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Abstract 

Background  In recent years, immune checkpoint inhibitor (ICI) therapy has greatly changed the treatment prospects 
of patients with non-small cell lung cancer (NSCLC). Among the available ICI therapy strategies, programmed death-1 
(PD-1)/programmed death ligand-1 (PD-L1) inhibitors are the most widely used worldwide. At present, immunohis-
tochemistry (IHC) is the main method to detect PD-L1 expression levels in clinical practice. However, given that IHC 
is invasive and cannot reflect the expression of PD-L1 dynamically and in real time, it is of great clinical significance 
to develop a new noninvasive, accurate radiomics method to evaluate PD-L1 expression levels and predict and filter 
patients who will benefit from immunotherapy. Therefore, the aim of our study was to assess the predictive power 
of pretherapy [18F]-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT)-
based radiomics features for PD-L1 expression status in patients with NSCLC.

Methods  A total of 334 patients with NSCLC who underwent [18F]FDG PET/CT imaging prior to treatment were 
analyzed retrospectively from September 2016 to July 2021. The LIFEx7.0.0 package was applied to extract 63 PET and 
61 CT radiomics features. In the training group, the least absolute shrinkage and selection operator (LASSO) regres-
sion model was employed to select the most predictive radiomics features. We constructed and validated a radiomics 
model, clinical model and combined model. Receiver operating characteristic (ROC) curves and the area under the 
ROC curve (AUC) were used to evaluate the predictive performance of the three models in the training group and 
validation group. In addition, a radiomics nomogram to predict PD-L1 expression status was established based on the 
optimal predictive model.

Results  Patients were randomly assigned to a training group (n = 233) and a validation group (n = 101). Two radiom-
ics features were selected to construct the radiomics signature model. Multivariate analysis showed that the clinical 
stage (odds ratio [OR] 1.579, 95% confidence interval [CI] 0.220–0.703, P < 0.001) was a significant predictor of different 
PD-L1 expression statuses. The AUC of the radiomics model was higher than that of the clinical model in the training 
group (0.706 vs. 0.638) and the validation group (0.761 vs. 0.640). The AUCs in the training group and validation group 
of the combined model were 0.718 and 0.769, respectively.

Conclusion  PET/CT-based radiomics features demonstrated strong potential in predicting PD-L1 expression status 
and thus could be used to preselect patients who may benefit from PD-1/PD-L1-based immunotherapy.
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Background
Lung cancer is the leading cause of cancer-related death 
worldwide, and non-small cell lung cancer (NSCLC) 
accounts for approximately 85% of all cases [1]. In recent 
years, the advent of immune checkpoint inhibitor (ICI) 
therapy has radically shifted the paradigm of treatment 
of advanced NSCLC and transformed the outlook of 
NSCLC in the early stages [2]. Among the ICI therapy 
strategies, PD-1/PD-L1 inhibitors are the most widely 
used worldwide [3]; these inhibitors reactivate T cells 
that otherwise would remain suppressed. Studies have 
shown that PD-1/PD-L1 inhibitors prolong progression-
free survival (PFS) and overall survival (OS) in patients 
with advanced NSCLC [4–6]. Especially for PD-L1-pos-
itive patients with NSCLC, the clinical benefits are 
greater. PD-1/PD-L1 inhibitors can improve the OS of 
patients compared with first-line chemotherapy [7–9]. At 
present, PD-L1 detection methods mainly include immu-
nohistochemistry (IHC), enzyme-linked immunosorbent 
assay, quantitative immunofluorescence and flow cytom-
etry, among which IHC is the most widely applied [10]. 
However, IHC requires tumor tissue for detection, which 
is invasive and cannot dynamically reflect the expression 
status of PD-L1 [11]. Moreover, the application of IHC is 
greatly limited for tumors that are not easily accessible 
with biopsies. Therefore, it is essential to develop a new 
noninvasive, rapid and accurate imaging method to eval-
uate PD-L1 expression levels in clinical practice.

With the continuous development of artificial intel-
ligence, radiomics, as a noninvasive imaging tool, plays 
a nonnegligible role in the diagnosis and clinical man-
agement of cancer [12]. Radiomics can extract numer-
ous quantitative features from medical images with 
high throughput and apply automatic or semiautomatic 
analysis methods to transform imaging data into mine-
able data. In recent years, researchers have demonstrated 
that fluorodeoxyglucose ([18F]FDG) positron emission 
tomography/computed tomography (PET/CT) radiom-
ics can macroscopically predict the PFS or OS of NSCLC 
patients. With the development of radiomics in the field 
of molecular precision medicine, epidermal growth fac-
tor receptor (EGFR) gene mutation status and lymph 
node metastasis in NSCLC patients can also be well 
predicted [13–15]. In addition, some studies have dem-
onstrated that several PET/CT-derived textural features 
can provide relevant supplementary information for 
determining the expression status of PD-L1 in patients 
with head and neck squamous cell carcinoma [16]. In 
this study, to evaluate the predictive power of radiomics 

based on [18F]FDG PET/CT imaging for PD-L1 expres-
sion in patients with NSCLC, we constructed and vali-
dated a radiomics model, clinical model and combined 
model and further developed a nomogram based on the 
optimal predictive model to predict PD-L1 expression in 
patients with NSCLC by using [18F]FDG PET/CT imag-
ing radiomics.

Materials and methods
Patient selection
This study retrospectively analyzed 334 patients with 
NSCLC who underwent [18F]FDG PET/CT examination 
before treatment at the Fourth Hospital of Hebei Medical 
University from September 2016 to July 2021. The study 
population included 203 men and 131 women, aged from 
15 to 87 years old with an average age of 62.1 ± 8.9 years. 
The enrolled patients met the following criteria: (1) non-
small cell lung cancer confirmed by operation or puncture 
biopsy pathology, (2) [18F]FDG PET/CT examination was 
performed before operation or biopsy, (3) PD-L1 expres-
sion levels detected by IHC, and (4) no history of other 
malignant tumors. The exclusion criteria were (1) received 
antitumor treatment before PET/CT scan and IHC test, 
(2) the diameter of the target lesion was less than 1  cm 
and (3) no [18F]FDG uptake was found in the lesions on 
PET/CT images. The clinical data and imaging data of 
each patient were collected. Clinical data mainly included 
sex, age, smoking history, clinical stage and pathological 
type. These patients were randomly divided into a train-
ing group (n = 233) and a validation group (n = 101) at a 
ratio of 7:3. This retrospective analysis was approved by 
the Institutional Review Board of the Fourth Hospital of 
Hebei Medical University (No. 2019MEC031).

Detection of PD‑L1 expression status
In this study, IHC was used to detect PD-L1 expres-
sion levels. Histological samples for PD-L1 detection 
were obtained by surgical resection or puncture biopsy. 
Studies have shown no significant difference in the 
feasibility of PD-L1 immunohistochemistry on small 
biopsy specimens compared with specimens obtained 
by surgical resection [17]. The PD-L1 detection kit was 
22c3 pharmDx (Dako Company). The positive stand-
ard was defined as ≥ 1% tumor cell staining [18]. The 
specimens were fixed with 10% formalin solution, in 
which the biopsy specimens were fixed for 5  h and the 
surgical specimens were fixed for at least 24–72  h. The 
PD-L1 score was read in a double-blinded manner by two 
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different pathologists. When the results were inconsist-
ent with the previous research results, further research 
and analysis were performed. The latest version of the 
National Comprehensive Cancer Network (NCCN) has 
confirmed that immune checkpoint inhibitor therapy is 
effective in the second-line treatment of NSCLC patients 
with PD-L1 expression levels ≥ 1%. Moreover, the Food 
and Drug Administration (FDA) has approved the PD-1 
inhibitor pembrolizumab alone as front-line single-agent 
therapy instead of chemotherapy in patients with PD-L1 
expression ≥ 1% [19]. Therefore, in this study, the PD-L1 
expression level of the enrolled patients was divided 
into two groups: ≥ 1% and < 1%. A PD-L1 expression 
level ≥ 1% was defined as the positive group, and a PD-L1 
expression level < 1% was defined as the negative group.

PET/CT image acquisition
All patients underwent [18F]FDG PET/CT before sur-
gery or biopsy. A PHILIPS GEMINI GXL16 PET/CT 
scanner and PHILIPS VEREOS PET/CT scanner were 
used. Patients fasted for at least 6 h before injection with 
3.70–5.55  MBq/kg [18F]FDG, and PET/CT acquisition 
was performed 60 ± 5  min after the injection. The fast-
ing blood glucose concentration was controlled below 
11.1  mmol/L. The body scanning range was from the 
skull base to the upper femur. The CT data were used to 
correct the attenuation of the PET image, and the cor-
rected PET image was fused with the CT image.

Image segmentation and radiomics feature extraction
LIFEx 7.0.0 software was used to extract the radiom-
ics features of PET/CT images in the region of interest 
(ROI) of lung lesions. The PET/CT image of the patient 
in the Digital Imaging and Communications in Medi-
cine (DICOM) format was imported into the software. 
Two experienced nuclear medicine doctors used three-
dimensional (3D) drawing tools to draw the ROI layer by 
layer on the cross section of the image and took 40% of 
the maximum standardized uptake value (SUVmax) as the 
optimization threshold. The spatial resampling interval 
of all patients with PET and CT images was 1 mm in the 
X, Y and Z axes. Intensity discretization for CT data was 
processed by decreasing the continuous scale to 400 bins 
with absolute scale bounds between −  1000 and 3000 
Hounsfield units (HU), whereas that of PET data was 
performed with 64 bins between 0 and 25. Based on the 
above, LIFEx software automatically extracted and calcu-
lated 124 radiomics features, including 63 PET features 
and 61 CT features, which are provided in Additional 
file 1: Table S1. The features extracted in this study can be 
divided into three types: shape features, first-order statis-
tical features and second-order statistical features.

Radiomics feature screening and model building
In our study, feature selection was performed in the 
training group. We first selected the features with sig-
nificant differences between the PD-L1-positive group 
and the PD-L1-negative group using the Mann‒Whit-
ney U test and obtained a total of 75 features with a 
P value < 0.05. Then, to avoid overfitting phenomena, 
the least absolute shrinkage and selection operator 
(LASSO) algorithm and tenfold cross-validation were 
used to further screen the optimal radiomics features 
from the 75 radiomics features and construct the radi-
omics model by logistic regression. The radiomics 
score (Rad-score) of each patient was calculated using 
a logistic regression formula. For the LASSO algorithm, 
tenfold cross-validation was used to select the best λ. 
The optimal clinical variables with significance based 
on different expression statuses of PD-L1 were selected 
to construct the clinical model. The predictive perfor-
mance of the model was tested in the validation group. 
Receiver operating characteristic (ROC) curves and the 
area under the ROC curve (AUC) were used to evaluate 
the predictive performance of the three models in the 
training group and the validation group. The Rad-score 
and the optimal clinical variables were combined to 
establish a multivariate logistic regression model (the 
combined model) and to develop a nomogram. Moreo-
ver, the predictive probability of the three models for 
different expression statuses of PD-L1 in each patient 
was analyzed, and the calibration curve was drawn by 
comparing the predictive probability with the actual 
probability. The calibration curve was used to evaluate 
the performance of the nomogram, which was verified 
using the Hosmer‒Lemeshow test.

Statistical method
Statistical analyses were performed with SPSS statistics 
for Windows (version 26.0, IBM) and R software (version 
4.1.2).

Clinical variables included continuous variables (age) 
and categorical variables (sex, smoking history, patholog-
ical type and clinical stage). Quantitative data conform-
ing to a normal distribution are expressed in x ± s , and 
quantitative data that do not conform to a normal distri-
bution are expressed as M (P25, P75). Independent sam-
ple t tests, Mann‒Whitney U tests and Chi-square tests 
were used to identify meaningful clinical variables based 
on PD-L1 expression status, and then these screened 
variables were used to establish a clinical model based 
on multivariate logistic regression analysis. The signifi-
cant difference between the best radiomics features and 
their radiomics scores between two different devices was 
analyzed using the Mann‒Whitney U test. The above 
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analysis was completed using IBM SPSS statistics 26.0 
statistical software.

In R software package, "glmnet" package was used to 
execute LASSO algorithm, "rms" package was used to 
make nomogram and calibration curve, "waterfalls" pack-
age and "ggplot2" package were used to draw waterfall 
diagram showing Rad-score of each patient in the train-
ing group and validation group, and "pRoc" package was 
used to draw ROC curves and calculate AUC. The above 
analysis was completed using R 4.1.2 statistical software.

All P values < 0.05 were considered statistically 
significant.

Results
Clinical characteristics of patients
Among 334 NSCLC patients, no significant differences 
in age (P = 0.540), sex (χ2 = 2.604, P = 0.107), smoking 
history (χ2 = 2.248, P = 0.134), pathological type (χ2 = 
1.914, P = 0.588) or clinical stage (χ2 = 2.425, P=0.489) 
were noted between the training group and the valida-
tion group. Sex, smoking history and clinical stage were 
significantly different between the PD-L1-positive and 
PD-L1-negative groups in both the training and valida-
tion groups. PD-L1-positive expression was more com-
monly observed in male patients with a smoking history 
and clinical stages II, III and IV, whereas PD-L1-nega-
tive expression was more common in nonsmokers and 
patients in stage I. Age and pathological type were not 
significantly different between the PD-L1-positive and 

PD-L1-negative groups in either the training or the val-
idation group. Multivariate logistic regression analysis 
showed that the clinical stage (odds ratio [OR] 1.579, 
95% confidence interval [CI] 0.220–0.703, P<0.001) was 
a significant predictor of different expression statuses 
of PD-L1 in patients with NSCLC. Table 1 summarizes 
the basic clinical characteristics of NSCLC patients in 
the training group and the validation group.

Feature extraction and selection
In our study, the features described met the definition 
described by the Imaging Biomarker Standardization 
Initiative (IBSI) [20]. The IBSI reporting guidelines 
are provided in Additional file 2: File 1. There were 50 
first-order statistical features, 10 shape features and 
64  s-order statistical features, including 14 features of 
the gray level cooccurrence matrix (GLCM), 22 fea-
tures of the gray level run length matrix (GLRLM), 22 
features of the gray level zone length matrix (GLZLM), 
and six features of the neighborhood gray level differ-
ence matrix (NGLDM).

The LASSO algorithm and tenfold cross-validation 
were used to extract the optimal subset of radiomics 
features. Eventually, two optimal features were selected, 
including a PET feature and a CT feature: Gray Level 
Run Length Matrix (GLRLM)_Run Percentage (RP) and 
SHAPE_Sphericity, respectively. The process of LASSO 
algorithm filtering features is shown in Fig. 1.

Table 1  Basic distribution of clinical characteristics of NSCLC patients in the training and validation groups

Characteristic Training group (n = 233) P Validation group (n = 101) P

PD-L1 negative 
(n = 125)

PD-L1 positive 
(n = 108)

PD-L1 negative 
(n = 47)

PD-L1 positive (n = 54)

Age (mean ± SD) (years) 62.24 ± 9.10 61.89 ± 9.18 0.504 62.49 ± 8.17 61.54 ± 8.43 0.506

Sex 0.048 0.016

 Male 65 (52.00%) 70 (64.81%) 26 (55.32%) 42 (77.78%)

 Female 60 (48.00%) 38 (35.19%) 21 (44.68%) 12 (22.22%)

Smoking history 0.023 0.044

 Never 73 (58.40%) 47 (43.52%) 25 (53.19) 18 (33.33%)

 Current or ever 52 (41.60%) 61 (56.48%) 22 (46.81%) 36 (66.67%)

Pathological type 0.051 0.165

 Adenocarcinoma 10 (84.00%) 77 (71.30%) 39 (82.98%) 37 (68.52%)

 Squamous carcinoma 16 (12.80%) 24 (22.22%) 6 (12.76%) 13 (24.07%)

 Adenosquamous carcinoma 1 (0.80%) 5 (4.63%) 1 (2.13%) 4 (7.41%)

 Large cell carcinoma 3 (2.40%) 2 (1.85%) 1 (2.13%) 0 (0%)

Pathological stage 0.001 0.006

 I 78 (62.40%) 42 (38.89%) 30 (63.83%) 17 (31.48)

 II 16 (12.80%) 17 (15.74%) 6 (12.77%) 10 (18.52%)

 III 22 (17.60%) 25 (23.15%) 6 (12.77%) 21 (38.89%)

 IV 9 (7.20%) 24 (22.22%) 5 (10.64%) 6 (11.11%)
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Model construction
Based on the two optimal features selected above, the 
Rad-score of each patient was calculated using the fol-
lowing formula. Thus, a radiomics model for predicting 
different expression statuses of PD-L1 in patients with 
NSCLC was constructed:

The median and the interquartile range for the 2 
selected radiomics features and the calculated Rad-
scores are shown in Table 2. In the training group and 
validation group, the Rad-score was significantly dif-
ferent between the PD-L1-negative group and the PD-
L1-positive group (P < 0.001). In the training group, 
the median Rad-score was 0.239 in the PD-L1-pos-
itive group and −  0.192 in the PD-L1-negative group. 
In the validation group, the median Rad-score was 
0.254 in the PD-L1-positive group and −  0.493 in the 
PD-L1-negative group. PD-L1-positive patients had a 
higher Rad-score than PD-L1-negative patients. The 

Rad-score =− 1.199+ 3.514 ∗GLRLM_RP

− 1.954 ∗ SHAPE_Sphericity.

Rad-score for each patient in the two groups is dis-
played in the form of a bar graph in Fig. 2.

In our study, we found that clinical stage (OR 1.579, 
95% CI 0.220–0.703, P < 0.001) was a significant predic-
tor of different PD-L1 expression statuses. Therefore, the 
clinical model was constructed with this factor, and the 
following formula was obtained:

We combined the radiomics model and clinical model, 
and the following formula was obtained:

Predictive performance of the radiomics model, clinical 
model and combined model
To evaluate the performance of radiomics in predicting 
PD-L1 expression status in patients with NSCLC, we con-
structed and validated a radiomics model, clinical model 
and their combination (Fig. 3). In both the training and 

Clinical score = −1.157+ 0.457 ∗ clinical stage

Complex score =0.1518+ 0.719 ∗ clinical stage

+ 1.093 ∗ Rad score

Fig. 1  The LASSO algorithm and tenfold cross-validation were used to extract the optimal subgroup of radiomic features. a The left vertical line 
indicates the value of the characteristic parameters corresponding to the minimum of λ in cross-validation, and the vertical line on the right 
represents the parameter value of the more simplified model λ within a standard error. When the value of λ increased to -2.752, it corresponded to 
the optimal number of radiomic features. b The penalty diagram of the characteristic coefficient of radiomics

Table 2  Comparison of 2 radiomic features and Rad-score between PD-L1 positive and PD-L1 negative group

Features Training group (n = 233) P Validation group (n = 101) P

PD-L1 negative (n = 125) PD-L1 positive (n = 108) PD-L1 negative (n = 47) PD-L1 positive (n = 54)

Rad-score − 0.192 (− 0.922, 0.218) 0.239 (− 0.133, 0.424)  < 0.001 − 0.493 (− 1.241, 0.140) 0.254 (0.024, 0.488)  < 0.001

PET feature

 GLRLM_RP 0.660 (0.424, 0.792) 0.786 (0.678, 0.837)  < 0.001 0.615 (0.352, 0.784) 0.791 (0.728, 0.851)  < 0.001

CT feature

 SHAPE_Sphericity 0.686 (0.645, 0.735) 0.682 (0.607, 0.720)  < 0.001 0.675 (0.609, 0.721) 0.677 (0.630, 0.713)  < 0.001
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validation groups, the AUC values of the clinical model 
used to predict the different expression statuses of PD-L1 
in NSCLC patients were 0.638 (95% CI 0.572–0.705) and 
0.640 (95% CI 0.547–0.733), respectively, and the AUC 
values of the radiomics model were 0.706 (95% CI 0.640–
0.772) and 0.761 (95% CI 0.664–0.860), respectively. In 
addition, the AUC values of the combined model based 
on the radiomics signature score (Rad-score) and clinical 
variables in both the training and validation groups were 
0.718 (95% CI 0.653–0.783) and 0.769 (95% CI 0.675–
0.863), respectively.

The DeLong test showed that the AUC values between 
the clinical model and the combined model were sig-
nificantly different in both the training and validation 
groups (P = 0.004 and 0.007, respectively), and the AUC 
value between the radiomics model and the combined 
model exhibited no significant differences in either the 
training or the validation group (P = 0.505 and 0.629, 

respectively). The predictive abilities of the three models, 
including sensitivity, specificity, and accuracy, are shown 
in Table 3.

Individualized nomogram construction and validation
The combined model based on the Rad-score and clinical 
variables (clinical stage) exhibited relatively good predic-
tive performance; therefore, an individualized nomogram 
based on the combined model was developed and con-
structed in the training group, which can more intui-
tively show the proportion of prediction results and each 
influencing factor (Fig.  4a). Figures  4b and 4b show the 
calibration curves of the nomogram. The results revealed 
good consistency between the predicted probability and 
the actual predicted probability in the training and vali-
dation groups. The Hosmer‒Lemeshow test confirmed 
that there was good consistency between the predicted 
probability and the actual predicted probability in the 

Fig. 2  Rad-score of patients in both the training and validation groups

Fig. 3  ROC curves for the radiomics model, the clinical model, and the combined model in predicting different expression statuses of PD-L1. a The 
ROC curve of the training group. b The ROC curve of the validation group
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training group (χ2 = 1.463, P = 0.481) and the validation 
group (χ2 = 1.563, P = 0.458).

Comparison of equipment differences
In the training group and the validation group, the sig-
nificant differences in the two radiomics feature parame-
ters and Rad-score of the cases examined by two different 
devices (PHILIPS GEMINI GXL16 PET/CT scanner and 
PHILIPS VEREOS PET/CT scanner) were compared. No 
significant differences were noted (P > 0.05).

Discussion
In recent years, immunotherapy with PD-1/PD-L1 
checkpoint inhibitors has greatly changed the progno-
sis of NSCLC patients. Several studies have shown that 
patients with elevated PD-L1 expression will likely ben-
efit from PD-1/PD-L1 inhibitors [21]. At present, some 

scholars have concluded that the expression of PD-L1 is 
one of the most widely used biomarkers [22]. Therefore, 
the PD-L1 expression level plays an important role in 
guiding immunotherapy in NSCLC patients. To predict 
the response of NSCLC patients to immunotherapy, it is 
of great significance to select the most meaningful bio-
markers to predict the effect of NSCLC immunotherapy.

In this study, we established and validated a pre-
dictive model of PD-L1 expression status in NSCLC 
patients before treatment based on [18F]FDG PET/CT 
radiomics features. From the above results, it can be 
seen that the radiomics model exhibits good perfor-
mance in predicting the different expression statuses 
of PD-L1 in NSCLC patients, and its predictive perfor-
mance is similar to that of the combined model. This 
study shows that the radiomics model based on the two 
best features obtained from [18F]FDG PET/CT images 

Table 3  Predictive performance of the three models in the training and validation groups

Models Training group Validation group

AUC (95% CI) Sensitivity 
(%)

Specificity 
(%)

Accuracy (%) AUC (95% CI) Sensitivity 
(%)

Specificity 
(%)

Accuracy (%)

Clinical model 0.638 (0.572–
0.705)

56.48 67.20 62.23 0.640 (0.547–
0.733)

64.81 65.96 65.35

Radiomics 
model

0.706 (0.640–
0.772)

62.96 71.20 67.38 0.761 (0.664–
0.860)

68.52 72.34 70.30

Complex 
model

0.718 (0.653–
0.783)

61.11 68.80 65.24 0.769 (0.675–
0.863)

68.52 68.09 68.32

Fig. 4  Nomogram development and performance. a Nomogram based on the combined model. b Calibration curve of the nomogram in the 
training group. c Calibration curve of the nomogram in the validation group
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and the combined model can better predict the expres-
sion status of PD-L1 in NSCLC patients, and its predic-
tive performance in the validation group is better than 
that in the training group.

PET can provide tumor metabolic information, glucose 
metabolism and hypoxia, angiogenesis and other related 
information. Therefore, PET/CT imaging not only accu-
rately locates the focus but also provides metabolic infor-
mation on the tumor. Moreover, radiomics analysis can 
reflect the potential spatial variation of tumors, the heter-
ogeneity of internal voxel intensity and tracer uptake and 
can better characterize tumors. Unlike the clinical model, 
the radiomics model used to predict the expression sta-
tus of PD-L1 in NSCLC patients is noninvasive and can 
reflect the changes in PD-L1 in patient tumors in real 
time. Moreover, radiomics can perform functional imag-
ing of tumors at the molecular and cellular levels, reflect-
ing the overall expression of PD-L1 in tumor lesions. This 
feature also represents an advantage of the radiomics 
model compared with the clinical model.

Among the two optimal features screened in our study, 
SHAPE_Sphericity is a basic CT feature. Shape-based 
features describe the 2D or 3D size and size of the region 
of interest and can quantitatively describe the geomet-
ric features of the region of interest, which is independ-
ent of the gray level intensity distribution of the region 
of interest [23]. Among them, SHAPE_Sphericity can 
describe the roundness of the shape of tumor areas 
related to sphericity. Some studies have found that the 
sphericity value has the ability to predict the proportion 
of micropapilla in lung adenocarcinoma, and the prog-
nosis of patients with lung adenocarcinoma will deterio-
rate with an increase in the proportion of micropapilla in 
tumors [24]. Bracci et  al. [25] studied its ability to pre-
dict PD-L1 expression in NSCLC patients by extracting 
texture features from CT images of 72 NSCLC patients. 
Their results showed that in the training group, patients 
with PD-L1 < 1% had higher sphericity than patients with 
PD-L1 ≥ 1% [sphericity: 0.944 (< 1%) vs. 0.923 (≥ 1%)], 
which was consistent with the results of our study [in the 
training group, sphericity: 0.686 (< 1%) vs. 0.682 (≥ 1%)].

Another feature is GLRLM_RP. The gray level run 
length matrix (GLRLM) displays the length of continu-
ous voxels with the same intensity in the pregroup direc-
tion in the image. Among them, the run percentage (RP) 
measures the roughness of texture features by taking the 
ratio of run number to voxel number in the ROI. This 
feature belongs to the second-order feature (first pro-
posed by Haralick). The second-order feature is based 
on the joint probability distribution of paired voxels 
and describes the spatial arrangement of patterns; that 
is, it is related to the uniformity and nonuniformity of 
images. In our study, the images of the PD-L1-positive 

group showed more heterogeneity than those of the PD-
L1-negative group.

The PET/CT image data in our study were obtained 
from two scanners with different parameters. In clinical 
practice, the image data of patients are usually obtained 
from a scanner with different scanning parameters [26]. 
In our study, no significant difference was noted between 
the two best radiomics features extracted from two dif-
ferent devices and their Rad-scores, which is consistent 
with the results obtained by Hu et al. [27] There was no 
significant difference between the nine radiomics features 
extracted from two different devices and the Rad-scores.

In recent years, the application of radiomics in NSCLC 
has become increasingly extensive, and the research 
used to predict the expression of PD-L1 is also increas-
ing. In the research of Sun et al. [28], by combining the 
radiomics model based on CT image features with clin-
icopathological features, the best model for predicting 
the expression status of PD-L1 in NSCLC patients was 
obtained. The AUC values in the training group and 
the validation group were 0.829 and 0.848, respectively. 
However, the AUC values of the combined model of [18F]
FDG PET/CT radiomics to predict PD-L1 expression in 
NSCLC patients obtained in our study were 0.718 and 
0.769 in the training group and the validation group, 
respectively. The reason may lie in the different stratifica-
tion of PD-L1 expression levels. In our study, PD-L1 was 
divided into ≥ 1% and < 1%, whereas Sun et  al. divided 
PD-L1 into ≥ 50% and < 50%. In future studies, we will 
perform a more detailed stratification of PD-L1 expres-
sion and strive to provide more accurate and detailed 
services for clinical practice. Furthermore, considering 
that the AUCs of 0.7–0.8 are generally considered accept-
able and values from 0.8 to 0.9 are considered excellent 
[29], these results demonstrate that the model we have 
established is clinically useful. Similarly, the research of 
Yoon et al. [30] also confirmed this view. Specifically, the 
combination of clinical variables and radiomics models 
based on CT images would be conducive to the noninva-
sive evaluation of PD-L1 expression in NSCLC patients. 
However, PET radiomics features were not included in 
either study. In recent years, research on [18F]FDG PET/
CT radiomics in predicting PD-L1 expression in tumor 
patients has gradually increased. Li et al. [31] segmented 
the [18F]FDG PET/CT imaging of 255 NSCLC patients 
and extracted the radiomics features, revealing that 
PD-L1 expression was related to the histopathological 
type of NSCLC patients but not to the clinical stage. This 
finding is contrary to the results obtained in our study. 
Two possible explanations are proposed. First, Li’s study 
only included patients with squamous cell carcinoma 
and adenocarcinoma, whereas our study also included 
patients with adenosquamous carcinoma and large cell 
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carcinoma. Second, Li’s study compared the difference in 
PD-L1 expression between patients with clinical stages 
I-II and III-IV, whereas our study compared the differ-
ence in PD-L1 expression between patients with stages 
I-IV in more detail.

Jiang et  al. [32] established and validated the predic-
tive model of PD-L1 expression in patients with NSCLC 
based on PET, CT and PET/CT images by segment-
ing and extracting features from PET/CT images of 399 
patients with stage I-IV NSCLC. The researchers con-
cluded that the radiomics features derived from CT 
images can better predict the expression status of specific 
types of PD-L1 in NSCLC patients than those derived 
from PET images. However, the study did not combine 
risk factors related to the patient’s clinical characteris-
tics. Moreover, in this study, the researchers obtained the 
image ROI by sketching the ROI on the CT image first 
and then corresponding it to the PET image, which may 
lead to inaccurate image matching and affect image seg-
mentation. Compared with this study, our study not only 
combined the clinical risk factors for patients but also 
directly outlined the ROI on the fused PET/CT images.

In addition, in a recent study, Mu et al. [33] developed a 
deep learning score predictive model (PDL1-DLS) based 
on [18F]FDG PET/CT to evaluate the expression status of 
PD-L1 in patients with NSCLC and a deep learning score 
predictive model (EGFR-DLS) to evaluate the mutation 
status of epidermal growth factor receptor (EGFR) in 
patients with NSCLC, which can help clinicians choose 
more suitable treatment modes of NSCLC patients in the 
treatment of ICI and targeted treatment represented by 
EGFR tyrosine kinase inhibitors (TKIs).

Some limitations in our study should be noted. First, 
this study was a single-center retrospective study. In the 
future, a multicenter prospective study will be encour-
aged. This design can reduce selection bias and improve 
the stability and repeatability of the predictive model. 
Second, we can try a variety of machine learning meth-
ods to establish predictive models to find the best mod-
eling method.

In conclusion, this radiomics study based on [18F]FDG 
PET/CT radiomics features before treatment showed that 
the prediction model could predict PD-L1 expression sta-
tus and provide a convenient, noninvasive and relatively 
accurate method for clinicians to identify patients who 
can benefit from anti-PD-L1 immunotherapy in NSCLC 
to guide the clinical immunotherapy of patients with 
NSCLC.
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