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Abstract 

Background  Simultaneous dual-tracer positron emission tomography (PET) imaging can observe two molecular 
targets in a single scan, which is conducive to disease diagnosis and tracking. Since the signals emitted by different 
tracers are the same, it is crucial to separate each single tracer from the mixed signals. The current study proposed a 
novel deep learning-based method to reconstruct single-tracer activity distributions from the dual-tracer sinogram.

Methods  We proposed the Multi-task CNN, a three-dimensional convolutional neural network (CNN) based on a 
framework of multi-task learning. One common encoder extracted features from the dual-tracer dynamic sinogram, 
followed by two distinct and parallel decoders which reconstructed the single-tracer dynamic images of two tracers 
separately. The model was evaluated by mean squared error (MSE), multiscale structural similarity (MS-SSIM) index and 
peak signal-to-noise ratio (PSNR) on simulated data and real animal data, and compared to the filtered back-projec-
tion method based on deep learning (FBP-CNN).

Results  In the simulation experiments, the Multi-task CNN reconstructed single-tracer images with lower MSE, higher 
MS-SSIM and PSNR than FBP-CNN, and was more robust to the changes in individual difference, tracer combination 
and scanning protocol. In the experiment of rats with an orthotopic xenograft glioma model, the Multi-task CNN 
reconstructions also showed higher qualities than FBP-CNN reconstructions.

Conclusions  The proposed Multi-task CNN could effectively reconstruct the dynamic activity images of two single 
tracers from the dual-tracer dynamic sinogram, which was potential in the direct reconstruction for real simultaneous 
dual-tracer PET imaging data in future.
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Introduction
Positron emission tomography (PET) is a nuclear imaging 
technique that uses radiolabeled tracers to measure met-
abolic functions in  vivo. It provides useful information 

and guidance for the detection, diagnosis, staging, treat-
ment planning and monitoring of diseases [1, 2].

For some diseases, a PET scan with a single tracer is 
insufficient to reveal the complex pathological character-
istics. Researchers tried out multi-tracer PET imaging for 
more complete information, which was usually achieved 
by multiple single-tracer scans. For example, Fu et al. [3] 
demonstrated that combining the imaging results of 18
F-fluorodeoxyglucose ( 18F-FDG) and 18F-fluorocholine 
( 18F-FCH) led to more accurate detection of low-grade 
glioma than using 18F-FDG or 18F-FCH only.
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Instead of two separate single-tracer scans, a simulta-
neous dual-tracer PET scan can eliminate errors caused 
by image misalignment and physiological changes 
between scans, and also reduce the total scanning time. 
However, different tracers all generate the 511-keV 
photon pairs, which makes signal separation a difficulty 
in the reconstruction for simultaneous dual-tracer PET 
imaging. Efforts have been devoted to the develop-
ment of various separation techniques, including tradi-
tional methods mainly based on estimation and more 
recent approaches based on deep learning or machine 
learning.

Traditional estimation approaches have been exten-
sively studied [4]. The earliest simualtion study [5] and 
later animal study [6] achieved signal separation based 
on different half-lives of two tracers. Later on, the paral-
lel compartment model [7, 8] was widely used in tracer 
separation, by which the kinetic parameters of two trac-
ers were simultaneously estimated to recover the activity 
distributions of each tracer. Several studies have investi-
gated the effects of tracer combination, injection interval, 
and scanning protocol on the results of compartment 
model-based signal separation [9–12]. The model-based 
separation method was simplified by introducing a refer-
ence region [13] or the technique of reduced parameter 
space [14–16]. A state-space representation based on the 
compartment model [17] was proposed for simultaneous 
signal separation and reconstruction. In addition, sepa-
ration methods based on principal component analysis 
[18], generalized factor analysis [19], or basis function fit-
ting [20] were also proposed. In particular, Andreyev and 
Celler [21] proposed a physical method to distinguish dif-
ferent tracer signals using a specially labeled tracer that 
can additionally emit a high-energy γ photon. Fukuchi 
et al. used special detectors to receive prompt γ-rays, and 
proposed reconstruction methods based on data subtrac-
tion for dual-tracer PET imaging when one tracer was 
labeled by a pure positron emitter and the other by a pos-
itron-γ emitter [22, 23].

Since these traditional methods explicitly use specific 
prior information, they also have limitations in applica-
tions. Methods based on the difference of half-lives are 
not applicable to tracers with same or close half-lives. 
Methods based on the parallel compartment model 
require staggered injection and arterial blood sam-
pling. To use compartment model with reference tissue 
method, the firstly injected tracer must have a reference 
region. Besides, component analysis may have non-
unique solutions, especially if the component factors of 
the tracers are similar.

Compared to traditional methods, deep learning or 
machine learning methods for dual-tracer separation or 
reconstruction are not constrained by prior information, 

thus can deal with simultaneously injected tracers or 
tracers with the same half-lives.

There are two kinds of deep learning approaches for 
dual-tracer reconstruction: the indirect ones and direct 
ones. Indirect methods firstly reconstruct the dual-tracer 
dynamic images by traditional reconstruction algorithms, 
then separate the dual-tracer images by deep neural net-
works to obtain single-tracer images [24–28]. These net-
works separate signals either from the voxel time-activity 
curves (TACs) [24–27] or from the entire dynamic image 
[28], and are easily influenced by the quality of recon-
structed images. Direct methods reconstruct images of 
two tracers directly from the dual-tracer sinogram, which 
means the network learns to solve both the separation 
task and reconstruction task. As an example, Xu and Liu 
[29] imitated a filtered back-projection (FBP) procedure 
by network to reconstruct dual-tracer images and used 
a three-dimensional (3D) convolutional neural network 
(CNN) to provide an estimation of two tracers from the 
reconstructed images, referred to as FBP-CNN model. 
FBP-CNN behaved better than indirect reconstruction 
methods since it also learned spatial information from 
sinogram. However, the FBP part of the model included 
tremendous number of parameters, causing demands for 
both large amount of training data and memories. The 
development of a more trainable and memory-friendly 
network is necessary. Apart from these deep learn-
ing models, the recurrent extreme gradient boosting, a 
machine learning algorithm, was recently used to sepa-
rate tissue TACs in the 18F-FDG/68Ga-DOTATATE imag-
ing of neuroendocrine tumors [30].

This study aims to directly reconstruct activity distri-
butions of two tracers from the dual-tracer sinogram by 
a novel deep neural network named Multi-task CNN, 
which is characteristic of:

(a) A 3D encoder-decoder structure. The deep 
encoder-decoder structure is motivated by DeepPET 
[31] which was used for single-tracer, static PET image 
reconstruction. To cope with the dynamic data in dual-
tracer PET imaging, we adopt 3D convolution layers 
to form the encoder and decoder, by which the tempo-
ral kinetic features and spatial structural features are 
learned simultaneously. The former plays an important 
role in the separation task, while the latter is useful for 
reconstruction.

(b) A multi-task learning framework. The multi-task 
learning [32] forces a model to learn multiple different 
but related tasks simultaneously. The learned information 
is shared between tasks to improve the performances of 
the model. It has been widely used in computer vision 
[33] and medical image analysis [34]. In dual-tracer PET 
imaging, the reconstruction of two single-tracer activity 
images can be regarded as two different but related tasks. 
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In Multi-task CNN, we set one common encoder while 
extend the decoder part into two branches.

(c) The direct encoding of sinogram. Unlike FBP-CNN 
which reconstructed the dual-tracer activity images by 
network before encoding, the Multi-task CNN avoids the 
reconstruction of dual-tracer images but directly encodes 
the dual-tracer sinogram.

Methods
Models of dual‑tracer PET imaging and reconstruction
Generally, the process of a single-tracer PET imaging is 
formulated as

where y(t) and x(t) are the sinogram and activity distribu-
tion at time t. The system matrix G describes the prob-
ability of each voxel in the activity distribution to be 
detected by each bin in the sinogram, which is related to 
the physical and geometrical structure of the PET scan-
ner [35]. And n(t) is the noise mainly caused by random 
and scattered coincidences.

The dual-tracer PET imaging with simultaneous injec-
tion can be defined as

where yI+II (t) is the dual-tracer sinogram, xI (t) and 
xII (t) are the activity distributions of Tracer I and Tracer 
II. The different spatiotemporal distributions of the trac-
ers lead to different noises nI (t) and nII (t).

For a certain scanning protocol, the dynamic dual-tracer 
sinogram is denoted as Y I+II = [yI+II (t1), . . . , y

I+II (tF )] , 
where F is the number of frames, tf  is the mid-frame 
time of the f th frame. The dynamic single-tracer activity 
images can be denoted in the same way as XI and XII . 

(1)y(t) = Gx(t)+ n(t),

(2)yI+II (t) = G xI (t)+ xII (t) + nI (t)+ nII (t),

The direct reconstruction for dual-tracer PET imaging 
can be described as

where X̂ I and X̂ II are the estimatation of XI and XII . In 
this study, θ are the weights of the proposed Multi-task 
CNN.

Multi‑task CNN
Network architecture
The architecture of Multi-task CNN is presented in Fig. 1. 
The dual-tracer dynamic sinogram of a single slice, in the 
shape of frames × bins × angles, is taken in as the network 
input. The spatiotemporal features are extracted from the 
dynamic sinogram by the encoder, which includes three 
downsampling blocks. In each block, a 3D convolution 
layer with a stride of 1 is firstly applied, with the size of 
each feature map maintained. Then, the second 3D con-
volution layer downsamples the features by a stride of 2. 
The number of channels in three blocks are 16, 32 and 64. 
At the end of the encoder, a 3D convolution layer is used 
to extend the features to 128 channels.

The multi-task learning scheme is reflected in using two 
decoders to estimate the activity images of two tracers 
separately. The two decoders have the same structure, both 
including three upsampling blocks. In each block, a 3D 
deconvolution layer is firstly used to upsample the features 
by a stride of 2. Then a 3D convolution layer with a stride 
of 1 is applied, with the size of features kept unchanged. 
Symmetry to the encoder, the number of channels are 64, 
32, 16 in these blocks. Finally, a 3D convolution layer with 
a stride of 1 is used to reduce the number of channels to 
1. All the convolution and deconvolution layers are con-
nected by a batch normalization layer and a rectified lin-
ear unit (ReLU) layer. The size of the kernels are 3× 3× 3 

(3)[X̂ I , X̂ II ] = hθ (Y
I+II ),

Fig. 1  The architecture of Multi-task CNN. The dual-tracer dynamic sinogram is inputted to the encoder, and two decoders output the dynamic 
activity images of two tracers. Conv = convolution layer, BN = batch normalization layer, ReLU = rectified linear unit layer, Deconv=deconvolution 
layer. The kernel size and number of channels are noted in the figure
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in all convolution and deconvolution layers, except the last 
layer which uses 1 × 1 × 1 kernels.

Loss function
The loss function of a single-frame image of one tracer is 
a combination of the mean squared error (MSE) and the 
structural similarity (SSIM) [36]:

where x̂ is an estimated single-frame activity image, and 
x is the corresponding label. α and β are the coefficients 
that balance MSE and SSIM.

The total loss Ltotal was summed by the loss of two trac-
ers and averaged by frames:

Comparative method and evaluation metrics
The proposed Multi-task CNN was compared to FBP-
CNN [29] by MSE, multiscale structural similarity (MS-
SSIM) index [37] and peak signal-to-noise ratio (PSNR). 
Frame-wise MS-SSIM is formulated as

where M represents the number of dowmsampling oper-
ations by a factor of 2 performed to the estimated image 
x̂ and label image x. The subscript m is related to the mth 
downsampling operation. For instance, cm(x̂, x) calculates 
c(·, ·) of the m-times downsampled images, and its corre-
sponding exponential parameter is γ2,m . l(x̂, x) , c(x̂, x) and 
s(x̂, x) measure the differences of luminent, contrast and 
structure similarity between two images. The detailed 
calculation of l(·, ·) , c(·, ·) and s(·, ·) , as well as the values 

(4)L(x̂, x) = αMSE(x̂, x)− β ln
1+ SSIM(x̂, x)

2
,

(5)

Ltotal =
1

F

F
∑

f=1

L
[

x̂I (tf ), x
I (tf )

]

+ L
[

x̂II (tf ), x
II (tf )

]

.

(6)

MS− SSIM(x̂, x) = [lM(x̂, x)]γ1,M ·

M
∏

m=0

[cm(x̂, x)]
γ2,m [sm(x̂, x)]

γ3,m ,

of M and exponential parameters can refer to the previ-
ous publication [37]. And the frame-wise PSNR is formu-
lated as:

where xmax is the maximum value of x.

Experiments
In this study, we trained and tested the Multi-task CNN 
and FBP-CNN on four simulated datasets and one animal 
dataset from real PET experiments.

Simulation study
Experimental settings
The simulation study contained four experiments: two 
individual difference experiments (EXP 1-1, EXP 1-2), 
one tracer combination experiment (EXP 2) and one 
scanning protocol experiment (EXP 3). The detailed set-
tings are shown in Table 1. To simulate the physiological 
characteristics of different people, we applied Gauss-
ian randomization to the tracer kinetic parameters and 
parameters of plasma input function in all experiments. 
The numbers of parameter sets (including both kinetic 
parameters and input function parameters) and the lev-
els of physiological variation are listed in Table 1. In all 
experiments, the number of frames of the dynamic data 
was set to 18.

Exp 1-1 and EXP 1-2 simulated data of 30-min 11
C-Flumazenil ( 11C-FMZ)/11C-acetate imaging. The two 
experiments designed the same variation range (10%) of 
input functions but different variation ranges (10%, 20%) 
of kinetic parameters. In EXP 2, we set two combinations 
of tracers, where 11C-FMZ/11C-acetate had the same half-
life, while 18F-FDG/11C-FMZ had different half-lives. The 
scanning protocols were different accordingly. The levels 
of both input variation and kinetic variation of two com-
binations were set to 10%. In EXP 3, we designed three 
scanning protocols with the durations of 40 min, 50 min 

(7)PSNR(x̂, x) = 10 · log10

[

x2max

MSE(x̂, x)

]

,

Table 1  Settings of the simulation experiments

EXP Tracers Scanning protocol Kinetic variation (%) Input variation (%) Parameter 
sets

1-1 11C-FMZ/11C-acetate 30s×4+110s×12+180s×2 10 10 30

1-2 11C-FMZ/11C-acetate 30s×4+110s×12+180s×2 20 10 30

2 11C-FMZ/11C-acetate 30s×4+110s×12+180s×2 10 10 15
18F-FDG/11C-FMZ 60s×2+180s×6+240s×10 10 10 15

3 18F-FDG/11C-FMZ 60s×2+90s×2+150s×14 10 10 10
18F-FDG/11C-FMZ 60s×3+140s×7+230s×8 10 10 10
18F-FDG/11C-FMZ 60s×2+180s×6+240s×10 10 10 10
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and 60 min for 18F-FDG/11C-FMZ imaging. All the varia-
tion ranges were set to 10%.

Simulation process
The phantoms used for simulation were originated from 
the 3D Zubal brain phantom [38]. By region of interest 
(ROI) partition, slice selection and dowmsampling, we 
obtained 40 two-dimensional phantoms sized 128 × 128. 
The voxel size was 2.2× 2.2× 1.4 mm3 . The number of 
ROIs in each phantom varied from 2 to 5. Representative 
phantoms are shown in Fig. 2.

The single-tracer dynamic activity images were gener-
ated based on the two-tissue compartment model [39] 
which described the kinetic characteristics of the tracer:

 C1(t) and C2(t) are the tracer concentrations in two tis-
sue compartments. The two compartments represent 
different metabolic states of the tracer. CP(t) is the tracer 
concentration in plasma, i.e., the plasma input function. 
K1 , k2 , k3 and k4 are the kinetic parameters reflecting the 
speed of directional tracer exchanges between differ-
ent tissue compartments or between plasma and tissue, 

(8)

dC1(t)

dt
= K1CP(t)− (k2 + k3)C1(t)+ k4C2(t)

dC2(t)

dt
= k3C1(t)− k4C2(t)

CT (t) = C1(t)+ C2(t)

which are different among ROIs, individuals and trac-
ers. The input functions of 18F-FDG [40], 11C-FMZ [41] 
and 11C-acetate [18] were generated by different mod-
els. By applying Gaussian randomization to the kinetic 
parameters and parameters of input function, we simu-
lated individual differences in physiological states. The 
mean values of these parameters were set as previously 
reported [7, 15, 18, 40–42], and the standard deviations 
were set as a portion of mean values, which are shown 
in Table  1. After setting the aforementioned phantoms, 
parameters and the scanning protocols, the tissue TACs 
CT (t) were obtained by numerically solving Eq.  (8) by 
the COMKAT toolbox [43]. All voxel TACs formed the 
noise-free dynamic activity images. The images generated 
were sized 128 × 128 × 18 frames.

The single-tracer dynamic sinograms were generated 
by frame-wise projection of single-tracer activity images 
using Michigan Image Reconstruction Toolbox [44]. 
We designed the system matrix by simple strip integrals 
according to the geometry of the Siemens Inveon PET/
CT scanner [45], without the consideration of attenu-
ation, scatter and variations in detector efficiencies. We 
added 20% random noise and Poisson noise to the sino-
grams. The size of the dynamic sinogram was 128 bins × 
160 angles × 18 frames.

The dual-tracer dynamic sinogram was obtained by 
simply adding up two single-tracer sinograms. This guar-
anteed the alignment of images, the match of doses and 
the consistency of physiological states between the dual-
tracer scan and two single-tracer scans. The dual-tracer 
dynamic sinogram was used as the network input.

Additionally, the single-tracer dynamic activity images 
with noise were reconstructed frame-wisely by the 
ordered subsets expectation maximization (OSEM) 
algorithm [46] with 6 iterations and 5 subsets. Correc-
tions and normalization were not performed. In consist-
ence with the phantom and simulated noise-free activity 
images, the voxel size of the reconstructed images was 
2.2× 2.2× 1.4 mm3 . The reconstructed images of two 
tracers were used as labels.

Datasets and network training
Datasets used in EXP 1-1, EXP 1-2, EXP 2 and EXP 3 
all included 30 parameter sets. In particular, 15 sets of 
parameters were simulated for each one of the two tracer 
combinations in EXP 2, and 10 sets of parameters were 
simulated for each one of the three scanning protocols 
in EXP 3. Therefore, the four datasets used for network 
training all contained 1200 groups (40 phantoms × 30 
parameter sets) of simulated PET data. Each dataset was 
randomly divided into training data, validation data and 
test data by 8:1:1. The inputs were normalized by the 

Fig. 2  The Zubal phantoms used in simulation experiments. a b, c, 
and d are representative phantoms corresponding to differenct slices 
of the original 3D phantom
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mean and standard deviation of the training set, and the 
labels were normalized by dividing 255.

We used the Adam optimizer in the training of Multi-
task CNN and FBP-CNN. For Multi-task CNN, the 
hyperparameters were set as: learning rate = 0.0005, 
epochs = 100, batch size = 4, α = 100 and β = 1. For 
FBP-CNN, the hyperparameters were set as: learning rate 
= 0.0001, epochs = 100 and batch size = 4.

Animal study
Animals and tracers
The animal experiments were approved by the Experi-
mental Animal Ethics Committee of Southern Medical 
University, and were conducted in compliance with the 
ARRIVE guidelines, the guidelines of the US National 
Institutes of Health and local legal requirements. 13 SD 
rats (average age: 9 weeks; average weight: 300 g) with a 
C6 cell intracranial orthotopic xenograft glioma model 
were used in this experiment.

Previous PET study showed that 18F-FDG had a 
higher sensitivity but a lower specificity than O-(2-[18F]
fluoroethyl)-L-tyrosine ( 18F-FET) in the detection of head 
and neck squamous cell carcinoma [47]. A 18F-FDG/18F-
FET dual-tracer PET scan might be benificial for better 
detection and location of tumors. We selected 18F-FDG 
and 18F-FET as tracers to evaluate the feasibility of our 
model on real PET data.

PET imaging
Two single-tracer PET scans were performed on each rat 
using a Siemens Inveon PET/CT scanner [45]. The rats 
underwent an 8-hour fasting before PET scans. During 
the scans, they were kept under anesthesia by 1% isoflu-
rane and 1  L/min of oxygen, and also fixed by medical 
tapes. At the beginning of each scan, 18F-FDG or 18F-FET 
was injected at a dose around 37 MBq into the tail vein 
of the rat. The 18F-FDG scan and 18F-FET scan followed 
the same scanning protocol (60 s × 10, 300 s × 3420 s × 
5), and were carried out on two different days in random 
order.

Data preparation
The 3D dynamic sinogram of each single-tracer scan was 
obtained. Using the built-in software, the dynamic activ-
ity images were reconstructed frame-wisely by 3D-OSEM 
algorithm with normalization and random correction. 
Attenuation correction was also performed using indi-
vidual computed tomography (CT) images. The recon-
structed single-tracer activity images were sized 128 × 
128 × 18 frames with a voxel size of 0.78× 0.78× 0.80 
mm3 , and were used as labels.

Since the network input should be a time sequence of 
a 2D sinogram, the original 3D sinogram was random 

corrected and re-organized by single slice rebinning to 
form 2D sinogram. The obtained dynamic sinograms 
were sized 128 bins × 160 angles × 18 frames. As done in 
previous dual-tracer PET experiments [14, 48], we added 
sinograms of two tracers to get the dual-tracer sinogram, 
which was used as the network input.

Datasets and network training
Totally, 351 brain slices from 13 rats were selected, 
among which 297 groups of data from 11 rats were used 
for training and validation, the remaining 54 groups 
of data from the other 2 rats were used for testing. The 
inputs were normalized by the mean and standard devia-
tion of the training set, and the labels were normalized 
by dividing 106 , which converted the unit from Bq/mL to 
MBq/mL.

Same as the simulation study, Adam optimizer was 
used in the training of Multi-task CNN and FBP-CNN. 
For Multi-task CNN, the hyperparameters were set as: 
learning rate = 0.0001, epochs = 100, batch size = 4, α 
= 1 and β = 0.01. Moreover, a weight decay with a coef-
ficient of 0.01 was added to the loss function. For FBP-
CNN, the hyperparameters were set as: learning rate = 
0.00002, epochs = 250, batch size = 4.

Results
Simulation study
Table  2 lists the mean values of MSE, MS-SSIM and 
PSNR of each test datasets. In all simulation experiments 
and datasets, Multi-task CNN showed lower MSE, higher 
MS-SSIM and PSNR than FBP-CNN. The results of each 
simulation experiment are as follows.

Effect of individual difference
As shown in Fig.  3, single-tracer activity images recon-
structed by Multi-task CNN contained less noise than 
those reconstructed by FBP-CNN, and were even 
smoother than the ground truth in some regions. When 
the kinetic variation increased from 10% (Fig.  3a) to 
20% (Fig.  3b), the reconstruction results of FBP-CNN 
became worse, where the image details were not well 
reconstructed.

As displayed in Table 2, for both tracers under two levels 
of individual difference, the Multi-task CNN reconstructions 
had significantly lower MSE, higher MS-SSIM and PSNR 
than FBP-CNN reconstructions. When the level of individ-
ual difference increased, the MSE of both methods increased, 
while Multi-task CNN increased by a smaller increment. The 
MS-SSIM and PSNR of FBP-CNN reconstructions of two 
tracers all decreased. Although the MS-SSIM and PSNR of 
Multi-task CNN reconstructions of Tracer II ( 11C-acetate) 
were also slightly reduced, the two-tailed t tests showed 
that the MS-SSIM ( T = −2.57,P = 0.011 ) and PSNR 
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( T = 0.42,P = 0.674 ) of reconstructed images of Tracer I 
( 11C-FMZ) were not influenced.

Effect of tracer combination
Visually in Fig. 4, Multi-task CNN reconstructed images 
with better details and less noise than FBP-CNN. Table 2 
quantitatively shows that the MS-SSIM and PSNR of 
Multi-task CNN reconstructions were higher, and the 
MSE was lower.

It is worth noting that 11C-FMZ was set as Tracer I in 
the first tracer combination (Fig. 4a), but as Tracer II in 
the second combination (Fig. 4b). In both cases, 11C-FMZ 
images reconstructed by FBP-CNN showed an “check-
erboard effect”, which was more obvious in the sec-
ond combination, resulting in extremely low MS-SSIM 
(0.4762 ± 0.0475) and PSNR (17.13 ± 0.33). Compared to 

FBP-CNN, metrics of Multi-task CNN reconstructions 
were more stable between different tracer combinations.

Effect of scanning protocol
Figure  5 shows the reconstructed images of 18F-FDG/11
C-FMZ under one of the scanning protocols. The 60-min 
scan was too long for 11C-FMZ imaging, causing quite 
different concentrations of two tracers in later frames. 
Even in such case, both Multi-task CNN and FBP-CNN 
can well reconstructed the temporal changes of tracer 
activities. However, the structures of 18F-FDG images 
reconstructed by FBP-CNN were inconsistent with the 
ground truth. Furthermore, in the 16th frame of 11C-
FMZ, both methods overestimated the tracer activities, 
while the estimation of Multi-task CNN was closer to the 
label.

Table 2  Quantitative results of the simulation experiments

The lower MSE, higher MS-SSIM and higher PSNR are noted in bold font in the comparison of the proposed method and FBP-CNN

EXP Dataset Method Tracer I Tracer II

MSE MS-SSIM PSNR MSE MS-SSIM PSNR

1-1 Individual difference I FBP-CNN 2.3561 0.8783 23.92 6.1724 0.9248 30.32

Proposed 1.2661 0.9534 27.61 1.8536 0.9927 35.85
1-2 Individual difference II FBP-CNN 4.1080 0.8586 22.21 11.4220 0.9139 26.67

Proposed 1.4566 0.9592 27.47 4.5473 0.9889 33.57
2 Tracer combination I FBP-CNN 1.5350 0.8222 23.86 7.5759 0.9231 30.00

Proposed 0.3599 0.9705 30.02 2.7090 0.9897 34.41
Tracer combination II FBP-CNN 4.8387 0.8956 24.32 2.9304 0.4762 17.13

Proposed 0.6687 0.9872 32.77 0.2906 0.9561 28.52
3 Scanning protocol I FBP-CNN 2.9040 0.8555 24.63 1.2512 0.8592 23.81

Proposed 0.4325 0.9787 31.94 0.2508 0.9789 30.51
Scanning protocol II FBP-CNN 2.8501 0.8560 24.75 1.1370 0.8691 24.40

Proposed 0.4504 0.9778 31.78 0.2753 0.9759 29.75
Scanning protocol III FBP-CNN 3.1287 0.8539 24.71 1.2879 0.8116 21.16

Proposed 0.4722 0.9799 32.28 0.2476 0.9676 28.58

Fig. 3  The representative reconstructed images from the individual difference experiment. a 10% kinetic variation, b 20% kinetic variation. These 
images show the 10th frame of the dynamic images
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Overall, MS-SSIM and PSNR of Multi-task CNN 
reconstructions were higher than FBP-CNN, and the 
MSE was lower (Table 2). Figure 6 shows the ROI-TACs 

extracted from the reconstructed images. Each subplot 
contains estimated and label TACs of two tracers. The 
rows and columns of the figure represent different ROIs 

Fig. 4  The representative reconstructed images from the tracer combination experiment. a Tracer combination I ( 11C-FMZ/11C-acetate), b Tracer 
combination II ( 18F-FDG/11C-FMZ). These images show the 10th frame of the dynamic images

Fig. 5  The representative reconstructed images from Protocol III (60-min scan) of the scanning protocol experiment
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and scanning protocols. Obviously shown in the first row, 
TACs of FBP-CNN reconstructions severely deviated 
from the labels, which was resulted from negative values 

in the background. The TACs from Multi-task CNN 
reconstructions were closer to the label TACs in the 
background and ROI 1-4, while TACs from FBP-CNN 

Fig. 6  The ROI-TACs from the scanning protocol experiment
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reconstructions were more accurate in ROI 5. Besides, 
changes in scanning protocols had little influence on the 
performance of both methods.

Animal study
Figure  7 shows the representative images of the same 
brain slice of one rat. The 18F-FDG images reconstructed 
by both methods were less-accurate. As for 18F-FET 
images, the results of Multi-task CNN showed better 
details and contrast, and the tumor near the top could 
also be distinguished. Table  3 also shows that images 
reconstructed by Multi-task CNN had lower MSE, higher 
MS-SSIM and PSNR than FBP-CNN. Compared with the 
simulation experiments, the qualities of reconstructed 
images in animal experiment were significantly worse, 
which was mainly caused by misalignment of images 
from two single-tracer scans.

Discussion
Most traditional reconstruction methods for dual-tracer 
PET imaging could only separate two tracers when they 
were administrated with an interval, and were sensitive to 
tracer combinations and scanning protocols. These meth-
ods usually required invasive measurements of plasma 
input function by arterial blood sampling. Compared to 

the traditional methods, the proposed Multi-task CNN 
as well as other deep learning-based models could effec-
tively separate signals from simultaneoulsly adminis-
trated tracers, and avoid the arterial blood sampling.

The deep learning-based indirect reconstruction mod-
els separate the dual-tracer images after reconstruction. 
The majority of these methods separate signals voxel-
wisely, that is, by separating the TACs extracted from the 
reconstructed images [24–27]. Only temporal features 
were learned from the TACs and used for separation. 
There also existed a method separating from the image 
domain, using both spatial and temporal features [28]. 
However, these two types of methods were both influ-
enced by the quality of reconstructed images. As a direct 
reconstruction method, the Multi-task CNN extracted 
and fully used the spatiotemporal information from the 
dual-tracer sinogram, which was not influenced by the 
traditional reconstruction algorithms.

In the current study, we quantitatively compared our 
Multi-task CNN to FBP-CNN [29], which is also a deep 
neural network for direct reconstruction for dual-tracer 
PET imaging. The robustness of Multi-task CNN and 
FBP-CNN to changes in tracer combiantion and scan-
ning protocol was evaluated by simulation data. To make 
the simulated data more realistic, we used phantoms 

Fig. 7  The representative reconstructed images from the animal experiment. These images show the same slice of one rat
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corresponding to different brain slices, and generated 
data with varied tracer kinetic parameters and input 
functions to imitate individual difference. Whether the 
models were sensitive to different levels of individual dif-
ference was also studied.

According to the results of simulation experiments, 
Multi-task CNN reconstructed single-tracer activity 
images with higher quality than FBP-CNN, and was more 
robust to individual difference and tracer combination 
than FBP-CNN. In the animal experiment, Multi-task 
CNN also showed its superiority over FBP-CNN.

The advantages of Multi-task CNN over FBP-CNN 
might be mainly due to different scales of two models. 
FBP-CNN explicitly consisted of two parts. Firstly, the 
reconstruction part unrolled the FBP algorithm by a 
convolution layer and a fully-connected layer to recon-
struct the dual-tracer activity image. Then, the separation 
part estimated single-tracer images by 3D encoders and 
decoders. The number of parameters in the reconstruc-
tion part, especially the fully-connected layer, growed 
with the size of sinogram and activity image, which 
resulted in low generalization ability of the model. Unlike 
FBP-CNN, the encoder was directly operated on the 
sinogram in Multi-task CNN. The number of parameters 
in Multi-task CNN was fixed and independent of the size 
of sinogram or image. Nevertheless, the encoder part 
of the Multi-task CNN was less interpretable than the 
reconstruction part of the FBP-CNN.

The effectiveness of multi-task learning could be 
explained in two perspectives [32]. From the perspec-
tive of overfitting, it was commonly agreed that learn-
ing more than one task could prevent the model from 
overfitting, since it was more challenging than learning 
a single task. From the perspective of auxiliary learning, 

learning related tasks was beneficial for the model to 
extract appropriate and important features. In the Multi-
task CNN, the reconstruction of two single-tracer activ-
ity images were regarded as two tasks. The two tasks 
had the same scanning protocol and system probability 
matrix since they were scanned simultaneously. However, 
the two tracers had different kinetic characteristics, input 
functions, as well as different levels of noise due to dif-
ferent activity distributions. Using Multi-task CNN could 
learn more substantial and important features by the 
encoder, and maintain the differences between two trac-
ers by using two decoders.

However, the current study had several limitations. 
As shown in Fig.  6, in some ROIs, the activities recon-
structed by the proposed method deviated from the 
ground truth. The TACs of 11C-FMZ tended to be inac-
curate in early frames, while TACs of 18F-FDG were 
inaccurate in later frames. The introducing of atten-
tion mechanism to the model might be helpful to better 
extract different features from different frames. In addi-
tion, the images reconstructed by Multi-task CNN were 
over smoothed, which might be due to including SSIM in 
the loss function. A more appropriate coefficient of SSIM 
part in the loss function, and more suitable constraints 
should be further studied. Moreover, the dual-tracer 
sinograms in animal experiments were not obtained from 
dual-tracer scans, but from single-tracer scans for simpli-
cation, where the images were not aligned.

To use real experimental or clinical data to train deep 
learning models in future studies, standards of data 
acquicision and preprocessing should be set up. The 
prototols of simultaneous dual-tracer PET scans, and 
the issues concerning image alignment and dose match-
ing need special focuses. For example, the injected doses 

Table 3  Quantitative results of the animal experiment

The lower MSE, higher MS-SSIM and higher PSNR are noted in bold font in the comparison of the proposed method and FBP-CNN. When calculating MSE, activity unit 
was converted to MBq/mL

Metric Tracer Method Frame 4 Frame 8 Frame 12 Frame 16

MSE 18F-FDG FBP-CNN 0.0004 0.0003 0.0004 0.0004

Proposed  0.0003  0.0003  0.0003 0.0004
18F-FET FBP-CNN 0.0014 0.0013 0.0011 0.0010

Proposed  0.0008  0.0007  0.0006  0.0006
MS-SSIM 18F-FDG FBP-CNN 0.8193 0.8822 0.9080 0.9115

Proposed 0.8719 0.8993 0.9113 0.9055
18F-FET FBP-CNN 0.7549 0.7532 0.7755 0.7863

Proposed 0.8884 0.8787 0.8765 0.8727
PSNR 18F-FDG FBP-CNN 22.84 25.67 27.76 28.56

Proposed 24.66 26.53 28.17 28.59
18F-FET FBP-CNN 24.44 23.68 23.91 23.67

Proposed 27.49 26.90 26.51 26.00
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of tracers in both single-tracer scans and dual-tracer 
scan are needed for scaling and dose matching. Images 
intra- and inter- scans should be well-aligned. The decay 
correction is not necessary since the concentrations of 
tracers in tissues are unknown. And the scanning proto-
col, corrections and reconstruction should be kept con-
sistent between scans.

Conclusions
In this study, we proposed Multi-task CNN, a 3D 
encoder-decoder network based on multi-task learning, 
to directly reconstruct two single-tracer dynamic images 
from the dual-tracer dynamic sinogram. The proposed 
method was superior to the existing FBP-CNN, exhibit-
ing its robustness to individual difference, tracer combi-
nation and scanning protocol in the simulation study. In 
the animal study, the feasibility of applying this method 
to real PET data was preliminarily verified. The proposed 
Multi-task CNN was thus considered a potential deep 
learning-based method for the direct reconstruction of 
simultaneous dual-tracer PET imaging.
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