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Abstract 

Background Convolutional neural networks (CNNs), applied to baseline  [18F]-FDG PET/CT maximum intensity pro-
jections (MIPs), show potential for treatment outcome prediction in diffuse large B-cell lymphoma (DLBCL). The aim 
of this study is to investigate the robustness of CNN predictions to different image reconstruction protocols. Baseline 
 [18F]FDG PET/CT scans were collected from 20 DLBCL patients. EARL1, EARL2 and high-resolution (HR) protocols were 
applied per scan, generating three images with different image qualities. Image-based transformation was applied 
by blurring EARL2 and HR images to generate EARL1 compliant images using a Gaussian filter of 5 and 7 mm, 
respectively. MIPs were generated for each of the reconstructions, before and after image transformation. An in-house 
developed CNN predicted the probability of tumor progression within 2 years for each MIP. The difference in proba-
bilities per patient was then calculated between both EARL2 and HR with respect to EARL1 (delta probabilities or ΔP). 
We compared these to the probabilities obtained after aligning the data with ComBat using the difference in median 
and interquartile range (IQR).

Results CNN probabilities were found to be sensitive to different reconstruction protocols (EARL2 ΔP: median = 0.09, 
interquartile range (IQR) = [0.06, 0.10] and HR ΔP: median = 0.1, IQR = [0.08, 0.16]). Moreover, higher resolution images 
(EARL2 and HR) led to higher probability values. After image-based and ComBat transformation, an improved agree-
ment of CNN probabilities among reconstructions was found for all patients. This agreement was slightly better 
after image-based transformation (transformed EARL2 ΔP: median = 0.022, IQR = [0.01, 0.02] and transformed HR ΔP: 
median = 0.029, IQR = [0.01, 0.03]).

Conclusion Our CNN-based outcome predictions are affected by the applied reconstruction protocols, yet in a 
predictable manner. Image-based harmonization is a suitable approach to harmonize CNN predictions across image 
reconstruction protocols.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin lymphoma, accounting for 
30 to 40% of all cases [1].  [18F]-Fluorodeoxyglucose  ([18F]
FDG) positron emission tomography (PET) in combina-
tion with computed tomography (CT) imaging is widely 
used for diagnosis, staging, prognosis, prediction and 
response monitoring in DLBCL patients [2]. Different 
metrics such as metabolic tumor volume (MTV), stand-
ard uptake value (SUV), dissemination and textural fea-
tures are extracted from these images which provide 
insight into the tumor characteristics. Baseline MTV has 
proven to be a strong prognostic factor for tumor pro-
gression in lymphoma, alongside with disease dissemi-
nation features [3–5]. In order to extract these features, 
the tumor needs to be delineated. This task is time-con-
suming, user dependent and suffers from inter and intra 
reader variability. These limitations could be overcome 
with the help of artificial intelligence (AI). In oncol-
ogy, AI models are already being assessed for the auto-
mation of many different tasks such as delineation and 
segmentation of lesions with outstanding results [6–9]. 
An even further step is to use AI to extract complex fea-
tures directly from the PET images and predict disease 
progression without prior lesion segmentation. Con-
volutional neural networks (CNNs) are currently being 
investigated for this purpose and were found to have 
potential for treatment outcome prediction in DLBCL 
[10, 11].

Technical aspects of PET imaging, which include but 
are not limited to image acquisition and reconstruction 
settings, should be taken into account when analyzing 
PET scans as these may have an impact on the derived 
metrics [12, 13]. ComBat harmonization can be used to 
reduce the variability generated by some of these techni-
cal aspects [14]. To accomplish this, ComBat standard-
izes the means and the variances across the batches of 
data derived from different scanners/protocols [15]. In 
a previous study, ComBat was partially able to reduce 
reconstruction-dependent MTV variability [12]. Kaalep 
et  al. [16] addressed reconstruction-related variability 
by altering the images instead of the data. They applied 
a Gaussian filter to scans obtained from European Asso-
ciation of Nuclear Medicine Research Ltd. (EARL) har-
monization standards 2. This filter was used to ‘blur’ the 
images, mimicking the resolution of the EARL1 scans.

We recently developed a CNN to predict the probabil-
ity of 2-year time to progression (TTP) using maximum 
intensity projections (MIP) of  [18F]FDG PET/CT base-
line scans of DLBCL patients [11]. The CNN achieved an 
area under the curve of 0.72 in the internal validation and 
of 0.74 in the external validation. The model was, how-
ever, trained on retrospective data from the HOVON84 

trial [17]. These data were predominantly reconstructed 
using EARL1 reconstruction settings. With the introduc-
tion of newer and state-of-the-art PET systems, higher 
spatial resolution images can be achieved. Thus, multi-
center PET studies will, most probable, involve images 
generated by different systems, hence presenting differ-
ent image qualities, among other aspects. As with SUV 
and MTV, PET reconstruction settings may also have an 
impact on PET-based CNN performance. A recent study 
showed that PET images derived from block sequential 
regularized expectation maximization reconstruction 
yielded a better CNN performance than ordered subset 
expectation maximization reconstruction for the detec-
tion of pulmonary lesions [18]. Besides these recent 
findings, little is known about how PET-based classifica-
tion CNNs are affected by differences in image quality, 
for example, when sites use PET images compliant with 
EARL standards 1 and 2 or images reconstructed with 
locally preferred clinical protocol [16, 19].

In this study, we assessed the sensitivity of outcome 
predictions provided by our recently developed CNN to 
different reconstruction protocols, as we did in a previ-
ous study for the assessment of MTV [12]. Furthermore, 
we assessed the ability of image-based transformations 
reported by Kaalep et  al. [16] to generate harmonized 
predicted probabilities and we compared those to Com-
Bat-transformed probabilities.

Methods
Study population
For the analysis, we used baseline  [18F]FDG PET/CT 
scans from 20 DLBCL patients. From these, 13 patients 
had been scanned at the Amsterdam UMC and were 
retrospectively obtained from medical records, with 
a waiver for informed consent from the Medical Eth-
ics Review Committee of Amsterdam UMC, location 
VUmc. This study was registered as IRB2018.029. The 
other seven patients were recruited and scanned at the 
outpatient clinic of the department of Hematology of the 
Amsterdam UMC, location VUmc (IRB2019.278) with 
a waiver for informed consent from the Medical Ethics 
Review Committee of Amsterdam UMC, location VUmc. 
Patients included in these trials required to be 18 years or 
older and have at least one tumor with a diameter of 3 cm 
or more. Patients with metal implants, multiple malig-
nancies, who had undergone chemotherapy in the past 
4 weeks or who were pregnant/lactating were excluded 
from the trials.

Image acquisition
Patients scans were performed on two EARL-accred-
ited Philips scanners, Ingenuity TF PET/CT and Vereos 
PET/CT (Philips Healthcare, Cleveland, USA), with 
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BLOB-OS-TF reconstruction method and an  [18F]FDG 
uptake time of 60 min. PET studies were performed in 
conformity with EANM recommendation using a bed 
scan duration of 2 min. The mean injected activity was 
264.12 megabecquerels (MBq).

Quality control
Quality control (QC) of baseline  [18F]FDG PET/CT 
scans was performed following the criteria described by 
the EANM guidelines: Eligible scans should hold a liver 
mean standardized uptake value (SUVmean) between 
1.3 and 3.0, and the plasma glucose should not surpass 
11 mmol/L [2]. Scans were also excluded during the QC 
if they were incomplete, total image activity (MBq) was 
not between 50 and 80% of the total injected FDG activ-
ity and/or any DICOM data was missing. In this study, no 
scan was excluded as all criteria described by the EANM 
guidelines were met.

Image processing
Three different reconstructions protocols were used to 
derive the scans: following EARL1 standards (EARL1 
reconstruction), following EARL2 standards (EARL2 
reconstruction) and a third reconstruction which fol-
lowed locally clinically preferred protocols (high reso-
lution or HR reconstruction). EARL2 standards were 
established by introducing a resolution modelling algo-
rithm, point spread function (PSF), to the initial EARL1 
standards [16]. The use of PSF improves image resolu-
tion and contrast [20]. The main difference between the 
HR and the EARL reconstructions is that HR introduced 
a pixel spacing of 2 mm instead of 4 mm to achieve a 
higher spatial resolution. Table 1 contains a summary of 
the parameters related to the reconstruction algorithms 
used in this study. An overview of the workflow followed 
in this study can be found in Fig. 1A–C.

For each scan and reconstruction, MIPs were generated 
using an in-house developed preprocessing tool. This tool 
converted scans into coronal and sagittal MIPs with size 
275 × 200 × 1 and pixel size of 4 × 4 mm. Furthermore, the 
brain was removed from each of the MIPs with the aim of 

providing greater consistency across the dataset since not 
all scans fully included the head. More details about this 
process can be found in our previous study [11]. Example 
MIPs for each reconstruction are given in Fig. 2A for one 
of the patients, illustrating the visual difference in spatial 
resolution between the various reconstructions.

Harmonization
Two different harmonization techniques were used 
in this study to align the CNN predicted probabilities 
between the three different reconstructions: EARL1, 
EARL2 and HR. We implemented an image-based trans-
formation to change the resolution of our EARL2 and HR 
3D PET images to resemble EARL1. This was previously 
done by Kaalep et  al. [16] where they used a Gaussian 
filter to convert EARL2 compliant PET data to EARL1 
compliant images. Moreover, we implemented a data 
transformation using ComBat to align the CNN prob-
abilities of the EARL2 and HR images to those of EARL1. 
ComBat was previously reported to reduce the variability 
for PET-extracted MTV values from differently recon-
structed images [12].

Image-based harmonization. The ACC URA TE soft-
ware was used to perform the image-based transforma-
tion of the EARL2 and HR 3D PET images in order to 
match image qualities (in particular spatial resolution) 
with that of EARL1 reconstructions [21]. A Gaussian fil-
ter (full width at half maximum, FWHM) of 5 mm was 
applied to the EARL2 3D PET images and of 7 mm to 
the HR images to match the spatial resolution to that of 
EARL1 reconstruction [22]. An overview of the workflow 
followed to generate the image-transformed probabilities 
can be found in Fig. 1B.

ComBat harmonization. ComBat was applied to the 
CNN probabilities yielded by the non-transformed 
EARL1, EARL2 and HR scans. We used ComBat to 
provide continuity with a previous study on combat-
ting MTV variability [12]. Herein, ComBat was used to 
align the mean and the standard deviation of the prob-
abilities obtained from HR and EARL2 MIPs to those of 
EARL1. ComBat was applied using R version 4.0.5 on the 

Table 1 Summary of parameters for each of the reconstruction protocols

Method Series description Pixel spacing (mm) Slice thickness 
(mm)

Reconstruction 
method

Manufacturer’s model name

EARL1 [WBA_CTAC]-Body 4 × 4 × 4 4 BLOB-OS-TF Ingenuity TF PET/CT
Vereos PET/CT

EARL2 [WBA_CTAC_PSF]-Body 4 × 4 × 4 4 BLOB-OS-TF Ingenuity TF PET/CT
Vereos PET/CT

HR [HN_CTAC_2mm]-Body 2 × 2 × 2 2 BLOB-OS-TF Ingenuity TF PET/CT
Vereos PET/CT
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code provided by Fortin et al. [23]. A detailed explanation 
about ComBat is given in Additional file 1. An overview 
of the workflow followed to generate the ComBat-trans-
formed probabilities can be found in Fig. 1C.

Convolutional neural network
A previously developed CNN to predict the probability of 
2-year TTP in DLBCL patients from MIP images is uti-
lized in this study [11]. The CNN was trained on a dataset 
of 296 MIPs derived from DLBCL baseline scans. These 
data were predominantly collected on older generation of 
PET/CT systems using image reconstructions that were 
mostly consistent with EARL1 reconstruction protocols. 
The model was trained following a fivefold cross valida-
tion and further validated on an external dataset.

The CNN consists of two branches which analyze both 
coronal and sagittal MIPs through a series of convolu-
tional and max pooling layer and, concatenates with a 
final fully connected layer. Technical details about the 
cross validation and the design of the CNN can be found 
in [11]. The output is a binary prediction given by the 

probability of TTP longer than 2 years (TTP0) or TTP 
shorter than 2 years (TTP1), where TTP1 indicates an 
increased risk of tumor progression or recurrence for the 
patient. TTP0 may indicate absence of tumor progression 
or absence of recurrence. In this study we used the CNN 
to predict TTP1 from the EARL1, EARL2 and HR recon-
structions and assessed the impact on those probabilities 
after image-based and ComBat transformations.

Statistical analysis
A probability per patient is obtained for each of the 
three different reconstructions. A non-parametrical 
statistical hypothesis test, Wilcoxon signed-rank test, 
was used to compare probabilities between the recon-
structions before and after transformation, (image-
based and ComBat). The probability difference (delta 
probabilities or ∆P) was calculated for both EARL2 
and HR with respect to EARL1. For EARL2 and HR 
reconstructions, the median and the interquartile 
range (IQR) of ∆P were calculated for both scenar-
ios; before and after transformations. Moreover, to 

Fig. 1 Workflow overview. A Generation of original probabilities from whole-body PET scans. The MIPs are generated from the PET scan 
through the preprocessing tool. The CNN is then used to predict 2-year TTP probabilities. This is done for each of the 3 reconstructed images for all 
patients. B Generation of image-transformed probabilities from filtered whole-body PET scans. A Gaussian filter is applied to the EARL2 and HR 
scans to obtain images that resemble EARL1-compliant images. The preprocessing tool is used to generate the MIPs from the transformed scans 
and the CNN is then used to predict the corresponding 2-year TTP probabilities. C Generation of ComBat probabilities from whole-body PET scans. 
To obtain the ComBat-transformed probabilities, ComBat is applied to the generated original probabilities
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estimate the strength of the association between prob-
abilities we used regression analyses and Bland–Alt-
man plot.

Results
Patients characteristics
There were a total of 20 patients included in this study. 
A summary of patients characteristics relevant to the 
study is given in Table 2.

CNN probabilities
Wilcoxon signed-rank test was used to compare paired 
probabilities, with EARL1 as the reference reconstruc-
tion. Statistical differences were found before transfor-
mation between EARL1 and HR (p value lower than 
0.05). These differences were considerably decreased 
when comparing to probabilities after both image and 
ComBat transformation. The resulting p values per 
comparison can be found in Table 3.

Fig. 2 MIP images for the same patient for the three reconstruction protocols. (A) MIP images with their corresponding CNN predictions (P). From 
left to right: EARL1, EARL2 and HR. (B) MIP images after image-based transformation (except for EARL1). From left to right: EARL1, EARL2 and HR. 
Predictions from the original MIPs are shown in red, from the transformed or ‘blurred’ MIPs in green and after ComBat transformation in blue
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EARL1 probabilities were generally lower com-
pared to EARL2 and HR probabilities (EARL1 prob-
abilities: median = 0.47 and IQR = [0.38, 0.61], EARL2: 
median = 0.56 and IQR = [0.46, 0.7], HR: median = 0.64 
and IQR = [0.53, 0.74]). An example of the three different 
reconstructions with their corresponding CNN probabili-
ties can be found in Fig. 2A. The MIP shown in Fig. 2A is 
an extreme example of how these variations look; EARL1 
probabilities are the lowest and HR probability the high-
est, with a notable difference between them. Table 4 shows 
the mean differences between reconstructions. The differ-
ences were greater between EARL1 and HR than between 
EARL1 and EARL2 probabilities. Overall, for every patient, 
an increase in the image resolution led to an increase in 
the probability values. In the regression plots in Fig. 3 (A), 
most of the points in red (i.e., original probabilities) are 
located on a straight line close or slightly above the regres-
sion lines. This indicates that the relationship between the 
probability values generated from different reconstruc-
tions is mostly linear; thus, there is a predictable change 
in the probabilities. This also holds for Fig. 3 (B), although 
points appear more dispersed in comparison, since the dif-
ferences from EARL1 to HR probabilities are bigger. From 
the Bland–Altman plots (Fig.  4), we can derive that dif-
ferences between probabilities become bigger for higher 
probability values in both cases, with steeper differences 
for HR-EARL1 probabilities (Fig. 4 B), suggesting that the 
differences can be corrected with a scaling factor, as we 
can also understand from the scatter or correlation plots.

Image‑based transformation
After image-based transformation, the ΔP were consid-
erably decreased and the CNN probabilities showed an 
improved agreement between reconstructions (Table 4). 

Table 2 Patients characteristics

Patients characteristics

Sex (N)

 Male (%) 5 (25%)

 Female (%) 15 (75%)

Weight (kg)

 Mean (min–max) 77.35 (54–103)

Height (cm)

 Mean (min–max) 176.4 (160–190)

Injected activity (MBq)

 Mean (min–max) 264.12 (164.87–367.48)

Table 3 p values from nonparametric Wilcoxon signed-rank test 
for comparing probabilities between reconstruction with EARL1 
as reference

Statistical differences (p value < 0.05) shown with an asterisk (*)

EARL2‑EARL1: p 
value

HR‑EARL1: 
p value

Original values 0.055 0.012*

Image-based transformation 0.41 0.79

ComBat transformation 0.88 0.85

Table 4 Overall differences in probabilities (ΔP) between 
reconstructions with EARL1 as reference

EARL2 ∆P: Median (IQ) HR ∆P: Median (IQ)

Original values 0.09 (0.06, 0.10) 0.10 (0.08, 0.16)

Image-based transfor-
mation

0.02 (0.01, 0.03) 0.03 (0.01, 0.03)

ComBat transformation 0.02 (0.01, 0.03) 0.04 (0.03, 0.06)

Fig. 3 Regression lines for CNN probabilities with EARL1 as reference. A EARL2 original probabilities (red), EARL2 probabilities after image-based 
transformation (green) and EARL2 probabilities after ComBat transformation (blue) compared to EARL1. B HR original probabilities (red), HR 
probabilities after image-based transformation (green) and HR probabilities after ComBat transformation (blue) compared to EARL1. The probability 
values are closer to the line of identity (gray-dashed line) for both EARL2 and HR values after both transformations



Page 7 of 10Ferrández et al. EJNMMI Research           (2023) 13:88  

This is illustrated in Fig.  3 where the regression line of 
the transformed probabilities values is closer to the line 
of identity compared to the regression line of the origi-
nal values. The Bland–Altman plots in Fig.  4 show an 
improved agreement of the probabilities after image 
transformation (green data points). Probability differ-
ences are constant as the probability average increases for 
both cases, EARL2-EARL1 and HR-EARL1 probabilities. 
In Fig. 2B the same example as in Fig. 2A is shown with 
the MIPs after image-based transformation and their cor-
responding probabilities. The image-transformed prob-
abilities (shown in green) are considerably decreased 
compared to the original probabilities indicating an 
improved alignment.

ComBat transformation
A similar trend was observed for the ComBat-trans-
formed probabilities. The regression line for the Com-
bat-transformed values is shown in Fig. 3, together with 
the regression line for the image-transformed values. An 
improved agreement of the probabilities after ComBat 
transformation is shown in Fig. 4. For HR-EARL1 prob-
abilities (Fig. 4B), the probability differences (in blue) are 
larger for higher probabilities average. These differences 
are less pronounced compared to the original probabili-
ties (in red), which indicates a slightly improved align-
ment of the probabilities, although not as good as the 
image-transformed probabilities.

The ΔP was very similar for both image-based and 
ComBat transformations. However, ComBat resulted 
in a slightly worsened alignment of the probabilities for 
the HR reconstruction (Fig. 2B), where there is a greater 

variability given by the ΔP IQ and also illustrated in 
Fig. 3B.

Discussion
The aim of this study was to assess the sensitivity of a 
CNN model to PET images derived from different recon-
struction protocols. The CNN is applied to MIP images 
generated from  [18F]FDG PET/CT baseline scans and 
used to predict the probability of 2-year TTP in DLBCL 
patients. This model has been internally and externally 
validated in a previous study [11]. Although CNNs show 
potential to improve the current state of prognosis in 
lymphoma [9, 10, 24], there is still an acknowledged need 
to develop robust and reproducible prognostic mark-
ers to eventually attain their clinical implementation 
[25–28].

In this study, we found considerable differences 
between the resulting probabilities depending on the 
reconstruction protocol. For EARL1 images, the prob-
abilities tend to be lower compared to the EARL2 and HR 
images. The probabilities generated from the HR images, 
which have the highest resolution in this study, were gen-
erally higher across the 20 patients. Overall, we observed 
that the CNN probabilities were affected by the image 
resolution in a predictable manner (higher probability 
values at higher resolution images, i.e., EARL2 and HR). 
The impact of reconstruction protocols on PET-derived 
measurements has been assessed in previous studies. 
SUVmax, SUVpeak, MTV and multiple textural features 
have all been found to be sensitive to changes in recon-
struction protocols [12, 19, 20, 29]. In our previous study, 
we mitigated the variability among MTV values from 

Fig. 4 Bland–Altman plots. A Bland–Altman plot for EARL2 and EARL1 probabilities, before transformation (in red) and after both image (in green) 
and ComBat transformation (in blue). B Bland–Altman plot for HR and EARL1 probabilities, before transformation (in red) and after both image (in 
green) and ComBat transformation (in blue)
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images reconstructed with different protocols by harmo-
nizing the data using ComBat [12]. Herein, we assessed 
the implementation of ComBat for the harmonization 
of the CNN probabilities and compared it to an image-
based transformation. An improved agreement between 
the CNN probabilities was achieved by both transforma-
tions. The image-based transformation was best in align-
ing the values for the HR reconstruction. These results 
indicate that transforming the images beforehand could 
aid in the development of a robust and reliable metric 
for prognosis and, moreover, facilitate the implementa-
tion of CNN models for treatment outcome assessment. 
When using differently reconstructed images without any 
transformation, large differences in estimated probabili-
ties may occur (Fig. 2) that can potentially affect clinical 
decision making. Therefore, reliable predictions using the 
CNN can only be made when information on the applied 
acquisition and reconstruction settings are available. In 
this way the appropriate image transformation can be 
applied such that the spatial resolution required by the 
CNN (i.e., conform EARL1) is obtained assuring repro-
ducible estimation of probabilities. A possible limitation 
of our study is the small number of subjects. However, by 
performing three different reconstructions protocols for 
each scan, we were able to directly compare the impact 
of image quality on CNN-based predictions and allowing 
us to perform a head-to-head comparison of these prob-
abilities. We observed very clear relationships among the 
differently obtained probabilities; a higher image resolu-
tion led to higher predicted probabilities in a generally 
linear manner. Moreover, despite the small number  of 
subjects, we believe that we convincingly showed that 
image transformations can be successfully applied to mit-
igate reconstruction effects. Another limitation could be 
that transformations can only be applied when the actual 
image spatial resolution is known. In most of the cases 
this can be derived from the DICOM header information, 
providing details on voxel size and image reconstruction 
settings. Yet, when using anonymized images, this infor-
mation is sometimes missing and, therefore, future work 
will focus on automatically assessing the effective spa-
tial resolution of reconstructed PET data, e.g., using the 
CNN approach proposed by Pfaehler et al.[30].

In this study, the treatment outcome of the patients is 
unknown as for this technical validation study the eth-
ics review board demanded use of fully anonymized 
datasets. Although the CNN was trained with a data-
set consisting of mainly EARL1 reconstructed images, 
and therefore, the correct predictions could be seen as 
the ones generated by the EARL1 images, we cannot 
assume such thing without knowing the final outcome 
of the patients involved. Nevertheless, it is important to 

understand that the aim of this study was not to assess 
which predictions were correct, but whether the use of 
differently reconstructed images would lead to differ-
ences in the generated predictions. In this scenario, a 
higher probability does not necessarily mean a better 
prediction. The fact that images with higher resolution 
(i.e., HR reconstruction), thus, better image quality, lead 
to higher predictions could be due to sharper details and 
higher intensity contrast in these images. PET studies 
usually collect data from various centers and thus gath-
ering images with different image qualities. Hence, there 
is a need to generate tools/methods that can harmonize 
images and ensure reproducibility.

The architecture of the model and the characteristics of 
the training data heavily affect the behavior and perfor-
mance of the CNN. Therefore, the findings of this study 
cannot be extended to other CNNs [31]. Nevertheless, 
this study demonstrates that the CNN reported in [11] 
for the prediction of 2-year TTP in DLBCL patients is a 
potential prognostic tool which can be adapted to differ-
ently reconstructed images. Even though other technical 
aspects should also be analyzed, this is an important first 
step toward the use of this model in multicenter studies 
and/or to translate the tool for data collected using the 
updated EARL2 standards.

Conclusion
The predicted probabilities of a previously developed 
CNN are affected by the applied reconstruction proto-
col, yet in a predictable manner; higher resolution images 
(i.e., EARL2 and HR) resulted in higher probability val-
ues. After ComBat and image-based transformation, the 
EARL2 and HR probabilities were closely aligned with 
EARL1 probabilities. The image-based transformation 
mitigated the differences slightly better. These findings 
suggest that image-based transformation is a suitable 
approach for harmonizing the predictions of this particu-
lar model across image reconstruction protocols.
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