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Abstract 

Background To quantify the relationship between [18F]FDG uptake of the primary tumour measured by PET-imag-
ing with immunohistochemical (IHC) expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers 
in breast cancer patients.

Methods PubMed and Embase were searched for studies that compared  SUVmax between breast cancer patients 
negative and positive for IHC expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers. Two 
reviewers independently screened the studies and extracted the data. Standardized mean differences (SMD) and 95% 
confidence intervals (CIs) were estimated by using DerSimonian-Laird random-effects models. P values less than or 
equal to 5% indicated statistically significant results.

Results Fifty studies were included in the final analysis.  SUVmax is significantly higher in ER-negative (31 studies, 
SMD 0.66, 0.56–0.77, P < 0.0001), PR-negative (30 studies, SMD 0.56; 0.40–0.71, P < 0.0001), HER2-positive (32 studies, 
SMD − 0.29, − 0.49 to − 0.10, P = 0.0043) or Ki-67-positive (19 studies, SMD − 0.77; − 0.93 to − 0.61, P < 0.0001) primary 
tumours compared to their counterparts. The majority of clinical subtypes were either luminal A (LA), luminal B (LB), 
HER2-positive or triple negative breast cancer (TNBC). LA is associated with significantly lower  SUVmax compared 
to LB (11 studies, SMD − 0.49, − 0.68 to − 0.31, P = 0.0001), HER2-positive (15 studies, SMD − 0.91, − 1.21 to − 0.61, 
P < 0.0001) and TNBC (17 studies, SMD − 1.21, − 1.57 to − 0.85, P < 0.0001); and LB showed significantly lower uptake 
compared to TNBC (10 studies, SMD − 0.77, − 1.05 to − 0.49, P = 0.0002). Differences in  SUVmax between LB and HER2-
positive (9 studies, SMD − 0.32, − 0.88 to 0.24, P = 0.2244), and HER2-positive and TNBC (17 studies, SMD − 0.29, − 0.61 
to 0.02, P = 0.0667) are not significant.

Conclusion Primary tumour  SUVmax is significantly higher in ER-negative, PR-negative, HER2-positive and Ki-67-pos-
itive breast cancer patients. Luminal tumours have the lowest and TNBC tumours the highest  SUVmax. HER2 overex-
pression has an intermediate effect.
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Background
Immunohistochemical (IHC) detection of estrogen 
receptor (ER), progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER2) is the founda-
tion of clinical subtyping of breast cancer since it selects 
targets for endocrine or HER2-targeted therapy [1–3]. 
In addition, gene expression profiling (GEP) studies have 
identified at least four intrinsic breast cancer subtypes 
that more accurately capture the diversity of breast can-
cer [4, 5]. Surrogate intrinsic subtypes have been defined 
which can be approximated using IHC determination of 
ER, PR, HER2 and Ki-67 [6–8]. To date, clinical subtyp-
ing using IHC has near exclusive use in contemporary 
practice.

Positron emission-tomography (PET) using [18F]-
fluorodeoxyglucose ([18F]FDG) is a widely accepted 
imaging modality in breast cancer that is nowadays 
mostly used in combination with computed tomogra-
phy (PET/CT) or magnetic resonance imaging (PET/
MRI) for anatomic correlation. While mainly used for 
initial staging in patients with locally advanced or sus-
pected recurrent breast cancer, it has also been thor-
oughly investigated for its ability to predict and detect 
response to neoadjuvant systemic therapy (NST) and to 
predict prognosis [9–11]. In practice, [18F]FDG uptake is 
predominantly expressed using maximum standardized 
uptake values  (SUVmax).

Previous studies report a correlation of [18F]FDG 
uptake with tumour aggressiveness, with increased 
 SUVmax in primary breast tumours that are ER-negative, 
PR-negative, HER2-positive or Ki-67-positive [12–14]. 
Studies investigating the difference in [18F]FDG uptake 
between clinical subtypes have found a similar pattern 
with relatively low  SUVmax in subtypes including ER and 
PR, and high  SUVmax for subtypes including HER2 or 
that are triple negative [15, 16]. To date, no meta-analysis 
has investigated or quantified the relative difference in 
 SUVmax between IHC expression of ER, PR, HER2, Ki-67, 
and clinical subtypes based on these markers.

Therefore, the aim of the present study is to per-
form a systematic review and meta-analysis to investi-
gate and quantify the association between [18F]FDG 
uptake expressed as  SUVmax and IHC expression of ER, 
PR, HER2, Ki-67, and clinical subtypes based on these 
markers.

Methods
The full description of the methods can be obtained in 
Additional file  1 (Tables  S1–S2). To be eligible for the 
meta-analysis, a study had to fulfill the following inclu-
sion criteria: patients with invasive breast cancer, [18F]
FDG uptake expressed as  SUVmax and measured on 
the primary tumour before any therapy, comparison of 

[18F]FDG uptake between patients negative and posi-
tive for IHC expression of ER, PR, HER2, or Ki-67, and 
between clinical subtypes based on the IHC expression 
of these markers. Data on the number of patients, mean 
and standard deviation (SD) of  SUVmax of patients nega-
tive and positive for IHC expression of ER, PR, HER2, 
Ki-67, and clinical subtypes based on these markers, 
was extracted. Study quality was assessed by using the 
Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS)-2 tool. For the meta-analysis, the primary 
summary statistic was the standardized mean difference 
(SMD) with 95% confidence intervals (CIs) using Hedges’ 
g correction for small study samples. The primary analy-
ses were based on studies which presented mean [18F]
FDG uptake with SD. Sensitivity analyses also included 
studies which presented median [18F]FDG uptake with 
(interquartile) range which were transformed to mean 
and SD. Lastly, Egger’s regression test was used to iden-
tify small-study effects.

Results
Study characteristics and QUADAS‑2
Figure 1 shows the search pattern and selection of articles 
at each step. Of the 74 included studies the means and 
SDs were provided in 50 [12, 14, 16–63]. In the remaining 
24 studies the means and SDs were transformed from the 
provided medians and (interquartile) ranges [13, 64–87]. 
An overview of the characteristics of included studies as 
well as the [18F]FDG PET characteristics is provided in 
Additional file 2 (Tables S3–S4). The number of patients, 
mean and SD of each individual study for negative and 
positive IHC expression of ER, PR, HER2, Ki-67, and of 
clinical subtypes based on these markers, is provided in 
Additional file 2 (Tables S5–S11).

Quality of included studies
Risk of bias for patient selection originated from poor 
reporting of in- and exclusion criteria in three stud-
ies and the use of case–control designs in another three 
studies. For the index test, there was an unclear risk of 
bias in 26 studies since it was not reported who reviewed 
the PET images or performed  SUVmax measurements, 
and a high risk of bias in 8 studies since no harmoniza-
tion of PET-data was performed while using multiple 
PET-devices. With regard to the reference standard, 22 
studies did not provide criteria for receptor positivity 
or subtypes. Lastly, high risk of bias in flow and timing 
existed in 8 studies since not all patients were included 
in the final analysis without providing valid reasons. In 
general, applicability concerns are low, meaning that the 
patient selection, index test and reference standard of 
the included studies match the review question. Figure 2 
visualizes the risk of bias and applicability concerns and 
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additional information on methodologic quality of indi-
vidual studies is provided in Additional file 2 (Table S12).

Association between [18F]FDG uptake and receptor status
Table  1 displays the estimates of the SMD with 95% 
CIs as measure for the difference in [18F]FDG uptake 
between negative versus positive IHC expression of ER, 
PR, HER2 and Ki-67. The primary analyses show that the 
 SUVmax is significantly higher in ER-negative (SMD 0.66, 

P < 0.0001), PR-negative (SMD 0.56, P < 0.0001), HER2-
positive (SMD − 0.29, P = 0.0043) or Ki-67-positive 
(SMD − 0.77, P < 0.0001) primary tumours compared to 
their counterparts.

Association between [18F]FDG uptake and surrogate 
intrinsic subtypes
The estimates of the SMD with 95% CIs as measure for 
the difference in [18F]FDG uptake between surrogate 

Fig. 1 PRISMA flow diagram of the study selection
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intrinsic subtypes based on recommendations from the 
St. Gallen conferences is displayed in Table  2. The pri-
mary analyses reveal that LA was associated with signifi-
cantly lower  SUVmax than LB (SMD − 0.49, P = 0.0001), 
LB HER2-negative (SMD − 0.68, P = 0.0021), LB 
HER2-positive (SMD − 0.72, P = 0.0089), HER2-posi-
tive (SMD − 0.91, P < 0.0001) and TNBC (SMD − 1.21, 
P < 0.0001); LB significantly lower than TNBC 
(SMD − 0.77, P = 0.0002); LB HER2-negative signifi-
cantly lower than TNBC (SMD − 0.58, P = 0.0177); LB 
HER2-positive significantly lower than HER2-positive 
(SMD − 0.22, P = 0.0457); and TNBC significantly higher 
than non-TNBC (SMD 0.56, P < 0.0001). While the sensi-
tivity analyses did not reveal a difference in the direction 
of the meta-analyses, the size and 95% CIs of the SMDs 
did differ significantly for the comparison of LA with LB 
HER2-negative (P = 0.0213) and of TNBC versus non-
TNBC (P = 0.0015) when including transformed medians 
and (interquartile) ranges.

Association between [18F]FDG uptake and clinical 
subtypes according to a simplified classification
Table  3 displays the estimates of the SMD with 95% 
CIs as measure for the difference in [18F]FDG uptake 
between clinical subtypes according to a simplified clas-
sification which classified patients into three groups (i.e. 
ER-positive/HER2-negative, HER2-positive, and TNBC). 
The primary analyses reveal that  SUVmax was significantly 
lower in ER-positive/HER2-negative than in HER2-posi-
tive (SMD − 0.34, P = 0.0070) or in TNBC (SMD − 0.89, 
P = 0.0008) and significantly lower in HER2-positive than 
in TNBC (SMD − 0.54, P = 0.0193).

Discussion
The results of this systematic review and meta-analysis 
indicate that there are substantial differences in [18F]
FDG uptake expressed as  SUVmax of the primary tumour 
between negative and positive IHC expression of ER, PR, 
HER2, Ki-67, and between clinical subtypes based on 

Table 1 Estimates of the SMD as summary measure for the difference in [18F]FDG  (SUVmax) uptake between negative versus positive 
IHC expression of ER, PR, HER2, and Ki-67

Data derived from the primary and sensitivity analyses are presented

CI, confidence interval; ER, estrogen receptor; HER2, human epidermal growth factor 2 receptor; PR, progesterone receptor; SMD, standardized mean difference

Receptor Studies Patients Meta‑analysis Subgroup Egger

No Negative Positive I2 (%) SMD 95% CI P P P

Primary analyses

 ER 31 1659 3777 48.0 0.66 0.56, 0.77  < 0.0001 – 0.6530

 PR 30 2043 2788 71.6 0.56 0.40, 0.71  < 0.0001 – 0.7426

 HER2 32 4035 1664 80.0  − 0.29  − 0.49, − 0.10 0.0043 – 0.4726

 Ki-67 19 1720 2186 57.8  − 0.77  − 0.93, − 0.61  < 0.0001 – 0.8838

Sensitivity analyses

 ER 47 2181 5256 43.1 0.67 0.59, 0.75  < 0.0001 0.7980 0.7934

 PR 46 2764 4171 66.4 0.54 0.42, 0.65  < 0.0001 0.6328 0.8925

 HER2 49 5602 2221 74.5  − 0.30  − 0.43, − 0.16  < 0.0001 0.9322 0.6184

 Ki-67 28 2187 3028 51.0  − 0.75  − 0.87, − 0.64  < 0.0001 0.5364 0.7299

Fig. 2 Methodological quality of included studies
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Table 2 Estimates of the SMD as summary measure for the difference in [18F]FDG  (SUVmax) uptake between St. Gallen surrogate 
intrisic subtypes

Data derived from the primary and sensitivity analyses are presented

CI, confidence interval; HER2, human epidermal growth factor 2 receptor; LA, luminal A; LB, luminal B; SMD, standardized mean difference; TNBC, triple negative breast 
cancer

Comparisons Studies Patients Meta‑analysis Subgroup Egger

No I2 (%) SMD 95% CI P P P

Primary analyses

 LB versus

  LB 11 1022 487 29.8  − 0.49  − 0.68, − 0.31 0.0001 – 0.8191

  LBHER2− 6 234 373 32.5  − 0.68  − 0.97, − 0.38 0.0021 – 0.4378

  LBHER2+ 6 234 142 54.2  − 0.72  − 1.17, − 0.28 0.0089 – 0.2371

  HER2+ 15 1024 290 56.4  − 0.91  − 1.21, − 0.61  < 0.0001 – 0.6148

  TNBC 17 1054 440 63.8  − 1.21  − 1.57, − 0.85  < 0.0001 – 0.7310

 LB versus

  HER2+ 9 369 185 61.2  − 0.32  − 0.88, 0.24 0.2244 – 0.8729

  TNBC 10 405 279 36.0  − 0.77  − 1.05, − 0.49 0.0002 – 0.5091

 LBHER2− versus

  LBHER2+ 6 373 142 66.0  − 0.02  − 0.52, 0.48 0.9316 – 0.1000

  HER2+ 6 373 105 51.7  − 0.33  − 0.81, 0.14 0.1305 – 0.4260

  TNBC 6 373 157 49.5  − 0.58  − 1.02, − 0.15 0.0177 – 0.7121

 LBHER2+ versus

  HER2+ 7 189 129 0.0  − 0.22  − 0.43, − 0.01 0.0457 – 0.3950

  TNBC 8 220 198 60.7  − 0.45  − 0.98, 0.08 0.0864 – 0.2661

 HER2+ versus

  TNBC 17 326 492 58.1  − 0.29  − 0.61, 0.02 0.0667 – 0.6702

 TNBC versus

  Non-TNBC 13 283 1157 0.0 0.56 0.41, 0.70  < 0.0001 – 0.1236

Sensitivity analyses

 LA versus

  LB 16 1361 1103 58.1  − 0.46  − 0.64, − 0.28  < 0.0001 0.6555 0.4305

  LBHER2− 7 309 522 54.9  − 0.60  − 0.90, − 0.31 0.0025 0.0213 0.1428

  LBHER2+ 7 309 176 46.4  − 0.71  − 1.07, − 0.36 0.0026 0.7466 0.3720

  HER2+ 21 1438 706 59.0  − 0.85  − 1.08, − 0.62  < 00,001 0.4906 0.6625

  TNBC 24 1499 865 76.5  − 1.18  − 1.48, − 0.88  < 0.0001 0.7134 0.6259

 LB versus

  HER2-pure 14 985 579 58.1  − 0.37  − 0.67, − 0.08 0.0170 0.5380 0.3568

  TNBC 15 1021 614 49.4  − 0.75  − 0.95, − 0.55  < 0.0001 0.7621 0.2725

 LBHER2− versus

  LBHER2+ 7 522 176 65.3  − 0.09  − 0.52, 0.33 0.6078 0.1151 0.0428

  HER2+ 7 522 139 42.4  − 0.37  − 0.73, − 0.01 0.0454 0.6619 0.3687

  TNBC 7 522 233 45.1  − 0.53  − 0.86, − 0.21 0.0073 0.3633 0.4680

 LBHER2+ versus

  HER2+ 8 223 151 0.0  − 0.17  − 0.37, 0.02 0.0745 0.3306 0.3426

  TNBC 9 254 274 62.3  − 0.37  − 0.84, 0.10 0.1103 0.0792 0.1436

 HER2+ versus

  TNBC 24 754 916 45.2  − 0.25  − 0.45, − 0.06 0.0130 0.9067 0.3980

 TNBC versus

  Non-TNBC 19 379 1516 40.6 0.73 0.54, 0.90  < 0.0001 0.0015 0.0526
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these markers. The pooled SMD estimated significantly 
increased  SUVmax in tumours that are ER-negative, PR-neg-
ative, HER2-positive and Ki-67-positive. Clinical subtypes 
based on these markers follow the same pattern with lower 
 SUVmax in luminal subtypes including ER and PR, and 
higher uptake in TNBC. HER2 overexpression and associ-
ated subtypes have an intermediate effect, with significantly 
higher uptake compared to LA and LB HER2-positive, 
similar uptake compared to LB and LB HER2-negative, and 
insignificantly lower uptake compared to TNBC.

The effect of IHC expression of each separate marker 
(i.e. ER, PR, HER2 and Ki-67) on [18F]FDG uptake can 
partially be explained by both the interrelations as well 
as the underlying differences in confounding clinico-
pathologic factors. Proliferation marker Ki-67, having 
the single largest effect on [18F]FDG uptake in our meta-
analysis, is closely related to histological or nuclear grad-
ing and proliferative, poorly differentiated tumours are 
more common in ER-negative, PR-negative and HER2-
positive tumours [88, 89]. In addition, tumour size has an 
independent effect on [18F]FDG uptake and ER-negative, 
PR-negative, HER2-positive, and Ki-67-positive tumours 
are associated with larger sizes [14, 88, 90]. This differ-
ence is further increased by an underestimation of [18F]
FDG uptake in smaller tumours due to partial volume 
effects [91]. Lastly, invasive lobular carcinoma is associ-
ated with lower [18F]FDG uptake and is especially com-
mon in ER-positive, PR-positive and Ki-67-negative 
tumours [14, 92].

Clinical subtyping provides a more sophisticated classi-
fication of breast cancer compared to the separate evalu-
ation of IHC markers. Decreased [18F]FDG uptake in 
luminal tumours can be attributed to ER and PR expres-
sion, with an increase in avidity in case of HER2-positiv-
ity as displayed by the increase in [18F]FDG uptake in 

LB and HER2-positive subtypes. Analogous to separate 
markers, [18F]FDG uptake closely mimicks the degree of 
proliferation and differentiation with a gradual increase 
in both [18F]FDG uptake as well as Ki-67 labeling index 
and poorly differentiated tumours from LA, LB, HER2-
positive to TNBC [93, 94]. Paradoxically, HER2-positivity 
increases [18F]FDG uptake while TNBC is associated 
with the highest [18F]FDG uptake of all clinical subtypes. 
Moreover, increased [18F]FDG uptake can be attributed 
to larger tumours in luminal and HER2-positive sub-
types, but not in TNBC due to contradictory reports on 
its relative tumour size compared to other subtypes [93, 
94]. This suggests underlying differences in [18F]FDG 
uptake mechanisms between clinical subtypes beyond 
receptor status, tumour size, proliferation and differen-
tiation [95].

Distinct differences in [18F]FDG uptake between 
clinical subtypes could influence diagnostic, predictive 
or prognostic performance, especially when using cut-
off values to predict outcome. To illustrate, applying the 
same cutoff value to different clinical subtypes to predict 
presence of axillary lymph node metastasis (ALNM) can 
lead to an underestimation of performance in TNBC 
since this subtype is associated with increased [18F]FDG 
uptake and a decreased rate of ALNM [40, 96]. Contra-
rily, Groheux et  al. reported differences in baseline as 
well as percentage decrease [18F]FDG uptake in primary 
tumour response to NST between clinical subtypes, sug-
gesting improved diagnostic performance when using 
distinct cutoffs [15]. In general, the precise effect of clini-
cal subtypes on performance of [18F]FDG PET is lacking 
and the results of our meta-analysis suggest a need for 
more research on this topic.

While practices and guidelines differ, [18F]FDG PET/
CT is generally recommended in breast cancer patients 

Table 3 Estimates of the SMD as summary measure for the difference in [18F]FDG  (SUVmax) uptake between clinical subtypes 
according to a simplified classification

Data derived from the primary and sensitivity analyses are presented

CI, confidence interval; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; SMD, standardized mean difference; TNBC, triple negative breast 
cancer

Comparisons Studies Patients Meta‑analysis Subgroup Egger

No I2 (%) SMD 95% CI P P

Primary analyses

 ER+/HER2− versus HER2+ 5 755 302 0.0  − 0.34  − 0.53, − 0.16 0.0070 – 0.2633

 ER+/HER2− versus TNBC 6 814 309 56.1  − 0.89  − 1.20, − 0.58 0.0008 – 0.0247

 HER2+ versus TNBC 5 302 291 64.7  − 0.54  − 0.93, − 0.14 0.0193 – 0.3140

Sensitivity analyses

 ER+/HER2− versus HER2+ 8 1153 416 30.9  − 0.38  − 0.56, − 0.20 0.0016 0.3985 0.7816

 ER+/HER2− versus TNBC 9 1212 424 43.0  − 0.91  − 1.10, − 0.73  < 0.0001 0.3252 0.0246

 HER2+ versus TNBC 8 416 406 22.9  − 0.50  − 0.76, − 0.24 0.0025 0.6884 0.5186
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with a large primary tumour or with clinically node-pos-
itive disease [97]. While mainly performed to detect (dis-
tant) metastatic disease, the majority of primary tumours 
in breast cancer patients are [18F]FDG-avid [98]. In 
current clinical practice, [18F]FDG uptake is predomi-
nantly evaluated qualitatively. Considering the increasing 
number of studies reporting on the significant value of 
quantitative [18F]FDG PET, this imaging modality is not 
fully utilized by merely evaluating it qualitatively. Conse-
quently, measuring [18F]FDG PET parameters such as 
 SUVmax on the primary tumour could easily provide valu-
able predictive or prognostic information that could aid 
in clinical decision making in the context of personalized 
medicine. In addition, the application of artificial intel-
ligence to [18F]FDG PET imaging provides a promising 
adjunct to further improve its diagnostic, predictive and 
prognostic accuracy [99].

The major limitations of this study were variability in 
the designs and methods of the included studies, spe-
cifically the variability in the administered dose of [18F]
FDG, emission time, vendor, type of modality and cutoff 
values used for receptor status. This variability in design 
and methods (including vendor variability) is illustrated 
by the reported heterogeneities, hence the choice for 
SMD as a summary statistic. Including studies from 
2007 onwards, differences in definitions with regard to 
receptor positivity as well as of criteria for clinical sub-
types should be taken into account when interpreting 
the results of the meta-analyses in this study. Aware that 
varying definitions could influence the [18F]FDG uptake, 
there was deliberately chosen to incorporate these 
changes in the quality assessment instead of additional 
sensitivity analyses. Furthermore, it can be hypothesized 
that the changing criteria mainly relate to borderline 
cases that are of negligible effect on [18F]FDG uptake.

Conclusions
This systematic review and meta-analysis indicates a sub-
stantial and significant association between increased 
[18F]FDG expressed as  SUVmax and ER-negativity, PR-
negativity, HER2-positivity and Ki-67-positivity. Clinical 
subtypes based on these markers follow the same pattern 
with lower [18F]FDG uptake in luminal subtypes includ-
ing ER and PR, and higher uptake in TNBC. HER2 over-
expression and associated subtypes have an intermediate 
effect on [18F]FDG uptake. Clinical subtypes should be 
taken into account when applying and interpreting [18F]
FDG PET in breast cancer.
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