiomic features (Fig.  2D) and 7 
depth features (Fig.  2E) associated with prognosis were 
ultimately selected for building the radiomics and DL 
models. Two clinical features (cT and RCB) were retained 

Table 1 Baseline characteristics of patients

ER estrogen receptor; PR progesterone receptor; HER2 human epidermal growth 
factor 2; HR hormone receptor positive; TNBC triple-negative breast cancer; RCB 
residual cancer burden

Baseline characteristics of the study population 
population (n = 105)

N (%)

Age, years

Mean 47

SUVmean 3.92 ± 2.05

SUVmax 6.25 ± 3.73

SUVmin 1.63 ± 0.69

ER status

Positive 83 (79.05%)

Negative 22 (20.95%)

PR status

Positive 88 (83.8%)

Negative 17 (16.2%)

Ki67

Positive 83 (79.05%)

Negative 22 (20.95%)

Molecular subtype

HR-positive/HER2-negative 66 (62.29%)

HER2-positive 31 (29.52%)

TNBC 8 (8.19%)

Menopausal status

Premenopausal 37 (35.24%)

Postmenopausal 68 (64.76%)

Prechemotherapy T stage

T1 12 (11.43%)

T2 56 (53.33%)

T3 19 (18.1%)

T4 18 (17.14%)

Prechemotherapy N stage

N0 21 (20%)

N1 36 (34.29%)

N2 35 (33.33%)

N3 13 (12.38%)

Prechemotherapy stage

II 47 (44.76%)

III 58 (55.24%)

Event

Yes 22 (20.95%)

No 83 (79.05%)

RCB

I 15 (14.29%)

II 48 (45.71%)

III 42 (40%)
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to construct clinical models. A combined model was also 
developed, utilizing clinical scores, radiomic scores, and 
depth scores to prognosticate non-PCR breast cancer 
patients after NAC. In Fig.  2A, the survival rates after 
3  years and 5  years are shown. The name of the final 
retained radiomic features is presented in Additional 
file 1: S6.

Predictive performance of the five models
The combined model demonstrated the highest pre-
dictive ability for breast cancer prognosis in the train-
ing cohort, with an AUC value of 0.903 and 0.943 for 
3-year and 5-year survival, respectively. AUC values 
of 0.835 and 0.884 were predicted by the DL model for 
3-year and 5-year survival, while the radiomics model 
performed slightly lower, with AUC values of 0.766 and 
0.849 for 3-year and 5-year survival, respectively. In con-
trast, the clinical models established using cT and RCB 
had poor predictive efficacy, with 5-year AUC values of 
0.683 and 0.551, respectively. In the validation cohort, the 
combined model outperformed the other models dem-
onstrating an AUC value of 0.889 and 0.938 for 3-year 

and 5-year survival, respectively. The deep learning and 
radiomics models showed AUC values of 0.875 and 0.806 
for 5-year survival, respectively, while the clinical mod-
els had low predictive power with 5-year AUC values of 
0.615 and 0.507 for cT and RCB, respectively. These out-
comes indicate that the combined model is a more accu-
rate predictor of DFS for non-pCR patients after NAC 
than other models. Figure  3 provides a comprehensive 
comparison of the five models, and ROC analysis and 
DCA curves confirmed the superiority of the combined 
model over other models in both the training and vali-
dation groups. Figure 4 shows predictive performance of 
the five models in training cohort and test cohort.

Stratification of disease‑free survival by the five predictive 
models
All models were used to stratify the predicted survival 
of non-pCR patients after NAC. In the training cohort, 
DFS exhibited significant differences among breast can-
cer patients stratified by clinical, radiomic, DL, and 
combined models. The combined model demonstrated 
continued satisfactory stratification in the validation set, 

Fig. 2 Feature selection and a nomogram of prediction model. a Schematic diagram of prediction model. Each factor corresponded to one 
point, the scores of the four factors were summed to give a total score, and finally the corresponding 3-year, 5-year and 7-years survival rates 
were calculated. b Multivariate analysis showed different independent prognostic factors. c Schoenfeld residual test. The selected features 
in the radiomics model (d), DL model (e)
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whereas the DL and radiomics models showed slightly 
poorer stratification. The integrated model had the best 
stratification ability among all models in identifying high-
risk patients (Fig. 5).

Discussion
Our study introduced and validated an integrated model 
that accurately stratifies non-pCR breast cancer patients 
based on clinicopathologic features, depth, and radiomic 
features extracted from PET/CT images obtained before 
NAC administration. The integrated model secured the 
highest AUC values among the independent validation 
cohort with a 3-year survival AUC value reaching 0.889 
and a 5-year survival AUC value of 0.938, respectively.

We found that the model combining radiomic, depth 
features and clinicopathologic factors achieved better 
predictive performance than individual prognostic fac-
tors. Though some studies showed that patients with an 
increased RCB score have a high risk of a worse prog-
nosis and shorter survival time [9, 27], and others have 
indicated that combining RCB and KI67 can provide bet-
ter predictions than the RCB system [10, 28], highlight-
ing the importance of including more comprehensive and 
meaningful information in prediction models. In both 
the training set and validation set, our combined model 
consistently outperforms the RCB model alone in accu-
rately predicting the prognosis of breast cancer patients, 
with an AUC value of 0.943 and 0.938 for 5-year sur-
vival, respectively. This underscores the added value and 
potential synergistic effect of integrating radiomics with 

traditional clinical and pathological information for more 
accurate prognostic predictions in breast cancer patients.

Individual metabolic factors were not a reliable pre-
dictor of survival. PET/CT allows for the simultane-
ous assessment of metabolic and structural functions, 
with research primarily focusing on PET/CT metabolic 
parameters such as standard uptake value (SUV) and 
metabolic tumor volume (MTV) in predicting the prog-
nosis of breast cancer patients [29–33]. Nonetheless, 
semi-quantitative parameters obtained from PET/CT 
images have certain limitations in their capacity to fully 
capture the heterogeneity of breast cancer. For instance, 
while SUVmax denotes solely the hottest pixel, MTV is 
reliant upon methods that are based on thresholds. Our 
study also included metabolic indicators such as SUV-
max as relevant clinical factors for prognostic analysis, 
but individual metabolic factors alone did not improve 
predictive performance. This finding supports the con-
troversy surrounding the inconsistency between 18F-FDG 
tumor uptake and prognosis prediction, which might be 
due to tumor heterogeneity and different research meth-
ods [34, 35].

We successfully developed an integrated model based 
on depth and radiomic features from PET images that 
accurately predicted long-term survival in non-pCR 
breast cancer patients. Radiomics and deep learning 
are efficient diagnostic tools with a variety of clinical 
applications [36, 37]. The extraction of numerous image 
features from the region of interest is achieved through 
the utilization of mathematical algorithms in these 

Fig. 3 Training and testing cohort of ROC curve and DCA curve. The receiver operating characteristic (ROC) curves of the radiomics model, DL 
model, clinical models (T, RCB) and combined model in the training cohort (a, b) and validation cohort (c, d). The combined model demonstrated 
significantly higher AUCs in the training and validation cohorts than other models. Decision curve analysis (DCA) of the radiomics model, DL model 
and combined model in the training cohort (e, f) and validation cohort (g, h). The x-axis is the threshold probability, and the y-axis measures the net 
benefit. The combined model received a higher net benefit than the other two models across most ranges of reasonable threshold probabilities
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approaches [38], and non-invasive biomarkers derived 
from PET radiomics can be generated based on a range 
of pixel intensities, associated parameters, and posi-
tions of the images. [39]. Several studies were explor-
ing the clinical and technical viability of PET radiomics 
for breast cancer diagnosis [40, 41], staging [42, 43], 
pathological characterization [44, 45], and prediction 
of response to NAC [46–48]. Clément Bouron [49] 
investigated to evaluate the prognostic value of baseline 
PET/CT metabolic parameters, volumetric parameters, 
and texture parameters for early TNBC breast cancer. 
The study revealed that imaging feature entropy dem-
onstrated potential as a prognostic indicator. David [50] 
discovered that texture features exhibited a significant 
correlation with OS and DFS in patients with advanced 
breast cancer. However, few studies have investigated 
PET/CT radiomics and depth features for prognosis 

prediction in non-pCR breast cancer patients. In this 
study, our combined model incorporating tumor stage, 
RCB, radiomic, and depth features exhibited excellent 
performance, with a five-year survival AUC of 0.943 
and 0.938 in the training and validation cohorts. The 
combined model also demonstrated robust clinical use-
fulness with greater benefits in both the training and 
validation cohorts in DCA curve analysis.

The limitations of the present study include a single-
center design and retrospective methodology. To estab-
lish the validity and generalizability of our findings, 
additional research is warranted. While our deep learn-
ing model performed better than the radiomics model 
in the training set, further investigation is necessary to 
elucidate the interpretability of feature sources associ-
ated with this approach.

Fig. 4 Predictive performance of the five models in training cohort (a) and test cohort (b). Training cohort (c) and validation cohort d calibration 
curve
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Conclusion
In conclusion, we formulated a comprehensive model 
that integrates radiomic and depth features obtained 
from PET/CT scans to forecast DFS in non-pCR patients. 
This amalgamated model serves as an efficient approach 
for projecting DFS in non-pCR patients diagnosed with 
breast cancer following NAC, potentially facilitating 
treatment refinement for individuals at high risk and 
thereby enhancing overall survival.
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