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Abstract 

Background To investigate the use of dynamic radiomics features derived from dual‑time‑point (DTP‑feature)  [18F]
FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy 
in lymphoma patients.

Methods We analyzed 126 lesions from 45 lymphoma patients (responding n = 75 and non‑responding n = 51) 
treated with chemotherapy from two different centers. Static and DTP radiomics features were extracted from base‑
line static PET images and DTP Ki parametric maps. Spearman’s rank correlations were calculated between static 
and DTP features to identify features with potential additional information. We first employed univariate analysis 
to determine correlations between individual features, and subsequently utilized multivariate analysis to derive 
predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multi‑
variate modeling, we utilized both the minimum redundancy maximum relevance feature selection technique 
and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation 
and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensi‑
tivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets.

Results Via Spearman’s rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP 
features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate 
modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static 
features demonstrated a strong correlation (AUC = 0.75, p value = 0.0001, q value = 0.0007) with therapy response. 
The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p 
value = 0.0001, and q value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmoni‑
zation. Use of harmonization plus combining DTP and static features was shown to provide significantly improved 
predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09, and specificity = 0.88 ± 0.05). All models 
depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann–Whitney test).
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Conclusions Our results demonstrate significant value in harmonization of radiomics features as well as combining 
DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.

Keywords Dynamic PET, Radiomics, Artificial intelligence, Lymphoma, Predictive model, Engineered radiomics

Introduction
In clinical oncology, medical imaging technologies have 
evolved from simple diagnostic tools to a source of valu-
able clinical information over the years [1, 2]. In addition, 
the emergence of new technologies and the requirements 
of precision medicine has given rise to a promising field 
of radiomics [3, 4]. Radiomics is an image data-mining 
framework that makes it possible to extract a variety of 
quantitative imaging features from medical images and 
identify potential relationships with clinical and biologi-
cal findings. As a result, radiomics may increase the pre-
cision of diagnosis, prediction, and prognosis to improve 
clinical decision-making for many diseases, including 
lymphoma [1, 5–12].

[18F]FDG or other PET radiopharmaceutical uptake 
patterns within a tumor have been characterized by iden-
tifying imaging features (intensity, heterogeneity, and 
shape) reflecting biological characteristics, such as cel-
lular density, proliferation rate, hypoxia, necrosis, and 
angiogenesis [13, 14]. Several attempts have been made 
to evaluate the relationship between quantitative param-
eters of  [18F]FDG uptake and the treatment response of 
lymphoma [15–23]. Parvez et  al. [16] found that meta-
bolic tumor volume (MTV) correlates with response to 
therapy in a retrospective study of 82 aggressive B-cell 
lymphoma patients. However, MTV represents the total 
volume of tumor activity and does not reflect spatial dis-
tribution, heterogeneity, and shape of lesions. Lue et  al. 
[17] and Tatsumi et al. [18] reported that the radiomics 
features of  [18F]FDG PET promise predictive values for 
treatment response in patients with Hodgkin and fol-
licular lymphoma, respectively. In a retrospective study 
of 30 patients, Sun et al. [24] found that the standardized 
uptake value (SUV), the MTV, some texture features, and 
the tumor location were useful parameters in interim 
response prediction of primary gastrointestinal diffuse 
large B-cell lymphoma (DLBCL).

Based on the literature, it remains to be established 
how important different biomarkers are for predicting 
outcomes in lymphoma. For instance, in diffuse large 
B-cell lymphoma, Adams et  al. [25] discovered that the 
national comprehensive cancer network international 
prognostic index was more accurate at predicting pro-
gression-free survival than whole-body total MTV, while 
Cottereau et  al. [26] demonstrated the opposite. Such 
studies are based on static PET acquisitions that measure 
radiopharmaceutical uptake heterogeneity only at  a one 

time-point. However, the knowledge of regional hetero-
geneity in molecular features of cancer cells changes over 
time can have significant implications for tumor response 
to treatment and patient outcomes [27].

Alternatively, dynamic PET imaging, employed pri-
marily in the research setting, can track PET radiop-
harmaceutical biodistribution in the body over time, 
offering dynamic analysis, including full kinetic mod-
eling and potentially enhanced clinical tasks such as 
therapy response monitoring [28, 29]. As such, dynamic 
features derived from kinetic maps might contain addi-
tional information concerning the behavior of the tumor. 
Meanwhile, there have been only few published papers 
evaluating dynamic features due to the limitations of 
dynamic acquisition. In patients with non-small cell 
lung cancer (NSCLC), two studies investigated the cor-
relation between dynamic and static radiomics features 
[30, 31]. Tixier et al. [30] analyzed static and parametric 
PET images with quantitative parameters (MTV,  SUVmax, 
 SUVmean, heterogeneity) on 20 therapy-naive NSCLCs. 
They reported similar correlations and minor differences 
for metrics such as entropy and zone percentage quanti-
fying intra-tumor uptake spatial distribution heterogene-
ity. However, they suggested further validation studies to 
compare the predictive or prognostic value of static ver-
sus parametric images for patient response or overall sur-
vival in NSCLC. Noortman et  al. [31] evaluated a more 
extensive feature set (spatial intensity, shape, and texture 
radiomics features) derived from static and dynamic  [18F]
FDG PET of thirty-five NSCLC patients. They indicated 
that dynamic gray-level co-occurrence matrix (GLCM) 
features contain limited additional information com-
pared to static radiomic features. However, the number 
of patients in the dataset was limited, and it is difficult 
to draw a general conclusion. This is noteworthy that 
the aforementioned studies [30, 31] have merely investi-
gated dynamic features in lung cancer with no prediction 
of response to therapy; therefore, further investigation is 
needed to evaluate chemotherapy response prediction 
using dynamic features of lymphoma patients. Based on 
previous reports, certain dynamic features appear to offer 
more information than static features, which could lead 
to improved predictions. In the current study, we sought 
to investigate the performance of dynamic features 
derived from the dual-time-point (DTP) Ki to develop 
pre-therapy  [18F]FDG PET/CT prediction models for 
response to chemotherapy in lymphoma patients.
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Materials and methods
Figure  1 summarizes the various steps involved in the 
study design. At first, the Ki map was generated from 
DTP imaging using pre-treatment PET data. Next, radi-
omics features were extracted from the regions of inter-
est (ROIs) segmented from the SUV PET image and Ki 
map. Afterward, ComBat harmonization is applied to 
each feature set to adjust for the batch impact caused 
by the multi-center dataset. Next, the response to treat-
ment was evaluated according to the post-treatment PET 
scan. Finally, predictive models are developed to predict 
the treatment response of lymphoma (Hodgkin and non-
Hodgkin) patients.

PET/CT imaging protocol and patient selection
We searched for lymphoma patients with PET/CT scans 
from January 2013 until March 2022. We investigated 
around 4000 patients’ database records at two independ-
ent institutions, referred to as Centers 1 and 2. Medi-
cal records were carefully reviewed to identify which 
patients had pre- and post-treatment PET/CT scans, 
with the pre-treatment images acquired at DTP acquisi-
tion with a lesion in FOV of the delayed scan. The inclu-
sion and exclusion criteria of patients are presented in 
Fig.  2. Overall, 26 patients from Center 1 and 19 from 
Center 2 were included.

All patients benefited from a second PET/CT evalua-
tion after the first line of chemotherapy, specifically the 
doxorubicin (adriamycin), bleomycin, vinblastine, and 
dacarbazine (ABVD) regimen in Hodgkin lymphoma, 
and the rituximab, cyclophosphamide, doxorubicin, 
vincristine, and prednisone (R-CHOP) in non-Hodgkin 
lymphoma. Response to treatment was evaluated on a 

lesion basis according to Deauville criteria reported on 
the post-treatment PET scan [32]. A total of 126 lesions 
were individually classified as responding (n = 75) vs. 

Fig. 1 Five‑step flowchart for the present study. (Step I) The  Ki map was generated based on DTP imaging of pre‑treatment PET data. (Step II) The 
SUV and Ki map were segmented to define VOI. (Step III) The LIFEx software was used to extract static and dynamic features. (Step IV) The ComBat 
harmonization was applied to each feature set to correct for the batch effect. A post‑treatment PET scan was then used to assess the response 
to treatment. (Step V) prognostic models were developed to predict treatment outcomes for lymphoma patients and different classification metrics 
were reported for evaluation of models

Fig. 2 Inclusion and exclusion criteria followed in patient selection. 
A total of 126 lesion in 45 cases including 75 responding and 51 
non‑responding to treatment response were retained from an initial 
of 3980 patients. The criteria that were considered include: (1) 
patients have pre‑ and post‑treatment PET/CT scans, (2) undergoing 
DTP PET image acquisition for initial PET scan, and (3) visible lesion 
in delayed image of pre‑treatment PET
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non-responding (n = 51). The clinical characteristics of 
the patients are reported in Table 1. Before treatment, 
all patients underwent DTP  [18F]FDG PET/CT scans 
with detailed key acquisition parameters of the datasets 
presented in Table 1.

Generation of the Ki images
The image of the metabolic uptake rate was generated 
according to the DTP scan through an in-house MAT-
LAB code [33, 34]. In short, the Ki map was defined as 
the slope of the Patlak equation from two time points, 
t1 (related to the routine static image data acquired 
60-min post-injection) and t2 (the time of the delay 
scan) in the following Eq. (1):

where CPET(t) and CP(t) denote radiopharmaceuti-
cal concentrations at time t in tissue and plasma, ROIs, 
respectively. We derived a subject-specific input func-
tion for each patient by scaling a population-based input 
function described by Vriens et  al. [35] to the patient’s 
image-derived blood pool activity derived from the rou-
tine static PET image. Spherical VOIs were manually 
delineated in the left ventricle and atrium at a sufficient 
distance from the myocardium, with 15 mm and 10 mm 
diameters, respectively. The VOIs were then averaged.

In most cases, the patient was taken off the bed fol-
lowing the whole-body (WB) PET prior to the delayed 
scan. As such, repositioning is a possible source of error 
for DTP evaluations. As a result, tumor-specific rigid 
registration between WB and delayed PET based on CT 
images was performed to maximize the accuracy of the 
Ki map.

Image segmentation and feature extraction
A threshold value of 30% of the maximum SUV was used 
to determine the VOI on the static images [36]. Then, the 
same VOI was manually delineated on the Ki images and 
modified by erasing or adding voxels to ensure the entire 
tumor was included in the VOI. Finally, all VOIs were 
reviewed by two nuclear medicine specialists. Figure  3 
shows examples of segmented tumors on the parametric 
Ki and SUV images.

The LIFEx package (version 7.0.15) [37], which is 
standardized through the image biomarker standardiza-
tion initiative (IBSI) [38], was used to extract radiomics 
features on PET images. First, all the Ki maps were mul-
tiplied by 100 to obtain the same scale as the SUV image. 
Then, the SUV and Ki images were processed using 64 
bins, with the minimum and maximum image intensity 
values set to 0 and 20. Additionally, the voxel size was 
resampled to 4 × 4 × 4  mm3. A total of 65 radiomics fea-
tures, including the category of gray-level co-occurrence 
matrix (GLCM, seven features), neighborhood gray-level 
different matrix (NGLDM, three features), gray-level run 
length matrix (GLRLM, eleven features), gray-level zone 
length matrix (GLZLM, eleven features), shape (five fea-
tures), histogram (four features), conventional (twelve 
features), and discretized (twelve features) indices, were 
extracted for each lesion in both SUV and Ki images. Full 
details about the features are presented in Table 2.

Harmonization
Harmonization was performed for all PET param-
eters using the ComBat harmonization method [39] to 

(1)Ki =

CPET(t2)
CP(t2)

−
CPET(t1)
CP(t1)

t2
0

CP(τ )dτ

CP(t2)
−

t1
0

CP(τ )dτ

CP(t1)

Table 1 Summary of clinical characteristics of patients and 
image acquisition parameters in different centers

Variable Center 1 Center 2

Patient characteristic

Patient NO 26 19

Age(year) (Range) 36 (8–77) 38 (18–66)

Female 14 11

Male 12 8

Histological type

Hodgkin 11 15

Non‑Hodgkin 15 4

Lesion NO 81 45

Lesion treatment response

Responding 55 20

Non‑responding 26 25

CT parameters

kVp (min, max, avg) (80, 120, 119) (80, 140, 120)

Tube current (min, max, avg) (50, 250, 110) (50, 150, 100)

Matrix size (512 × 512) (512 × 512)

Slice thickness (mm) 3 5

Pixel spacing (mm) 0.97 0.97

PET parameters

Scanner Biograph mCT Biograph 6

PET acquisition time
[min, max, avg (min)]

(47, 83, 61) (47, 81, 64)

Delayed PET acquisition time [min, 
max, avg (min)]

(75, 228, 133) (97, 220, 145)

Matrix size 200 × 200 168 × 168

Slice thickness (mm) 5 5

Pixel spacing (mm) 4.0728 4.0728

Reconstruction method OSEM OSEM

Iteration and subset 2i, 24 s 2i, 21 s

Filter Gauss FWHM (mm) 4 5

Frame duration (min) 3 3
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eliminate multicentre effects from radiomics features. In 
addition, ComBat harmonization removes batch effects 
based on an empirical Bayes framework using Bayes 
estimations for the location-scale parameters, including 
mean and variance for each variable [39–41].

Univariate analysis
We calculated correlation coefficients between static and 
DTP features using Spearman’s rank method to iden-
tify features that might provide additional information. 
Receiver operating characteristic (ROC) curve analysis 
was used to assess the predictive power of each radiom-
ics feature before and after the ComBat harmonization. 

The AUC of DTP and static features and the AUC of fea-
tures before and after the ComBat harmonization were 
compared using Delong’s test. All the statistical analyses 
were performed in MedCalc (version 20.0.14; MedCalc 
Software Bvba). To assess the significance of the features, 
we also applied false discovery rate (FDR) Benjamini–
Hochberg (BH) correction to correct for multiple com-
parisons, reporting q values. A q value of less than 0.05 
defined statistical significance.

Multivariate machine learning analysis
We developed various models using the DTP and static 
features before and after Combat harmonization. Our 

Fig. 3 Examples of SUV (top) corresponding the DTP  Ki (bottom) images showing segmented lesions

Table 2 Radiomic features extracted from the SUV and Ki images

Category Features

Gray‑level co‑occurrence matrix (GLCM) Homogeneity, Energy, Contrast, Correlation, Entropy, Entropy log2, Dissimilarity

Neighboring gray‑level dependence matrix (NGLDM) Coarseness, Contrast, Busyness

Gray‑level run length matrix (GLRLM) SRE, LRE, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE, GLNU, RLNU, RP

Gray‑level zone length matrix (GLZLM) SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE, LZHGE, GLNU, ZLNU, ZP

Shape Sphericity, Compacity, Surface, Volume (ml, vx)

First‑order features from the histogram Entropy, Entropy log2, Uniformity, AUC_CSH

Conventional and discretized indices Q1, Q2, Q3, min, mean, max, Standard Deviation, peak, TLG, Skewness, Kurtosis, 
Excess Kurtosis
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models were: (1) H_ DTP (harmonized radiomics fea-
tures extracted from the DTP Ki map), (2) H_Static (har-
monized features extracted from the SUV images), (3) H_ 
DTP + Static (combined harmonized features extracted 
from the DTP Ki map and the SUV images), (4) Non-H_ 
DTP (non-harmonized features extracted from the DTP 
Ki map), (5) Non-H_Static (non-harmonized harmonized 
features extracted from the SUV images), (6) Non-H_ 
DTP + Static (combined non-harmonized harmonized 
features extracted from the DTP Ki map and the SUV 
images).

First, we selected the most effective features by apply-
ing the minimum redundancy maximum relevance 
(mRMR) approach [42] to the input data. This algorithm 
selects a subset of features with maximum relevancy to 
the patient’s outcome and the most negligible correlation 
with each other simultaneously. Next, the classifiers were 
built with Python 3.7.4 and constructed using eXtreme 
Gradient Boosting (XGBoost version 1.6.1) machine 
learning algorithm [43]. XGBoost is an ensemble learn-
ing algorithm based on different decision trees. Finally, 
three different radiomic models based on the (1) static, 
(2) DTP, and (3) combination of DTP and static PET 
features were established to predict therapy response in 
lymphoma patients.

This study randomly divided the data into two groups: 
80% for the model training and internal validation and 
20% for the test. The test data were not used during 
model development. A subset of the training dataset 
was used to derive the models (80%), and the remain-
der (20%) was used for validation. We repeatedly trained 
a bootstrapped model with 1000 repetitions to find the 
optimal hyperparameters of models based on the ran-
dom search method and AUC. Then, the optimal model 
was tested on the remaining 20% of the dataset (unseen 
during model training). This process was repeated 100 
times to ensure the results were repeatable for different 
models. The mean ROC and the mean, standard devia-
tion, and 95% confidence interval (CI) of AUC, accuracy 
(ACC), sensitivity (SEN), and specificity (SPE) were used 
to assess the predictive performance of the models. We 
used the Mann–Whitney test to determine significant 
differences between the models.

Results
Univariate analysis
Spearman’s correlation matrix of static and DTP radi-
omics features is shown in Fig. 4. Using the Spearman’s 
correlation coefficient (ρ), the features with low (ρ < 0.5), 
moderate (0.5 < ρ < 0.7), and high (ρ > 0.7) correlation are 

Fig. 4 Spearman correlation matrix of dynamic and static features. Dynamic features with ρ < 0.7 contain additional information compared to static 
one



Page 7 of 13Samimi et al. EJNMMI Research           (2023) 13:70  

reported in Table  3. DTP features with ρ < 0.7 contain 
additional information compared to static ones.

The AUC, p value, and q value for each DTP and 
static feature before and after harmonization are 
reported in Additional file  1: Fig. S1. The significant 
differences in the ROC curves between DTP and static 
features, before and after harmonization, are compared 
using the Delong test and false discovery rate (FDR) q 
value (< 0.05) using the Benjamini–Hochberg proce-
dure (BH), as shown in Additional file 1: Fig. S2. Table 4 

shows the number of features whose performance (as 
AUC) significantly increased, decreased, or did not 
result in any difference before and after harmonization 
for both DTP and static features. No significant dif-
ference was observed among the ROC curves of DTP 
and static radiomics features. When comparing the 
ROC curves before and after harmonization, most of 
the harmonized features do not show any decreases 
or increases in performance against non-harmonized 
features.

Table 3 Correlation of static and DTP features using Spearman’s correlation coefficient (ρ)

Low correlation
ρ < 0.5, p value < 0.02

Moderate correlation
0.5 < ρ < 0.7, p value < 0.0001

High correlation
ρ > 0.7, p value < 0.0001

GLCM_Correlation
NGLDM_Busyness
GLRLM_GLNU
GLZLM_LZE
GLZLM_SZLGE
GLZLM_LZLGE
GLZLM_LZHGE
Conventional_Skewness
Conventional_Excess Kurtosis
Conventional_Kurtosis
Discretized_Kurtosis
Discretized_Excess Kurtosis

GLCM_Homogeneity
GLCM_Energy
GLCM_Contrast
NGLDM_Coarseness
NGLDM_Contrast
GLRLM_SRE
GLRLM_SRLGE
GLRLM_LRE
GLRLM_LGRE
GLRLM_RP
GLRLM_LRLGE
GLZLM_SZE
GLZLM_LGZE
GLZLM_ZP
Shape_Sphericity
Shape_Compacity
Conventional_min
Discretized_min
Discretized_Skewness
Uniformity

GLCM_Entropy
GLCM_Entropy_log2
GLCM_Dissimilarity
GLRLM_HGRE
GLRLM_SRHGE
GLRLM_LRHGE
GLRLM_RLNU
GLZLM_HGZE
GLZLM_SZHGE
GLZLM_GLNU
GLZLM_ZLNU
Shape_Surface(mm2)
Shape_Volume(mL)
Shape_Volume(vx)
Discretized_HISTO_Entropy
Discretized_HISTO_Entropy_log2
Discretized_AUC_CSH
Conventional_Q1
Conventional_Q2
Conventional_Q3
Conventional_mean
Conventional_max
Conventional_peak
Conventional_TLG(mL)
Conventional_std
Discretized_Q1
Discretized_Q2
Discretized_Q3
Discretized_mean
Discretized_max
Discretized_peakSphere0.5 mL
Discretized_TLG(mL)
Discretized_std

Table 4 Results of the Delong test comparing AUCs of the DTP and static features with and without ComBat harmonization

The number of features (out of 65) is shown as to having significantly lower, higher, or comparable performance

Comparisons features Significantly decreased Significantly improved No difference

Harmonized versus non‑harmonized DTP 15 3 47

Harmonized versus non‑harmonized Static 0 0 65

Harmonized static versus harmonized DTP 0 0 65

Non‑harmonized static versus non‑harmonized DTP 0 0 65
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Multivariate analysis
The mRMR algorithm selected ten from 65 features for 
static and DTP models. From a total of 20 features com-
posed of 10 top DTP and static features, the combined 
static + DTP model used ten selected features applying 
the mRMR algorithm. All of the selected features for each 
model are presented in Table 5.

The heat map of AUC, accuracy (ACC), sensitivity 
(SEN), and specificity (SPE) for different models, includ-
ing DTP, static, and DTP + static, before and after har-
monization to predict treatment response, are shown 
in Fig.  5. The confidence interval (CI) and mean and 
standard deviations (Mean ± STD) of AUC, ACC, SEN, 
and SPE for these models are summarized in Table  6. 
Figure  6 represents the ROC curve of these models for 
the test set. AUCs for all models have the highest values 
after harmonization. Before and after harmonization, the 
mean of AUC for the DTP model were 0.76 ± 0.02 and 
0.87 ± 0.03, respectively. For static models, these values 
changed to 0.79 ± 0.02 and 0.88 ± 0.01, respectively, and 
for DTP + static model, these values were 0.81 ± 0.03 and 
0.97 ± 0.02, respectively. Among the models, the com-
bination of harmonized DTP and static features signifi-
cantly improves the performance with AUC = 0.97 ± 0.02, 
ACC = 0.89 ± 0.05, SEN = 0.92 ± 0.09, SPE = 0.88 ± 0.05, 
respectively. The 95% CI for these parameters was 0.96–
0.97, 0.88–0.90, 0.90–0.93, and 0.87–0.89, respectively. p 
Values are shown in Fig. 7, comparing models in terms of 
significant changes in AUC, ACC, SEN, and SPE. Major-
ity of models had significant differences (p < 0.05).

Discussion
Accurate prediction of response will improve treatment 
strategies and therefore optimize therapeutic results. In 
this study, we developed radiomics models for predict-
ing the response of lesions to chemotherapy using the 
XGBoost classifier based on the static and DTP PET 
features selected by the mRMR algorithm in lymphoma 
patients. To this end, we extracted radiomics features 
from the SUV image and DTP  Ki map, namely static and 

Table 5 Ten top features selected by mRMR algorithms for each model

H_DTP H_Static H_DTP + Static Non-H_DTP Non-H_Static Non-H_DTP + Static

GLCM_Homogeneity GLCM_Contrast DTP
GLCM_Energy

GLCM_Homogeneity GLCM_Dissimilarity DTP
GLCM_Energy

GLCM_Energy GLCM_Dissimilarity DTP
GLRLM_LRE

GLCM_Energy GLRLM_SRE DTP
GLRLM_SRE

GLCM_Entropy_log2 GLRLM_SRHGE DTP
GLRLM_RP

GLCM_Entropy_log2 GLRLM_RLNU DTP
GLRLM_LRE

GLCM_Entropy GLRLM_RLNU DTP
Uniformity

GLCM_Entropy GLZLM_SZHGE DTP
GLRLM_RP

GLRLM_SRE GLZLM_LZE DTP
Conventional_Skewness

GLRLM_SRE Uniformity DTP
Shape_Surface

GLRLM_LRE GLZLM_SZHGE Static
GLCM_Contrast

GLRLM_LRE Conventional_std DTP
Conventional_Kurtosis

GLRLM_RP Conventional_std Static
GLRLM_RLNU

GLRLM_RP Conventional
Skewness

DTP
Uniformity

Shape_Surface Conventional Skewness Static
GLZLM_LZE

SHAPE_Surface Discretized_Q3 Static
GLCM_Dissimilarity

Conventional
Skewness

Discretized_std Static
Discretized_std

Conventional
Kurtosis

Discretized_std Static
GLRLM_RLNU

Uniformity Discretized
Skewness

Static
Discretized_Skewness

Uniformity Discretized
Skewness

Static
Discretized_Skewness

0.87 0.81 0.83 0.79 H_DTP

0.88 0.84 0.75 0.88 H_Static 

0.97 0.89 0.92 0.88 H_DTP+Static 

0.76 0.69 0.67 0.7 Non-H_DTP

0.79 0.73 0.73 0.73 Non-H_Static 

0.81 0.75 0.77 0.74 Non-H_DTP+Static

A
U
C

A
C
C

SE
N

SP
E

0.9

0.85

0.8

0.75

0.7

Fig. 5 Heatmap of the performance of the DTP, static, 
and DTP + static models with and without ComBat harmonization; 
ACC: accuracy, AUC: area under the curve, SEN: sensitivity, SPE: 
specificity
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DTP features, respectively, and compared the predic-
tive treatment response performance of DTP and static 
features. The present study investigated the potential 
information that DTP features may add to traditional fea-
tures derived from the static PET images in 126 lesions 
of 45 lymphoma patients. Several studies have shown 
the significant potential of DTP imaging for generat-
ing parametric Ki images [33, 34, 44]. In the absence of 
list mode data, Van den Hoff et  al. [34] proposed novel 
method to determine the metabolic uptake rate utiliz-
ing DTP images. Based on this study, we generate Ki map 
by determining the slope between the two time points. 
Only a few studies have investigated the performance 

of dynamic features. Tixier et  al. [30] evaluated several 
parameters  (SUVmax,  SUVmean, and MTV) and heteroge-
neity quantification in NSCLC. They reported high cor-
relations for all parameters between SUV and parametric 
images, which indicates that heterogeneity quantification 
on parametric images does not offer additional informa-
tion compared to static SUV images. However, in another 
study, Noortman et  al. [31] found that certain dynamic 
GLCM radiomics features show different information 
than traditional radiomic in patients with NSCLC. In our 
study, 12 dynamic features contain additional informa-
tion compared to static ones (see features with ρ < 0.5 in 
Table 3).

On the other hand, moderate correlation features pro-
vide a small amount of additional information (see fea-
tures with 0.5 < ρ < 0.7 in Table  3). In agreement with 
Tixier et al. [30] and Noortman et al. [31] studies, most 
dynamic features show moderate and high correlations 
with static ones. Although the correlation of features 
found by the mentioned studies is not comparable to 
our results, the different types of lesion and acquisition 
protocols were investigated. We estimated the Ki map 
using the DTP method to achieve a simple and clinically 
feasible approach for deriving dynamic features. Several 
studies evaluated conventional PET metrics (SUV, MTV, 
and TLG) and showed the predicted value of treatment 
response in lymphoma patients [20–22, 45–48].

In addition, some studies investigated the role of PET 
radiomics features in predicting treatment response in 
lymphoma. Lue et  al. [17] reported that wavelet  HIR_
GLRMPET and  RLNU_GLRMCT are independent pre-
dictive factors for treatment response in patients with 
Hodgkin lymphoma. Tatsumi et  al. [18] demonstrated 

Table 6 Mean, STD, and confidence interval (CI) of the area 
under the curve (AUC), accuracy (ACC), sensitivity (SNE), and 
specificity (SPE) in the test set for the different models studied

Different models Mean ± STD
(95% CI)

AUC ACC SEN SPE

H_DTP 0.87 ± 0.03
(0.86–0.87)

0.81 ± 0.05
(0.80–0.82)

0.83 ± 0.08
(0.82–0.85)

0.79 ± 0.07
(0.78–0.80)

H_Static 0.88 ± 0.01
(0.87–0.88)

0.84 ± 0.03
(0.83–0.85)

0.75 ± 0.01
(0.74–0.75)

0.88 ± 0.05
(0.87–0.89)

H_DTP + Static 0.97 ± 0.02
(0.96–0.97)

0.89 ± 0.05
(0.88–0.90)

0.92 ± 0.09
(0.90–0.93)

0.88 ± 0.05
(0.87–0.89)

Non‑H_DTP 0.76 ± 0.02
(0.75–0.76)

0.69 ± 0.04
(0.68–0.70)

0.67 ± 0.05
(0.66–0.68)

0.70 ± 0.06
(0.68–0.71)

Non‑H_Static 0.79 ± 0.02
(0.78–0.79)

0.73 ± 0.02
(0.72–0.73)

0.73 ± 0.05
(0.72–0.74)

0.73 ± 0.03
0.72–0.74

Non‑H_DTP + Static 0.81 ± 0.03
(0.81–0.82)

0.75 ± 0.05
(0.74–0.76)

0.77 ± 0.09
(0.75–0.79)

0.74 ± 0.06
(0.73–0.75)

Fig. 6 The ROC curves of the different models for prediction of response to therapy a before and b after ComBat harmonization. Solid lines are 
the mean ROC and the shaded regions represent one standard deviation around the average
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that LGZE might help predict the treatment response of 
follicular lymphoma.

Univariate analysis of our study showed that some radi-
omics features might be predictive. For harmonized DTP 
features, the highest AUCs were achieved for GLCM_
Energy, GLCM_Entropy, and uniformity (AUC = 0.73, 
p value = 0.0001, q value < 0.0005). Among static fea-
tures, GLRLM_RLNU (AUC = 0.75, p value = 0.0001, q 

value = 0.0007) were found to be as most predictive fea-
tures. Based on univariate results, there was no signifi-
cant difference between the performance of most DTP 
and static radiomics features.

Specifically, several studies developed radiomic models 
for lymphoma patients to provide a prediction response 
to therapy. In a retrospective study included 57 bulky 
malignant lymphoma patients, Bouallègue et  al. [23] 
presented a model incorporating static PET texture and 
shape features that achieved the highest predictive value 
with ROC AUC of 0.82 and 80% accuracy compared with 
other factors, including MTV and histology. Coskun et al. 
[19] developed the logistic regression model with cross-
validation to predict treatment response using static 
PET features in DLBCL. They reported an accuracy of 
0.87 and an AUC of 0.81. Finally, Jimenez et al. [15] pro-
posed a radiomics model to predict ibrutinib response in 
lymphoma patients using static PET features trained by 
repeated cross-validation nested with the Gentle Ada-
Boost ensemble algorithm. They achieved an AUC of 
0.86 (sensitivity, 92.9%, specificity, 81.4%; p < 0.001). Our 
study showed AUC = 0.88 for static features when taking 
advantage of the ComBat harmonization.

Since performing dynamic acquisition has limitations 
in clinical practice, the predictive value of dynamic fea-
tures was not considered previously. We used the clini-
cally feasible DTP PET imaging to achieve the Ki map. 
Our study sheds light on the possibility of treatment 
response prediction utilizing dynamic features by the 
DTP method. The results showed that DTP-feature 
yielded similar classification performance (AUC = 0.87) 
to static models (AUC = 0.88). Hence, since some DTP 
and static features had low and moderate correlations, 
they could serve as different markers. Previous stud-
ies reported improving performance by combining dif-
ferent markers, such as PET features and clinical data 
[9, 49]. Although it was out of the scope of the present 
investigation to add clinical data, we further took steps 
to build a novel model by combining DTP features with 
static ones. We found that this integrated model has 
the advantage of predicting treatment response with 
the highest AUC value (0.97). These results indicated 
that the H_DTP + Static model provided more accu-
rate information and improved performance over other 
models we tried. Also, the performance of multivariate 
models was improved compared to univariate radiom-
ics analysis. Due to the dual-centric nature of our study, 
we used ComBat harmonization to resolve the plausible 
batch effect. Univariate AUC of most DTP and static fea-
tures did not differ significantly, and some of the features 
decreased before and after harmonization. However, as 
shown in Fig. 6, we observed higher AUCs and improve-
ments in the predictive power of all multivariate models 
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Fig. 7 p Values for the comparison between the different models 
concerning the area under the curve (AUC), accuracy (ACC), 
sensitivity (SEN), and specificity (SPE)
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after harmonization, which were congruent with previ-
ous studies [50].

There were some limitations in this study. Foremost, 
the study cohort is relatively small; we used datasets from 
only two centers where external validation was lacking 
from different centers. However, we used the bootstrap 
technique to evaluate our models to address the limited 
sample size; further clinical studies are needed to verify 
our results with more extensive clinical databases. More-
over, obtaining full-time input function information for 
the standard Patlak method requires either arterial blood 
sampling or a long scan covering early time points of the 
blood pool. We used a scaled population-based input 
function for Patlak analysis to overcome this challenge, 
although the lack of ground truth information might 
have influenced the results. Another limitation of this 
study was the lack of multiple segmentations to assess the 
effect of segmentation variability on the extracted fea-
tures. Finally, clinical data (patients’ history and demo-
graphics, laboratory tests) were not considered in the 
model as the focus was on imaging features.

Conclusion
Our results indicate the potential of combining dynamic 
and static features from FDG PET images to predict the 
treatment response in lymphoma patients. We used the 
dual-time-point framework to obtain the Ki maps and 
extract dynamic features, which can be applied in rou-
tine clinical practice. We demonstrated that the highest 
predictive performance of the XGBoost classifier with 
the mRMR algorithm was achieved when DTP and static 
features from FDG PET images were combined. We also 
demonstrated that ComBat harmonization significantly 
improved the performances of static, DTP, and combined 
static and DTP-based radiomics models toward signifi-
cantly improved prediction of therapy response in lym-
phoma patients.
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