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Abstract 

Background  Brain [18F]FDG PET is used clinically mainly in the presurgical evaluation for epilepsy surgery and in the 
differential diagnosis of neurodegenerative disorders. While scans are usually interpreted visually on an individual 
basis, comparison against normative cohorts allows statistical assessment of abnormalities and potentially higher 
sensitivity for detecting abnormalities. Little work has been done on out-of-sample databases (acquired differently 
to the patient data). Combination of different databases would potentially allow better power and discrimination. We 
fully characterised an unpublished healthy control brain [18F]FDG PET database (Marseille, n = 60, ages 21–78 years) 
and compared it to another publicly available database (MRXFDG, n = 37, ages 23–65 years). We measured and then 
harmonised spatial resolution and global values. A collection of patient scans (n = 34, 13–48 years) with histologically 
confirmed focal cortical dysplasias (FCDs) obtained on three generations of scanners was used to estimate abnormal-
ity detection rates using standard software (statistical parametric mapping, SPM12).

Results  Regional SUVs showed similar patterns, but global values and resolutions were different as expected. Detec-
tion rates for the FCDs were 50% for comparison with the Marseille database and 53% for MRXFDG. Simply combining 
both databases worsened the detection rate to 41%. After harmonisation of spatial resolution, using a full factorial 
design matrix to accommodate global differences, and leaving out controls older than 60 years, we achieved detec-
tion rates of up to 71% for both databases combined. Detection rates were similar across the three scanner types used 
for patients, and high for patients whose MRI had been normal (n = 10/11).

Conclusions  As expected, global and regional data characteristics are database specific. However, our work shows 
the value of increasing database size and suggests ways in which database differences can be overcome. This may 
inform analysis via traditional statistics or machine learning, and clinical implementation.
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Introduction
Neuroimaging databases are needed when the imaging 
appearance of patients with a certain condition is com-
pared to that of healthy controls without the condition, 
and to develop new methodology [1]. Control databases 
are especially critical when it comes to statistical analysis 
[2, 3] including machine learning [1].

There has been an increase in neuroimaging database 
availability over the years; however, databases mainly 
consist of MR (Magnetic Resonance) images rather than 
PET (Positron Emission Tomography), perhaps due to 
many countries having restrictions on exposing healthy 
controls to ionising radiation.

There are very few [18F]FDG-PET (Fluorodeoxyglu-
cose PET) databases available publicly or on request. 
Archambaud et al. [4] described 24 children (mean ± SD 
11 ± 3.1  years, range 5–18, transmission-based attenua-
tion correction) who were “pseudo-normal”, i.e. no abnor-
mality was found on visual or statistical analysis. Wei 
et al. described another database of 78 “pseudo-normal”, 
Western Chinese, participants (mean 45  years, range 
3–78, PET-CT, filtered back projection reconstruction 
[5]) whose brain was included in the field of view when 
they had half-body [18F]FDG PET for cancers not involv-
ing the brain; the database was tested against a single 
patient with epilepsy. Waterschoot et al. 2021 described 
another database of 83 healthy subjects (18–76  years, 
point-source transmission attenuation correction, 3D 
row action maximum likelihood algorithm [6]). The Alz-
heimer’s Disease Neuroimaging Initiative (ADNI, http://​
adni.​loni.​usc.​edu) has [18F]FDG PET images for over 300 
healthy controls (e.g. n = 360 used in Ding et al. [7]) but 
is restricted to higher ages (e.g. ages ~ 76 ± 6 years, range 
60–96, in Ding et  al. [7]). Several commercial packages 
contain normal [18F]FDG brain PET data, but typically 
with scant information [6, 8]. We have recently pro-
vided a detailed description of MRXFDG, a collection 
of healthy controls specifically scanned for databasing, 
consisting of [18F]FDG brain PET-CT as well as CTs, T1 
weighted, and FLAIR MR images (n = 37, 38 ± 11.5 years, 
range 23–65).

The brain PET databases listed above have major dif-
ferences due to hardware used. Differences include spa-
tial resolution and field of view; attenuation correction 
method; preparation; dose injected; length of uptake 
and scanning time; and reconstruction method. It has 
previously been shown that differences in the acquisi-
tion of PET data between groups reduces the accuracy 
of classifying dementia patients [8, 9], hence adequately 
harmonised databases also have the potential improve 
existing diagnostic techniques in dementia [9]. How-
ever, we were mainly interested in comparisons against 
younger patients or research participants with younger 

age ranges. As databases are particularly scarce for 
younger adults, their combination is—in principle—an 
attractive option but needs investigation.

Investigations into harmonizing [18F]FDG-PET scans 
that have been acquired using different scanners and/
or protocols exist for phantom studies [10–12], and for 
harmonizing radiomics features in half-body PET [13]; 
however, few studies have investigated harmonisation 
of brain images obtained with [18F]FDG [9, 14] or other 
ligands [15].

Clinically, combining databases of younger adults is 
particularly important for epilepsy, where the mean age 
at presurgical evaluation is typically around 30  years of 
age [16], and where FDG PET coregistered with MRI is 
crucial for finding small areas of focal cortical dysplasias 
(FCDs) [17–20].

This study investigates the combination of two [18F]
FDG-PET and T1 weighted MRI neuroimage databases: 
CERMEP-iDB-MRXFDG, which was characterised 
in Merida et  al. [1] and a database created in Marseille 
which underwent similar characterisation in this study. 
Varying combination strategies and statistical designs 
were used to compare detection rates for histologi-
cally verified FCDs [21–23] in the preoperative scans of 
34 patients obtained on three different scanners, using 
the standard software statistical parametric mapping 
(SPM12, https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​
spm12/).

Materials and methods
Cohort characteristics
Marseille database
The Marseille database consists of 60 healthy volunteers, 
but MRI was unavailable in two. The remaining n = 58 
volunteers with complete datasets (34 women) had an 
age of 50 ± 17 (range 21–78) years.

Participants had given written informed consent. Full 
inclusion and exclusion criteria can be found at https://​
clini​caltr​ials.​gov/​ct2/​show/​NCT00​484523. A 15-min 
acquisition of PET data started 30  min after injection 
of 111  MBq of [18F]FDG. Participants were instructed 
to rest with their eyes closed during the uptake period. 
PET was obtained on a GE Discovery ST PET/CT (GE 
Healthcare, Waukesha, Wisconsin, USA), with a 6.2 mm 
axial resolution. Images were CT-corrected for attenua-
tion and reconstructed into 47 contiguous 3.27 mm thick 
transverse sections using the ordered subsets expecta-
tion maximisation algorithm (OSEM), with 5 iterations 
and 32 subsets [24]. The final images had a voxel size of 
1.17 mm isotropic in a matrix of 256 × 256 × 256 voxels.

Sagittal T1-weighted anatomical images were acquired 
on a Siemens SymphonyTim 1.5  T scanner (voxel size 

http://adni.loni.usc.edu
http://adni.loni.usc.edu
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://clinicaltrials.gov/ct2/show/NCT00484523
https://clinicaltrials.gov/ct2/show/NCT00484523
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1 mm isotropic, TR 1880 ms, TE 2.92 ms, inversion time 
1100 ms, flip angle 15°).

iDB‑MRXFDG database
MRXFDG [1] is a database of anatomical MRI and PET 
[18F]FDG head images from 37 normal adult human 
subjects (age 38 ± 11.5  years, range 23–65). The PET 
data were acquired for 10  min on a Siemens Biograph 
mCT64 50  min after administration of a planned dose 
of 1.5  MBq/kg + 18.5  MBq of [18F]FDG (with an actual 
dose injected of 122.3 ± 21.3 MBq [1]). PET images were 
reconstructed with OP-OSEM 3D (12 iterations, 21 sub-
sets), incorporating the system point spread function and 
time of flight in a matrix of 200 × 200x109 voxels with a 
voxel size of 2.04 × 2.04 × 2.03 mm3.

Sagittal T1-weighted MRI data were obtained on a Sie-
mens Sonata 1.5 T scanner (voxel size 1.2 mm isotropic, 
TR 2400  ms, TE 3.55  ms, inversion time 1000  ms, flip 
angle 8°).

Patient group
[18F]FDG PET data for 34 patients (17 men, 
27 ± 11.9  years, range 13–48) were available from an 
ongoing service evaluation (King’s College Hospital, 
London, project reference 10/2021). All had histopatho-
logically proven FCD type 2 [21–23]. [18F]FDG uptake is 
regularly decreased in FCD type 2 [17–19], and detection 
of decreased uptake was therefore used as an outcome 
parameter in this study. Patients were scanned 1994–
2017 on three different imaging systems: a GE Discovery 
710 with a full-width-at-half-maximum NEMA resolu-
tion of 5.3 mm (“VPFX”, a time-of-flight iterative OSEM, 
Ordered Subsets Expectation Maximisation reconstruc-
tion method), a GE Discovery ST with a resolution of 
6.4  mm (Iterative Reconstruction (IR) or filtered back 
projection (FBP)) and a CTI ECAT 951/R with an esti-
mated resolution on the image of ~ 8.9 mm [25] (FBP).

Image processing
We used SPM12 (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​
are/​spm12/) and SPM8 (https://​www.​fil.​ion.​ucl.​ac.​uk/​
spm/​softw​are/​spm8/), implemented in MATLAB.

Control data had been anonymised before transfer. The 
patient Digital Imaging and Communication in Medi-
cine (DICOM) files were anonymised and converted with 
dcm2niix (MRIconGL software) to NIFTI format for 
SPM analysis.

Processing of the Marseille database
Visual inspection  Images had already been reviewed by 
the creators of the database, EJ (Consultant Nuclear Med-
icine physician) and NG (Consultant Neuroradiologist). 
For the purposes of this analysis, images were additionally 

visually inspected by SOJ (Master student) and AH (Con-
sultant Neurologist). Subject 1 was excluded from further 
analysis due to an incidental finding of a medial frontal 
arachnoid cyst which would have led to exclusion of this 
area in all subjects in SPM.

SPM analysis (Fig.  1)  Reorientation and  coregistra-
tion  The origin of each PET and MRI image was man-
ually set to centre of the images, and images were manu-
ally straightened using the pitch, yaw and roll reorient 
options in SPM. The origin was set approximately to 
the anterior commissure. All images were then coarsely 
aligned (but not resliced). Each T1-weighted MR image 
was finally coregistered (without re-slicing) to its cor-
responding PET image.

Spatial normalisation  Coregistered T1 images were 
normalised to MNI space with the Segment function 
yielding a deformation field for each participant. PET 
images were normalised with the Normalise and Write 
function using those deformation fields and resampled 
at 1 × 1 × 1  mm voxel size using a 4th degree B-spline 
interpolation.

Intensity normalisation  Reconstructed PET images 
were normalised by (1) each subject’s weight and 
injected dose to obtain Standard Uptake Value (SUV) 
images (radioactivity concentration [kBq/cm3]/(decay-
corrected dose [kBq]/weight [kg])) and (2) by each sub-
ject’s mean activity within the intracranial volume (ICV) 
mask provided by SPM12 to obtain Standard Uptake 
Value ratio (SUVr) images.

Leave‑one‑out SPM analysis  Each of the participants 
was compared to the others via leave-one-out ANCOVA 
with images smoothed using an 8 × 8 × 8 mm full-width-
at-half-maximum (FWHM) 3D Gaussian filter. Global 
values (calculated by SPM via its default method of tak-
ing the overall image matrix mean, taking 1/8th of it 
leading to a brain mask, and averaging within this mask) 
and age were used as linear covariates. Other settings 
were: grand mean scaling and ANCOVA; independent 
measurements; equal variance; overall mean for cen-
tring; relative threshold masking (0.8); implicit but no 
explicit masking; global calculation omitted. Global 
normalisation with overall grand mean scaling (to 100), 
ANCOVA. Hypometabolism (reduced uptake in the 
individual compared to the group) and hypermetabo-
lism contrasts were investigated. Clusters were formed 
by voxels exceeding the threshold of p < 0.001 and were 
considered significant if their p value was < 0.05 at the 
cluster level (i.e., multiple comparison corrected via 
random field theory).

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Regional analysis  The T1 MR images were anatomi-
cally segmented into 95 regions of interest (ROI) of the 
Hammers atlas database (http://​brain-​devel​opment.​org/​
brain-​atlas​es/​adult-​brain-​atlas​es/​indiv​idual-​adult-​brain-​
atlas​es-​new/) [26–29] using the multi-atlas propagation 
with enhanced registration (MAPER) method [30]. Grey 
and white matter parts of mixed ROIs were separated 
using the approach described in Merida et al. [1]. Mean 
regional SUV and SUVr of the MR-coregistered PET were 
extracted in a selection of grey matter anatomical regions. 
We left out the white matter region corpus callosum and 
the ventricles, and combined all insular subregions into 
one label for comparison with Mérida et al. 2021. Right 
and left regions were combined.

The intra-regional coefficient of variation (COV) was 
calculated per participant and anatomical structure as 

the ratio between the SUV standard deviation and the 
mean SUV to represent regional SUV heterogeneity.

Processing of MRXFDG database
This had followed the same principles as for the Mar-
seille database. Briefly, the images had been reviewed by 
two neurologists; the database included CT, T1, MRI, 
and FLAIR MRI and were coregistered to the PET scans 
using SPM12. Spatial normalisation was done in SPM12; 
intensity normalisation was conducted by calculat-
ing SUV (using subjects’ weight and injected dose) and 
SUVr (using the mean ICV mask provided by SPM12). 
Leave-one-out analyses had been conducted using the 
same methods used for the Marseille database. Region 
definition had been conducted using the same Ham-
mers Atlas Database (i.e., the same regions) as for the 

Fig. 1  Flowchart of SPM analyses comparing the MRXFDG and Marseille databases and comparing individual FCD patients against separate 
and combined databases. For details, see text

http://brain-development.org/brain-atlases/adult-brain-atlases/individual-adult-brain-atlases-new/)
http://brain-development.org/brain-atlases/adult-brain-atlases/individual-adult-brain-atlases-new/)
http://brain-development.org/brain-atlases/adult-brain-atlases/individual-adult-brain-atlases-new/)
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Marseille database, but with the simpler method whereby 
a single maximum probability map in MNI space (con-
taining information from all 30 atlases) was transferred 
back to individual space via the deformation fields 
derived from SPM (i.e. one registration per participant as 
opposed to 30 independent registrations per participant 
for MAPER). Full details of the process are provided in 
Merida et al. [1].

Processing of patient group
The patient data were manually reoriented and realigned 
as above. However, as no MR images were available, 
normalisation to MNI space was performed using PET 
templates (cf. Figure  1). Three different templates were 
created from the PET images of control subjects normal-
ised via their corresponding T1 MRI: (1) with the Mar-
seille database only, (2) with iDB-MRXFDG only and (3) 
with both databases, each time using a ‘soft mean’ [31] 
equation within SPM’s imcalc function:

where N is the total number of subjects and I is each PET 
image in the database.

The Normalise Estimate and Write function in SPM8 
was then used to normalise the patient PET images to 
each of the three templates, resulting in three sets of 
normalised images. This PET-to-PET normalisation was 
then performed for both databases using their respective 
templates for comparison with patient data to ensure the 
database-specific normalisation method (i.e. MRXFDG 
controls normalised to the MRXFDG-derived tem-
plate were compared with patients normalised to the 
MRXFDG template; Marseille controls normalised to the 
Marseille-derived template were compared with patients 
normalised to the Marseille template; combined controls 
normalised to the combined template were compared 
with patients normalised to the combined template; cf. 
Figure 1).

Merging of control databases
For the Marseille and MRXFDG databases, we evaluated: 
(1) compatibility of resolution level, (2) systematic SUV 
differences at the voxel level, (3) age correlation with 
SUVs.

Image resolution
From visual inspection and as expected, the Marseille 
database had a lower resolution than MRXFDG. Such 
differences may be compensated by smoothing to a com-
mon resolution [14].

Soft mean =

N

n=1
in

N

n=1
(in ∼= 0)

To determine the amount of smoothing needed for 
MRXFDG to reduce differences prior to SPM analysis, 
normalised PET images were smoothed with a Gaussian 
kernel of 8 × 8 × 8 mm FWHM, and MRXFDG additionally 
with a 10 × 10 × 10 mm FWHM kernel. We then selected 
an axial slice in the middle of the brain (slice 78) from 15 
normalised ± smoothed PET images in each database, 
extracted intensity profiles from a diagonal line (Fig.  2), 
and measured the mean outer cortical gradient on the 
intensity profiles (between pixels 40–50 and 195–210). 
Absolute values of the gradients were compared and differ-
ences assessed via two-sample t tests with equal variance.

The optimised smoothing levels derived from this anal-
ysis were used in all subsequent experiments.

Age correlation analysis
Total brain volume decreases nonlinearly especially 
beyond the age of 60 [2, 32]. Correlations between [18F]
FDG uptake and age were assessed with SPM12 on each 
control database. We then removed the oldest subjects by 
decade of age and repeated the analyses until most cor-
relations disappeared.

Voxel‑based differences in [18F]FDG maps
The control databases were compared voxel-wise with 
a two-sample t test in SPM using the smoothing levels 
derived from the analysis of smoothness described above. 
The global values were taken into account as described 
above (section “Processing of the Marseille database—
Leave-one-out SPM analysis”) including age as a linear 
covariate. Other settings were as above. Clusters were 
again formed and corrected for multiple comparisons as 
described above.

Detection of FCD‑related decreases in [18F]FDG uptake
To assess the FCD-related decreases in [18F]FDG uptake 
in patients with FCD in comparison with healthy sub-
jects, different SPM models and ways to combine the two 
databases were explored, using the database-appropriate 
template as described above in the “Processing of patient 
group” section.

Analysis against each control database separately
An ANCOVA with group factor and age as covariate 
was performed against each database independently 
with the following settings: independent measurements; 
equal variance; grand mean scaling and ANCOVA; 
overall mean for centring; relative threshold masking 
(0.8); implicit but no explicit masking; global calculation 
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omitted. Global normalisation with overall grand mean 
scaling (to 100), ANCOVA.

Analysis against combined control databases
Two‑sample t test  A two-sample t test with age as covar-
iate was conducted as for the separate control groups, 
simply combining the two databases into one.

Full factorial design  The full factorial design had three 
levels (patients and the two control groups) assumed to 
be independent (i.e., the global intensity ANCOVA was 
performed per group) and age as covariate. The other set-
tings were the same as for the two-sample t tests.

Statistical assessment of patient results  We defined cor-
rect detection of the FCD as an area of significant decrease 
in uptake at the location of the area of resection of the his-
tologically verified FCD.

Significant clusters were defined as in the leave-one-
out analysis. However, as sensitivity is more important 
than specificity when screening for potential targets for 

intracranial EEG exploration, when no clusters were 
found at the initial threshold of p < 0.001, we also inter-
rogated the SPMs at p < 0.01.

Influence of scanner type and patient characteristics
We examined the detection rate for patients scanned on 
the three different cameras, using the best model derived 
above.

We also compared detection rates for patients whose 
FCD had been detected on MRI versus those who had 
been “MRI-negative”. The MRIs were classified as nega-
tive or positive after visual analysis by a neuroradiolo-
gist who had clinical information available both during 
reporting and during the multidisciplinary epilepsy sur-
gery meetings.

Results
Marseille database
Leave‑one‑out SPM analysis
Of the 58 healthy volunteers with PET and MRI in the 
Marseille database, two (#20, 55) had extensive areas of 

0 50 100 150 200Distance (mm)

0 50 100 150 200Distance (mm)

Fig. 2  Method for determining smoothness: selected slice and profile line (left side of Figure) and corresponding intensity profile (right side 
of Figure) for one subject of the Marseille database (top row) and one subject of iDB-MRXFDG (bottom row)
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hypermetabolism (increased [18F]FDG uptake) and one 
(#6) had extensive areas of hypometabolism (decreased 
[18F]FDG uptake). A fourth subject (#1) had an arachnoid 
cyst in the medial frontal lobe which would have led to 
masking out of this area in all SPMs (see visual analysis 
above). These four control subjects were excluded from 
all further analyses.

Results for the initial (n = 58) and final (n = 54) group 
are listed in Table 1.

Demographics
The Marseille database group of 60 participants had a 
mean age of 50  years (standard deviation 16.5, range 
21–78). There were 35 females and 25 males. Average 
weight was 67 kg (± 13.3, range 45–103), average height 
was 166  cm (± 9.5, range 149–195). All subjects had an 
injected dose of 111  MBq. The full demographics table 
indicating the two participants without MRI and the 
four removed after leave-one-out analysis is shown in the 
Additional file 1.

Regional analysis
Per-region mean absolute SUVs and the standard devia-
tion of those means were 13.0 ± 1.8 (coefficient of varia-
tion 14%), with a range of individual values of 5.6–24.6. 
Absolute SUVs for the 54 participants grouped by lobe 
or brain area (Fig.  3) showed a relatively wide spread 
between participants, with similar distribution for 
most of the areas (median SUVs ~ 13–15 with ranges 
of ~ 8–25). However, temporal lobe and posterior fossa 
regions had slightly lower values and higher variability, 
with median SUVs ~ 10–11 and ranges of ~ 5–23.

After normalisation of SUVs by individual intracranial 
SUV to yield SUVrs, mean SUVrs and the standard devia-
tion of those means were 1.1 ± 0.15 (coefficient of varia-
tion 14%), with a range of individual values of 0.56–1.38. 

SUVrs for the 54 participants grouped by lobe or brain 
area (Fig.  4) showed substantially reduced inter-subject 
variability compared with SUVs, and SUVrs also revealed 
inter-regional differences much more clearly.

Database comparability for healthy controls
PET image resolution and smoothing level
Table 2 shows the gradients calculated to assess smooth-
ness of the Marseille and iDB-MRXFDG databases for 
normalised ± smoothed images. When both databases 
were smoothed with the 8 mm Gaussian smoothing filter, 
the gradients of the smoothed images were significantly 
different (p < 0.05). Smoothing the Marseille database 
at 8 mm and iDB-MRXFDG at 10 mm led to no signifi-
cant difference (p > 0.05). Smoothing also reduced the 
between-subject variance of the gradient as expected.

All following analyses used these optimised smoothing 
levels.

Regional SUVs
Regional SUVs had similar patterns across cerebral 
regions between MRXFDG and the Marseille database 
(Fig.  5, row 1). Overall, higher SUVs were observed 
in the Marseille database (regional median ~ 10–15, 
against ~ 5–10 for MRXFDG), as well as a higher dis-
persion in SUVs across subjects (note the fixed-dose 
injection compared with weight-adjusted injection for 
MRXFDG). In contrast, a higher inter-regional variabil-
ity was observed in MRXFDG, in line with MRXFDG’s 
higher spatial resolution.

SUVs normalised by individual intracranial volume 
(SUVr) were higher for MRXFDG (median SUVr ~ 1–2 
vs. ~ 0.7–1.2 for the Marseille database, Fig.  5, row 
2), again in line with the higher spatial resolution in 
MRXFDG. Higher between-subject SUVr variability was 
also observed for MRXFDG. In addition, MRXFDG also 
had higher inter-region SUVr variability, in particular 

Table 1  Results of the leave-one-out analysis: false positives

At the subject-level, the denominator is the total number of participants; at the cluster-level, it is the average number of resolution elements in the mask; at the voxel-
level, it is the number of voxels inside the SPM mask

Contrast Subject-level (%) Cluster-level (%) Voxel-level (%)

N = 58 subjects

Hypermetabolism 12.1 (n = 7) 7.4 0.98

Hypometabolism 12.1 (n = 7) 7.4 1.10

Removing the aforementioned subjects from this analysis 
(n = 54)

Hypermetabolism 8.6 (n = 5) 3.7 0.45

Hypometabolism 10.3 (n = 6) 4.2 0.41
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when comparing regions of the frontal lobe and central 
structures between databases.

Intra-regional COVs (Fig.  5, row 3) were similar for 
both databases, except for caudate nucleus (higher values 
and dispersion in MRXFDG) and temporal lobe regions 
(higher values and dispersion in the Marseille database).

Age correlation
Marseille database  For the 54 subjects, age was posi-
tively correlated with [18F]FDG uptake in five white mat-
ter clusters (all p < 0.05): right and left paracentral hemi-
sphere, cerebellar white matter encompassing left and 
right, and left and right posterior crus of the internal 
capsule and temporal stem. There was a negative correla-
tion with [18F]FDG uptake in two clusters (both p < 0.005), 
encompassing frontal poles, medial frontal lobes and 
anterior cingulate gyri, lateral frontal lobes extending into 
the Sylvian fissures, and caudate nuclei.

When volunteers aged 60 years or older were removed 
(reducing the database to n = 35), there were no 

significant increases with age and only two clusters of 
decreased [18F]FDG uptake with age along fissures, in the 
anterior interhemispheric fissure and right Sylvian fis-
sure/insula (p < 0.05).

iDB‑MRXFDG  Age across all 37 scans was positively 
correlated with [18F]FDG uptake in two white matter clus-
ters (both p < 0.05), in posterior pons extending into the 
left crus cerebri, and right crus cerebri; uptake was nega-
tively correlated with [18F]FDG uptake in two clusters 
(both p < 0.05), in the right anterior superior frontal gyrus 
near the superior frontal sulcus, and the interhemispheric 
fissure near the anterior cingulate sulcus.

For the n = 35 scans from volunteers under 60  years 
old, there was a single borderline significant cluster of 
positive correlation between age and [18F]FDG uptake in 
the right superior medial occipital lobe (p < 0.044) and a 
single cluster of negative correlation centred on the supe-
rior frontal interhemispheric fissure (p < 0.005).
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Voxel‑wise two‑sample t test between databases of healthy 
controls
In the two-sample t test with age as a covariate, com-
paring 54 scans from the Marseille database with the 
37 scans from iDB-MRXFDG, in the Marseille rela-
tive to the MRXFDG database there were two areas 
of significantly increased uptake (p < 0.05) in the left 
and right occipital poles. As the global values in the 
two databases were very different and the two-sam-
ple t test does not correct for this, there was one very 

large significant cluster of decreased uptake (p < 0.001) 
encompassing most of the brain with a fronto-tempo-
ral emphasis but sparing the occipital lobe.

For the n = 35 participants under the age of 60 from 
each database, similar results were obtained.

Detection of FCD‑related hypometabolism
FCD detection as  a  function of  statistical model  As 
shown in Table  3, around half of FCDs were detected 
with either database. The simple combination of both 
databases led to worse performance despite adjusted 
smoothing levels. However, harmonising global values via 
the Full Factorial model improved performance, with the 
age-restricted combined databases performing best (up to 
24/34 = 71% of lesions detected).

FCD detection as a function of PET scanner used  Using 
the best-performing model (Full Factorial, both data-
bases, age restriction, any p value, see Table 3), detec-
tion rates were similar across patient scans obtained 
with the three scanners: 8/10 (80%) for the CTI ECAT 
951/R, 9/14 (64%) for the GE Discovery ST, 7/10 (70%) 
for the GE Discovery 710.

FCD detection in MRI‑negative cases  Eleven of the 34 
patient scans had been “MRI-negative”, i.e., the FCD had 
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Fig. 4  Regional SUVr obtained by normalizing by mean SUV in ICV mask for all subjects retained (n = 54) in the Marseille database. Graphics 
and abbreviations as in Fig. 3

Table 2  Smoothness gradients

A summary of the gradients calculated to assess to smoothness of the 
normalised and/or smoothed databases. Optimised smoothing level retained 
highlighted in bold

Gaussian filter used Gradient (mean ± SD) Coefficient of 
variation (%)

Marseille database

No filter 21.4 ± 3.1 14.5

8 × 8 × 8 mm 15.9 ± 1.5 9.4

iDB-MRXFDG

No filter 22.2 ± 4.0 18.0

8 × 8 × 8 mm 17.2 ± 2.5 14.5

10 × 10 × 10 mm 15.0 ± 2.1 14.0
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Fig. 5  Regional SUV (row 1), SUVr (row 2) and SUV coefficient of variation (row 3) for MRXFDG (left column) and Marseile database (right column). 
Abbreviations as in Fig. 3
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not been detected on MRI. The location of the FCD was 
correctly identified in 10/11 (91%).

Discussion
We characterised the Marseille database of [18F]FDG 
PET-CT and T1 MRI and then compared it to the 
recently described CERMEP iDB-MRXFDG database 
[1]. We investigated the harmonisation of both databases 
in the context of the example application of detection of 
epileptogenic lesions in patients with FCD.

Marseille database
The Marseille database has previously been used in vari-
ous contexts [24, 33] but has not undergone detailed 
characterisation as CERMEP iDB-MRXFDG [1].

In contrast to structural MRI, there is a dearth of data-
bases of healthy controls with [18F]FDG-PET images pub-
lished or made available to the scientific community (see 
introduction), especially in the younger age range which 
is essential for research into the epilepsies [18], disor-
ders of consciousness [34, 35], and normal brain function 
[36–38]. The Marseille database meets this need since it 
is composed of subjects ranging from 21 to 78 years old 
(50 ± 17 mean ± SD) and can be used in a large panel of 
applications. Leave-one-out SPM analysis was conducted 
to ensure the normality within the database, resulting in 
4 subjects (7%) being removed from further analyses, in 
line with Waterschoot et al. [6] where 4% of subjects were 
removed via a similar process.

Database comparison
While overall the two databases were comparable in 
terms of [18F]FDG uptake patterns, we also found differ-
ences due to various factors.

First, global image appearance was different, with 
greater spatial resolution and better contrast in MRXFDG 
(Fig.  2). We demonstrated that this was due to different 
smoothness of the reconstructed images, expected from 
differences in acquisition systems and reconstruction 
algorithms. Reducing the differences in the image resolu-
tion (visually and quantitatively, see Table 2) was success-
fully achieved by smoothing the MRXFDG database with a 
larger Gaussian kernel, similarly to previous work [13, 14].

Second, different SUVs were obtained for the two data-
bases (Fig.  5, row 1). As SUV is semi-quantitative, dif-
ferences are expected between scanners and acquisition 
protocols, in particular for uptake delay and acquisition 
duration. For the Marseille database, the same dose was 
injected for all participants, which will explain the higher 
inter-subject variability compared to adjusting dose by 
weight, as in MRXFDG [1]. We also observed a deviation 
of the boxplots towards high SUV values for the Mar-
seille database, especially in the occipital lobe, likely cor-
responding to more visual stimulation during the tracer 
uptake period. This was also borne out by the voxel-based 
comparison and occurred despite similar instructions, 
namely to rest with eyes closed. Finally, for MRXFDG, 
we observed three outliers with lower regional SUVs. 
They also had reduced inter-region variability suggest-
ing they had not followed the fasting instruction, making 
the PET data less informative. Normalizing within-image 
via SUVr (Fig. 5, row 2) reduced between-subject SUVr 
variability for the Marseille database, as variability due to 
fixed-dose injection was compensated for. The MRXFDG 
database had higher inter-region SUVr variability, in par-
ticular in regions of the frontal lobe and central struc-
tures. This could be a consequence of the longer uptake 
period for MRXFDG (50  min vs. 30  min for Marseille) 

Table 3  Detection of FCD-related decreased [18F]FDG uptake in patients

Summary of detection of FCD-related decreased uptake in n = 34 patients, using any initial threshold (see text for details)

DB = database, 2STT = two-sided t test, FF = full factorial model

Best performance highlighted in bold

Initial voxel thresholds used were p < 0.001 and p < 0.01

Clusters were considered significant when their cluster p value was < 0.05

Marseille MRXFDG Both DB (2STT) Both DB (FF—
under 60 years)

Both DB (FF—all ages, 
linear age covariate)

Both DB (FF—all 
ages, quadratic age 
covariate)

Datasets in database(s) used 54 37 91 70 91 91

Lesions found (any p value)

n 17 18 14 24 22 19

% 50 53 41 71 65 56

Lesions found (significant p value)

n 14 18 12 22 19 18

% 41 53 41 65 56 53
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and the higher spatial resolution for MRXFDG which will 
enhance contrast between regions.

While intra-regional COV distribution was similar 
for the two databases (Fig. 5, row 3), we note: (1) intra-
regional COV for the caudate nucleus in MRXFDG was 
higher than for all other regions, with a number of out-
liers. This may be due to the regional segmentation of 
MRXFDG via a single registration of a maximum prob-
ability atlas derived from the Hammers Atlas Database 
[26, 27] to the subject space which can result in caudate 
nucleus labels including voxels of the surrounding lat-
eral ventricles, whereas the Marseille database was seg-
mented via the 30 individual atlases from the Hammers 
Atlas Database (i.e., identical region definitions) but with 
the more accurate multi-atlas approach MAPER [30]. (2) 
Temporal lobe regions had higher intra-regional COV, 
higher variability, and a larger number of outliers for the 
Marseille database. This may be due to the shorter field 
of view of the scanner used for the Marseille database 
(15.7  cm vs. 22  cm for MRXFDG) which may produce 
higher COV in the temporal lobe which is closer to the 
edge of the field of view [39].

Third, correlations between age and [18F]FDG uptake 
were shown in each database, with positive correlations 
in the white matter (likely due to SPM normalizing to the 
global mean) and negative correlations in or near fissures 
widening with age. Leaving out subjects ≥ 60  years old 
minimised these in each database.

We used individualised smoothing of the two data-
bases, based on the images themselves, ahead of SPM 
analysis. Another approach is to use standardised phan-
toms to derive a smoothing factor [40] to account for 
different reconstruction algorithms, later expanded to 
additionally account for different hardware (EQ.PET, 
https://​marke​ting.​webas​sets.​sieme​ns-​healt​hinee​rs.​com/​
18000​00002​580275/​475f0​ba8d2​70/​EQ-​PET_​WP_​18000​
00002​580275.​pdf ). This phantom-derived approach has 
also been applied for comparing half-body (i.e., non-
brain) images across different reconstructions and PET 
systems [41]. However, as these methods only work on 
spatial resolution via Gaussian smoothing, brain PET 
with its strongly varying SUVs would still require nor-
malisation for global uptake, as performed via a full fac-
torial design in this study.

Detection of epileptogenic regions in patients with FCD
We used the insights gained by the database analyses 
to explore combination of databases in an experiment 
designed to detect known abnormalities (FCD) (Table 3). 
Likely due to the global intensity differences, simply com-
bining both databases decreased performance compared 
to each database on its own despite the much larger 
number of scans. Accounting for differences in intensity 

between the two databases in a full factorial design out-
performed either database used separately. This was true 
for any type of accounting for age (via linear or quadratic 
covariates or by removing participants over 60 years old). 
However, excluding the oldest subjects in the databases 
informed by the age correlation experiments yielded the 
best results in locating FCDs (up to 71%); when all con-
trol participants were used, using age as a linear covariate 
was preferable to a quadratic fit but remained inferior to 
the exclusion of older controls.

Other studies have detected histologically proven MRI-
negative FCD on PET SPM5 analysis against 30 con-
trols in 72% [17], in line with our study. Detection rates 
on visual analysis were 78% for PET-only and 95% after 
coregistration with MR [17]. In another larger study from 
the same group, visual analysis blind to all electroclinical 
data led to a detection rate of 44% increasing to 71% with 
electroclinical data and to 83% after coregistration with 
MRI [18], suggesting the potential of using SPM or simi-
lar analyses of PET with larger databases jointly with MR 
data to increase detection rates in future studies [42].

Limitations
Differences between databases could potentially be 
reduced by adapting the reconstructions to be more 
similar—for example, MRXFDG could have been re-
reconstructed without the spatially varying point spread 
function. However, as PET hardware [43] and PET recon-
structions [44] continue to evolve, such differences are 
unavoidable, and we opted to use both databases as pro-
vided. It is reassuring that we found similar performance 
for patient data acquired on three different systems, espe-
cially as we chose not to repeat the resolution matching 
for each of the three patient scanners which would be 
prohibitively time-consuming in practice.

We only investigated two [18F]FDG brain PET data-
bases. As explained above, few are publicly available, and 
often the focus is on the older age group used for demen-
tia studies. We found the best performance when restrict-
ing the age range, suggesting that e.g. the ADNI database 
exclusively containing data from ≥ 60 year-olds would be 
less suitable for applications like epilepsy workup or basic 
science studies in younger people.

We used a single sample of patient data as part of a 
Service Evaluation. However, there was variability from 
using three scanners, and the sample had the advantage 
of a histological ground truth.

Perspectives
Our work contributes to the understanding of data struc-
ture and descriptive statistics of [18F]FDG PET data-
bases. These have been studied less than MR databases 
but are crucial for detectability of pathology as shown 

https://marketing.webassets.siemens-healthineers.com/1800000002580275/475f0ba8d270/EQ-PET_WP_1800000002580275.pdf
https://marketing.webassets.siemens-healthineers.com/1800000002580275/475f0ba8d270/EQ-PET_WP_1800000002580275.pdf
https://marketing.webassets.siemens-healthineers.com/1800000002580275/475f0ba8d270/EQ-PET_WP_1800000002580275.pdf
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here. Fully characterising [18F]FDG databases enables 
principled choices for combining them. In our work we 
have explored some harmonisation methods and shown 
a substantial improvement in the detectability of lesions, 
using FCD as an example. Future work can now focus on 
combining multiple databases and perfecting methods 
to decrease differences between databases, e.g. regional 
normalisation. In addition, while SPM is a well-under-
stood analytical method, our work can be used beyond 
mass univariate testing towards combining databases in 
machine learning or artificial intelligence (AI) applica-
tions. As an example, we have recently created large data-
bases of simulated healthy and FCD-typical brain FDG 
PET images from MR phantoms [45] and used them to 
create higher-quality PET images from clinical standard-
resolution PET via convolutional neuronal networks, 
resulting in better quality metrics and FCD detectability. 
Healthy control databases and AI methods can also be 
used to simulate pseudo-healthy FDG PET from patients’ 
MRIs which can then be subtracted from the real clinical 
PET to reveal lesions [42, 46]. Real databases such as the 
ones examined in this paper fulfill the need to take into 
account the physics of image acquisition and reconstruc-
tion and inform of descriptive image statistics encoun-
tered in practice.

Conclusions
Few brain PET research databases are available, and data-
bases in commercial software are often poorly described. 
Our work contributes to plugging the gap in database 
information. We also show the crucial importance of 
database and image characteristics for research and clini-
cal tasks. Via relatively simple steps, we provide guidance 
on how databases can be harmonised, and provide evi-
dence that this can lead to better abnormality detection.
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