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Abstract 

Background Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma 
in adults. Standard treatment includes chemoimmunotherapy with R-CHOP or similar regimens. Despite treatment 
advancements, many patients with DLBCL experience refractory disease or relapse. While baseline 18F-fluorodeoxy-
glucose positron emission tomography (18F-FDG PET) parameters have shown promise in predicting survival, they 
may not fully capture lesion heterogeneity. This study aimed to assess the prognostic value of baseline 18F-FDG PET 
radiomics features in comparison with clinical factors and metabolic parameters for assessing 2-year progression-free 
survival (PFS) and 5-year overall survival (OS) in patients with DLBCL.

Results A total of 201 patients with DLBCL were enrolled in this study, and 1328 radiomics features were extracted. 
The radiomics signatures, clinical factors, and metabolic parameters showed significant prognostic value for indi-
vidualized prognosis prediction in patients with DLBCL. Radiomics signatures showed the lowest Akaike informa-
tion criterion (AIC) value and highest Harrell’s concordance index (C-index) value in comparison with clinical factors 
and metabolic parameters for both PFS (AIC: 571.688 vs. 596.040 vs. 576.481; C-index: 0.732 vs. 0.658 vs. 0.702, respec-
tively) and OS (AIC: 339.843 vs. 363.671 vs. 358.412; C-index: 0.759 vs. 0.667 vs. 0.659, respectively). Statistically signifi-
cant differences were observed in the area under the curve (AUC) values between the radiomics signatures and clini-
cal factors for both PFS (AUC: 0.768 vs. 0.681, P = 0.017) and OS (AUC: 0.767 vs. 0.667, P = 0.023). For OS, the AUC 
of the radiomics signatures were significantly higher than those of metabolic parameters (AUC: 0.767 vs. 0.688, 
P = 0.007). However, for PFS, no significant difference was observed between the radiomics signatures and metabolic 
parameters (AUC: 0.768 vs. 0.756, P = 0.654). The combined model and the best-performing individual model (radiom-
ics signatures) alone showed no significant difference for both PFS (AUC: 0.784 vs. 0.768, P = 0.163) or OS (AUC: 0.772 
vs. 0.767, P = 0.403).

Conclusions Radiomics signatures derived from PET images showed the high predictive power for progression 
in patients with DLBCL. The combination of radiomics signatures, clinical factors, and metabolic parameters may 
not significantly improve predictive value beyond that of radiomics signatures alone.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin lymphoma (NHL) in adults 
[1]. The rituximab, cyclophosphamide, doxorubicin, 
vincristine, and prednisone (R-CHOP) or R-CHOP-like 
chemoimmunotherapy regimens are the standard treat-
ment regimens for DLBCL [2]. The International Prog-
nostic Index (IPI), a clinically based parameter, has been 
widely used for over 30 years to categorize patients with 
DLBCL into low- and high-risk groups on the basis of 
age, Ann Arbor stage, performance status, number of 
extranodal sites, and serum lactate dehydrogenase (LDH) 
level [3]. The enhanced National Comprehensive Cancer 
Network-IPI (NCCN-IPI) has further improved prognos-
tic accuracy by re-evaluating age and LDH classifications 
and considering the involvement of specific extranodal 
sites [4]. β2-microglobulin (β2-MG), a protein synthe-
sized in all nucleated cells and a component of the major 
histocompatibility complex class I antigen, has also been 
identified as a significant prognostic factor for patients 
with DLBCL [5, 6]. Despite advancements in treatment, 
approximately 40% of patients with DLBCL still experi-
ence primary refractory disease or relapse [7].

In recent years, significant advancements have been 
made in the utilization of baseline 18F-fluorodeoxyglu-
cose positron emission tomography (18F-FDG PET) 
parameters to assess patients with DLBCL. Several 
parameters that reflect the total tumor burden and its 
dissemination, especially total metabolic tumor volume 
(TMTV) and the largest distance between two lesions 
(Dmax), have been proven to be robust indicators of dis-
ease progression-free survival (PFS) and overall survival 
(OS) in patients with DLBCL [8–13]. However, these 
PET parameters alone do not fully capture the metabolic 
heterogeneity and shape characteristics of the lesions, 
which have been independently identified as important 
prognostic factors for patients with DLBCL [14]. For-
tunately, with the emergence of artificial intelligence, a 
novel approach known as radiomics has shown promise 
in extracting implicit features from PET images, thereby 
providing valuable prognostic information [15]. Several 
studies have already delved into the potential of base-
line 18F-FDG PET radiomics in predicting outcomes for 
DLBCL patients [16–19].

This study aimed to develop and evaluate the prog-
nostic significance of baseline radiomics signatures in 
comparison with clinical factors and conventional PET 
parameters in patients with DLBCL.

Methods
Study cohort
This retrospective study was conducted at the Fourth 
Hospital of Hebei Medical University (HBMU), and 

ethical approval was obtained from the institutional 
review board. The study was conducted between March 
2012 and December 2021 and included patients diag-
nosed with new-onset diffuse large B-cell lymphoma 
(DLBCL). The inclusion criteria were as follows: (1) his-
tologically confirmed DLBCL, (2) age 18  years or older, 
(3) prior 18F-FDG PET/CT imaging before treatment, and 
(4) initiation of treatment with R-CHOP or R-CHOP-like 
regimens. Patients with incomplete clinical data, concur-
rent central nervous system lymphomas, or other malig-
nancies were excluded from the study. The institutional 
review board waived the requirement for obtaining writ-
ten informed consent from the patients.

Figure  1 presents a flowchart illustrating the patient-
selection process. A total of 201 patients diagnosed 
with DLBCL (112 men and 89 women) were included 
in the cohort. The average age of the patients was 
54.80 ± 15.00 years (range, 18 to 84 years). Various clini-
cal characteristics were recorded, including age, sex, 
serum lactate dehydrogenase (LDH) level, serum β2-MG 
level, Ann Arbor stage, performance status, involvement 
of important extranodal organs, B symptoms, and patho-
logical type. The NCCN-IPI was calculated using a previ-
ously established method [3].

Follow-up assessments were conducted after treat-
ment completion and continued until December 2022, 
with a minimum follow-up duration of 12  months or 
until death. This study assessed the prognosis of patients 
with DLBCL by using 2-year PFS and 5-year OS as the 
primary endpoints. PFS was defined as the period from 
initial diagnosis to the occurrence of disease relapse, pro-
gression, or death from any cause. Similarly, the OS was 
measured from the time of diagnosis to death from any 
cause.

PET/CT acquisition and reconstruction
18F-FDG PET/CT scans were conducted using PHILIPS 
GEMINI GXL16 and PHILIPS Vereos scanners. Before 
the scans, patients had a fasting period of at least 
6  h, and their blood glucose levels were required to 
be < 11.1 mmol/L. The PET/CT scans covered the entire 
body from the base of the skull to the upper thigh. The 
scans were performed approximately 60 ± 5  min after 
intravenous injection of 3.7–5.55  MBq/kg 18F-FDG. CT 
acquisition data were used to correct for attenuation. The 
details of PET/CT image acquisition parameters are dis-
played in Additional file 1: Table s1.

PET image segmentation and radiomics feature extraction
The volumes of interest (VOIs) in the PET images were 
semi-automatically delineated using the LIFEx software 
(version 7.3.0; https:// www. lifex soft. org/) [20]. Two expe-
rienced nuclear medicine physicians who were blinded to 

https://www.lifexsoft.org/
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the outcomes performed the VOI segmentation using a 
fixed threshold of SUV ≥ 4.0 [21]. Non-tumor FDG-avid 
regions (eg, obvious physiological uptake, kidney, ureter, 
bladder) were deleted, and non-tumor regions adjacent to 
tumor regions were manually removed. For each patient, 
conventional PET metabolic parameters of patient-level 
lesions, such as SUVmax, Dmax, and TMTV, were cal-
culated using LIFEx. In cases with only one detectable 
lesion, the Dmax was recorded as 0  cm. To account for 
variations in patient size and height, Dmax was normal-
ized to the patient’s body surface area (BSA) to derive the 
standardized Dmax (SDmax). The BSA was calculated as 
follows: (weight× height)/3600 . TMTV was extracted 
using the “Union of all visible ROI” function.

In total, 1328 radiomics features based on TMTV were 
extracted using open-source PyRadiomics (http:// www. 
radio mics. io/ pyrad iomics. html) [22–24]. These features 
encompassed first-order statistical features, texture fea-
tures extracted from the original or filtered images, and 
shape descriptors. The extracted radiomics features are 
displayed in Additional file 2: Table s2. All radiomics fea-
tures were standardized using the z-score standardiza-
tion method to reduce the influence of differences in size, 
characteristics, and distribution.

Feature selection and model construction
The least absolute shrinkage and selection operator 
(LASSO) Cox regression algorithm, which utilizes ten-
fold cross-validation, was employed to select influential 
radiomics signatures with nonzero coefficients to build 

the radiomics model [25]. The radiomics score (rad-
score) was computed by summing the selected features, 
with each feature being weighted by its corresponding 
LASSO coefficient.

NCCN-IPI and the β2-MG level were included as clini-
cal predictors. Among metabolic parameters, SUVmax, 
SDmax, and TMTV were chosen. The optimal cutoff 
values of SUVmax, SDmax, and TMTV for PFS and OS 
were determined by maximizing the Youden index of the 
receiver operating characteristic (ROC) curve. Subse-
quently, univariate and multivariate Cox proportional-
hazard regressions were conducted to select independent 
variables for constructing the clinical- and metabolic 
parameters- models. The clinical score (c-score) and met-
abolic parameters score (m-score) were derived by aggre-
gating the chosen independent variables, where each 
variable was weighted according to its respective COX 
coefficient.

These scores were used to classify patients into low- 
and high-risk groups, with the best cutoff values deter-
mined using the ROC curve.

Model evaluation and validation
The fitness of the three models was evaluated using the 
Akaike information criterion (AIC) [26]. A smaller AIC 
value indicated a better fit for the model. Generally, AIC 
value differences ≥ 10 indicate a significant improvement 
in model fitness, differences > 2 but < 10 demonstrate an 
improved fit, and differences < 2 between models indi-
cate no significant improvement in model fitness [27]. 

Fig. 1 Flowchart of DLBCL patient selection

http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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The Harrell’s concordance index (C-index), which cor-
responds to the area under the ROC curve, was used 
to measure the predictive capability of the models. A 
C-index of 0.5 represents a random guess; a C-index of 
0.7 indicates acceptable discrimination; and a C-index 
of 1.0 signifies perfect discrimination. For internal veri-
fication, a bootstrap resampling method (B = 1000) was 
employed to obtain the corrected C-index of the models 
[28].

The differences in the area under the curve (AUC) val-
ues in the three models were compared using the DeLong 
nonparametric test (MedCalc19.6.4) [29]. This test allows 
for a statistical comparison of the AUCs and provides 
insights into the performance differences between the 
models. Subsequently, a combined model incorporating 
the three individual models was developed and compared 
to the model with the best prediction performance. This 
comparison aimed to assess whether the combination of 
models improved the predictive capability.

Statistical analysis
Statistical analyses were performed using SPSS soft-
ware (version 26.0, IBM) and R statistical software (ver-
sion 4.2.2) (http:// www.R- proje ct. org). The associations 
of the rad-score, c-score, and m-score with the type of 
scanner used (PHILIPS GEMINI GXL16 or PHILIPS 
Vereos) were compared using the Mann–Whitney U 
test. Kaplan–Meier analysis and log-rank tests were used 
to assess and compare the survival outcomes among the 
three models. A P-value of less than 0.05 was considered 
statistically significant.

Results
Patient baseline characteristics
The median PFS was 22.5  months, and the median 
OS was 28.5  months. During the follow-up period, 70 
patients experienced disease relapse or progression and 
39 died. The 2-year PFS rate was 70.1% (141/201), and the 
5-year OS rate was 81.1% (163/201). Table 1 summarizes 
the clinical characteristics of the enrolled patients.

Feature analysis and model establishment
Figure 2 illustrates the results of the LASSO-Cox analy-
sis, where among the 1328 radiomics features extracted 
based on TMTV, 4 features with nonzero coefficients 
were identified for predicting the 2-year PFS, and 10 
additional features were identified for predicting the 
5-year OS. The selected features and their correspond-
ing coefficients are listed in Table  2. Radiomics signa-
tures were constructed on the basis of these features. The 
rad-score was calculated for each patient to predict PFS 
and OS. The optimal cutoff values for the rad-score were 
determined to be 0.054 for PFS and 0.114 for OS.

The NCCN-IPI was considered as a multiple categori-
cal variable in the analysis. The median β2-MG level 
was 2.22  mg/L (range, 0.61–9.90  mg/L). The β2-MG 
levels were categorized on the basis of the upper limit 
of the normal range. Univariate Cox regression analy-
sis revealed that both the NCCN-IPI and β2-MG level 
were significantly associated with PFS and OS. Subse-
quently, multivariate analysis showed that the NCCN-
IPI and β2-MG level were independent predictors of 
PFS. However, only the NCCN-IPI was identified as an 
independent predictor of OS. Please refer to Table 3 for 
the detailed results. The c-scores were then calculated to 

Table 1 Clinical characteristics of enrolled patients

LDH lactate dehydrogenase, β2-MG β2-microglobulin, ECOG PS Eastern 
Cooperative Oncology Group performance status, GCB germinal center B-cell 
like.

Patient characteristics Overall (n) Percentage (%)

Age (years)

 ≤ 40 41 20.4

 41–60 72 35.8

 61–75 78 38.8

 > 75 10 5.0

Gender

 Male 112 55.7

 Female 89 44.3

LDH ratio

 ≤ 1 118 58.7

 2–3 74 36.8

 > 3 9 4.5

β2-MG ratio

 ≤ 1 138 68.7

 > 1 63 31.3

Ann Arbor stage

 I–II 77 38.3

 III–IV 124 61.7

ECOG PS

 < 2 145 72.1

 ≥ 2 56 27.9

Involvement of extranodal important organs

 Yes 86 42.8

 No 115 57.2

B symptoms

 Yes 69 34.3

 No 132 65.7

Pathological type

 GCB 77 38.3

 Non-GCB 124 61.7

PET/CT scanner

 PHILIPS GEMINI GXL16 93 46.3

 PHILIPS Vereos 108 53.7

http://www.R-project.org
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Fig. 2 The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm were used to select optimal radiomic features. The 
selected tuning parameter (Lambda) in LASSO model through tenfold cross-validation were with minimum criteria in predicting (a) PFS and (b) OS. 
LASSO coefficient distributions of the radiomic features in predicting (c) PFS and (d) OS. The dotted vertical lines indicate the optimal values using 
the minimum criteria

Table 2 Results of radiomic feature selection for PFS and OS

End points Feature name Coefficient

PFS original_shape_Maximum2DDiameterSlice 0.184

squareroot_glrlm_LongRunLowGrayLevelEmphasis 0.107

wavelet-LHH_glszm_SizeZoneNonUniformityNormalized − 0.216

wavelet-HHH_glszm_SizeZoneNonUniformityNormalized − 0.070

OS original_shape_Maximum2DDiameterSlice 0.034

original_firstorder_Skewness − 0.061

original_glszm_SizeZoneNonUniformity 0.077

exponential_glszm_SizeZoneNonUniformity 0.050

square_firstorder_Median 0.019

square_firstorder_Minimum 0.006

wavelet-LLH_glszm_LowGrayLevelZoneEmphasis 0.030

wavelet-HHL_glszm_SizeZoneNonUniformity 0.075

wavelet-HHH_glszm_SizeZoneNonUniformityNormalized − 0.507

wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis − 0.018
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predict PFS and OS, with the most discriminative cutoff 
values of 1.197 and 0.875, respectively.

The study results revealed that the median SUVmax 
was 19.98 (range, 2.57–58.43). To classify patients into 
low or high SUVmax groups, the optimal cutoff values 
of PFS and OS were 20.48 and 26.24, respectively. The 
median SDmax was 5.92   cm−1 (range, 0–62.59   cm−1). 
For stratifying patients into low or high SDmax groups, 
the optimal cutoff values of PFS and OS were 2.96 and 
7.83   cm−1, respectively. Median baseline TMTV was 
120.13  mL (range, 1.86–2244.16  mL). Using ROC cut-
off values of 166.78 and 102.72  mL for PFS and OS, 
respectively, the patients were classified into low- or 
high-TMTV groups. Univariate Cox analysis showed 
significant associations between SDmax and TMTV and 
both PFS and OS, whereas SUVmax was not significantly 
associated with either PFS or OS. In the multivariate Cox 
analysis, SDmax and TMTV were identified as independ-
ent predictors of PFS, whereas only SDmax remained an 
independent predictor of OS. Further details are pro-
vided in Table 3. The m-scores were calculated to predict 

PFS and OS with optimal cutoff values of 1.951 and 0.686, 
respectively.

Model performance assessment and validation
For the 2-year PFS prediction, the radiomics signatures 
exhibited a lower AIC value (571.688) than clinical fac-
tors (596.040) and metabolic parameters (576.481). All 
differences of > 2 in AIC values among the three mod-
els demonstrated an improvement in model fitness. 
The C-indices of the radiomics signatures, clinical fac-
tors, and metabolic parameters were 0.732, 0.658, and 
0.702, respectively. The C-indices of the models cor-
rected using bootstrap resampling were 0.730, 0.655, 
and 0.702, respectively (Table  4). Statistically significant 
differences were observed in the AUCs between the radi-
omics signatures and clinical factors (AUC: 0.768 vs. 
0.681, P = 0.017). However, no significant difference was 
observed between the radiomics signatures and meta-
bolic parameters (AUC: 0.768 vs. 0.756, P = 0.654). Addi-
tionally, no significant differences were observed between 

Table 3 Clinical predictors and metabolic parameters of Cox regression analysis for predicting PFS and OS

PFS progression-free survival, OS overall survival, NCCN-IPI National Comprehensive Cancer Network-International Prognostic Index, β2-MG β2-microglobulin, 
SUVmax maximum standardized uptake value, Dmax the largest distance between two lesions, SDmax standardized Dmax, TMTV total metabolic tumor volume, HR 
hazard ratio, CI confidence interval.

Category End points Variables Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Clinical predictors PFS NCCN-IPI 1.331 1.145–1.548  < 0.001 1.215 1.021–1.445 0.028

β2-MG 2.668 1.606–4.433  < 0.001 1.904 1.060–3.421 0.031

OS NCCN-IPI 1.419 1.174–1.715  < 0.001 1.294 1.041–1.607 0.020

β2-MG 3.015 1.589–5.719  < 0.001 1.933 0.927–4.030 0.079

Metabolic parameters PFS SUVmax 1.352 0.814–2.247 0.244 – – –

SDmax 5.592 2.652–11.790  < 0.001 4.758 2.236–10.120  < 0.001

TMTV 2.816 1.654–4.796  < 0.001 2.186 1.275–3.750 0.004

OS SUVmax 1.664 0.849–3.262 0.138 – – –

SDmax 4.499 2.126–9.517  < 0.001 3.939 1.832–8.469  < 0.001

TMTV 2.441 1.209–4.932 0.013 1.797 0.874–3.697 0.111

Table 4 The results of AIC value, Harrell’s C-index and corrected C-index for PFS and OS

AIC C-index (95%CI) corrected C-index (95%CI)

PFS

 Radiomics signatures 571.688 0.732 (0.700–0.764) 0.730 (0.668–0.798)

 Clinical factors 596.040 0.658 (0.624–0.693) 0.655 (0.588–0.725)

 Metabolic parameters 576.481 0.702 (0.670–0.735) 0.702 (0.642–0.769)

OS

 Radiomics signatures 339.843 0.759 (0.716–0.803) 0.773 (0.692–0.857)

 Clinical factors 363.671 0.667 (0.625–0.708) 0.665 (0.585–0.744)

 Metabolic parameters 358.412 0.659 (0.620–0.698) 0.660 (0.585–0.740)
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the clinical factors and metabolic parameters (AUC: 
0.681 vs. 0.756, P = 0.054; Fig. 3).

For the 5-year OS, the AIC value of the radiomics sig-
natures was 339.843, which was also the lowest among 
the three models. The AIC values for the clinical fac-
tor and metabolic parameters models were 363.671 and 
358.412, respectively. All differences > 10 in AIC values 
indicated a significant improvement in model fitting. The 
C-indices of the radiomics signatures, clinical factors, 
and metabolic parameters were 0.759, 0.667, and 0.659, 
respectively. The corrected C-indices of the models were 
0.773, 0.665, and 0.660, respectively (Table 4). The AUCs 
of the radiomics signatures were significantly higher 
than those of both clinical factors (AUC: 0.767 vs. 0.667, 
P = 0.023) and metabolic parameters (AUC: 0.767 vs. 
0.688, P = 0.007), although there were no significant dif-
ferences between clinical factors and metabolic param-
eters (AUC: 0.667 vs. 0.688, P = 0.621; Fig. 3).

The AIC value of the combined model was 567.066 
for PFS, and differences of > 2 but < 10 between the com-
bined model and radiomic signatures demonstrated an 
improved fit. Meanwhile, the AIC value of the combined 
model was 339.546 for OS, and differences of < 2 between 
the combined model and radiomic signatures revealed 
no improvement in model fitting. The C-index values of 
the combined models were 0.739 (95% CI: 0.707–0.771) 
for PFS and 0.763 (95% CI: 0.721–0.805) for OS. No sig-
nificant differences were observed between the combined 
model and radiomics signatures for PFS (P = 0.163) or OS 
(P = 0.403).

Scanner comparability
No statistically significant differences were observed 
among the rad-score, c-score, and m-score in relation 
to the type of scanner used (PHILIPS GEMINI GXL16 
or PHILIPS Vereos) for PFS (P = 0.284, 0.102, and 
0.503, respectively) and OS (P = 0.693, 0.087, and 0.686, 
respectively).

Survival prediction and risk stratification
The Kaplan–Meier curves indicated that the recurrence 
and death rates of patients in the high-risk group were 
significantly higher than those in the low-risk group in 
all three models (all P < 0.05) for PFS and OS (Fig. 4). For 
PFS, the univariate hazard ratios (HRs) for radiomic sig-
natures (8.546) were higher than those for clinical factors 
(2.712) and metabolic parameters (2.718). The radiom-
ics score below 0.054 indicates a low risk of recurrence, 
while the score above 0.054 indicates a higher risk of 
recurrence. For OS, univariate HRs for radiomics signa-
tures were also the highest for the three models (8.367) 
in comparison with the clinical factors model (2.718) and 
the metabolic parameters model (2.995; Table  5). Simi-
larly, the score below 0.114 suggests a low risk of death, 
whereas the score above 0.114 indicates a higher risk of 
death.

Discussion
In this retrospective study, we aimed to use baseline 
18F-FDG PET radiomics features and clinical and con-
ventional PET metabolic parameters to develop models 

Fig. 3 Time-dependent ROC curves of radiomics-, clinical-, and metabolic parameters model in predicting PFS and OS
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for predicting the 2-year PFS and 5-year OS in patients 
with DLBCL and compare their predictive ability. 
To the best of our knowledge, this is the first study 

to compare the prognostic value of these three mod-
els. The major finding of the present study was that all 
three models could be used to facilitate individualized 

Fig. 4 Kaplan–Meier estimates of PFS and OS in models and log-rank P value are reported
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prognostic prediction in patients with DLBCL. Simul-
taneously, in comparison with clinical factors and PET 
metabolic parameters, radiomics signatures had the 
best predictive performance for PFS and OS, with the 
lowest AIC value and the highest C-index value.

Our results showed that radiomics signatures could 
stratify high-risk patients with early recurrence and 
poorer survival using a noninvasive method and then 
optimize personalized treatment strategies that will 
benefit these patients. This finding corresponds to the 
results of a recent study in which several single radi-
omics features were independent predictors of survival 
outcomes [16, 30]. However, our radiomics signa-
ture differs from previous studies in that it captures a 
broader range of underlying features, which were cal-
culated by combining optimal radiomics features from 
1328 features per image, consisting of 16 shape descrip-
tors and features extracted from original and derived 
images. Similarly, another study found that radiom-
ics signatures were independently associated with PFS 
(HR = 4.150) and OS (HR = 4.029), indicating their pre-
dictive value [31]. In comparison, the univariate HRs of 
radiomics signatures in our study were higher for PFS 
(HR = 8.546) and OS (HR = 8.367), which indicated that 
our radiomics signatures may improve risk stratifica-
tion. Our study, along with previous studies, supports 
the notion that key radiomics features strongly corre-
late with intratumoral metabolic heterogeneity and that 
angiogenesis plays a significant role in disease progres-
sion and survival in patients with DLBCL [32, 33].

A previous study [34] showed that the NCCN-IPI 
outperformed the IPI in risk categorization and 5-year 
OS estimation in patients with DLBCL. Additionally, a 
meta-analysis demonstrated that the β2-MG level was 
an independent prognostic factor in patients with NHL 
[35]. Our study was the first to choose the combination 
of β2-MG level and NCCN-IPI as a predictor to build a 
clinical model, and the results showed that the clinical 
scores derived from these factors were independently 

associated with both PFS and OS. High clinical scores 
have been proven to increase the risk of recurrence and 
mortality in patients with DLBCL. However, in the pre-
sent study, clinical factors did not contribute to distinct 
risk stratification as effectively as radiomics features for 
PFS and OS. This finding is inconsistent with the results 
of a previous study [18], which demonstrated that radi-
omic signatures did not show significantly higher AUCs 
than the IPI for PFS and OS. One potential explana-
tion for this inconsistency is that the clinical variables 
used in our model may not have captured all the rele-
vant prognostic information, since there may have been 
other factors influencing the prognosis of patients with 
DLBCL that were not included in our study.

Our results further support the potential of metabolic 
parameters as a noninvasive and quantitative approach 
for DLBCL prognosis prediction. The metabolic param-
eters scores were independently associated with PFS and 
OS. This finding is consistent with the results of previ-
ous studies that showed the benefit of incorporating 
TMTV along with parameters such as Dmax or SDmax 
to enhance risk stratification and inform treatment deci-
sions in patients with DLBCL [13, 36]. Eertink et  al.
[37] showed that a model combining MTV, SUVpeak, 
and Dmaxbulk showed the best predictive ability after 
2  years. Furthermore, another study [37] showed that 
the addition of complex textural radiomics features did 
not provide additional predictive power compared to 
dissemination features. In contrast to these findings, 
our study showed that in comparison with the radiom-
ics signatures, metabolic parameters had lower power to 
discriminate high-risk patients based on the 5-year OS. 
One possible explanation for this discrepancy is that 
conventional PET parameters do not consider the het-
erogeneity and complexity of tumors and do not provide 
tumor morphological information, which may limit the 
predictive power of metabolic parameters for DLBCL 
prognosis.

Our study also demonstrated that the combined model 
incorporating both radiomics signatures and clinical fac-
tors/metabolic parameters showed a slight improvement 
in model performance over the use of radiomics signa-
tures alone. This was evidenced by a reduction in the AIC 
value and an increase in the C-index value for both the 
2-year PFS and 5-year OS. However, the difference in 
performance between the combined model and the radi-
omics signatures alone was not statistically significant for 
either PFS or OS.

In our study, a semiautomated method using a fixed 
SUV threshold of 4.0 (SUV ≥ 4.0) was applied for TMTV 
segmentation. This approach required less manual adap-
tation and has been recommended and used to evalu-
ate the prognostic performance [21, 38–40]. However, 

Table 5 The results of HRs and log-rank P value for PFS and OS

HR HR (95%CI) P

PFS

 Radiomics signatures 8.546 4.355–16.770  < 0.001

 Clinical factors 2.712 1.725–4.264  < 0.001

 Metabolic parameters 2.718 1.882–3.926  < 0.001

OS

 Radiomics signatures 8.367 3.947–17.740  < 0.001

 Clinical factors 2.718 1.583- 4.669  < 0.001

 Metabolic parameters 2.995 1.734–5.173  < 0.001
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there is no consensus on the standardized segmentation 
methods for calculating radiomics features in DLBCL, 
and this remains an active area of research for future 
investigations [24]. Although we observed differences 
among different PET/CT scanners (PHILIPS GEMINI 
GXL16 or PHILIPS Vereos), our statistical analysis did 
not reveal any significant statistical differences in prog-
nosis between the two scanners in our dataset. Thus, the 
choice of scanner may not have had a significant impact 
on prognostic outcomes in our study population.

This study had several limitations that require consid-
eration. First, this was a retrospective single-center study 
with a relatively small sample size and lacked external 
validation, which may have overestimated the perfor-
mance of the models and limited the generalizability of 
the findings. Second, the molecular genetic subtypes of 
DLBCL were not included because of incomplete data. In 
the future, more robust models should be developed and 
validated for DLBCL risk prediction in larger multicenter 
studies.

Conclusions
In conclusion, radiomics signatures demonstrated the 
high predictive power for progression in terms of 2-year 
PFS and 5-year OS in patients with DLBCL. Although 
baseline PET radiomics signatures, clinical factors, and 
metabolic parameters showed the potential for individu-
alized prediction, the combination of these three fac-
tors may not significantly enhance the predictive value 
beyond that of the radiomics signatures alone, thus sim-
plifying the decision-making process for clinicians. In 
summary, the radiomics signatures derived from PET 
images hold promise as an independently prognostic tool 
for DLBCL, and further research is needed to explore 
their clinical utility and potential integration with other 
prognostic factors.
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