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Dopamine transporter single‑photon 
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Abstract 

Background:  We hypothesised that the radiomics signature, which includes texture information of dopamine trans-
porter single-photon emission computed tomography (DAT-SPECT) images for Parkinson’s disease (PD), may assist 
semi-quantitative indices. Herein, we constructed a radiomics signature using DAT-SPECT-derived radiomics features 
that effectively discriminated PD from healthy individuals and evaluated its classification performance.

Results:  We analysed 413 cases of both normal control (NC, n = 101) and PD (n = 312) groups from the Parkinson’s 
Progression Markers Initiative database. Data were divided into the training and two test datasets with different SPECT 
manufacturers. DAT-SPECT images were spatially normalised to the Montreal Neurologic Institute space. We calcu-
lated 930 radiomics features, including intensity- and texture-based features in the caudate, putamen, and pallidum 
volumes of interest. The striatum uptake ratios (SURs) of the caudate, putamen, and pallidum were also calculated as 
conventional semi-quantification indices. The least absolute shrinkage and selection operator was used for feature 
selection and construction of the radiomics signature. The four classification models were constructed using a radi-
omics signature and/or semi-quantitative indicator. Furthermore, we compared the classification performance of the 
semi-quantitative indicator alone and the combination with the radiomics signature for the classification models. The 
receiver operating characteristics (ROC) analysis was used to evaluate the classification performance. The classifica-
tion performance of SURputamen was higher than that of other semi-quantitative indicators. The radiomics signature 
resulted in a slightly increased area under the ROC curve (AUC) compared to SURputamen in each test dataset. When 
combined with SURputamen and radiomics signature, all classification models showed slightly higher AUCs than that of 
SURputamen alone.

Conclusion:  We constructed a DAT-SPECT image-derived radiomics signature. Performance analysis showed that the 
current radiomics signature would be helpful for the diagnosis of PD and has the potential to provide robust diagnos-
tic performance.

Keywords:  Parkinson’s disease, Dopamine transporter, SPECT, Radiomics signature, Texture, Radiomics

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Parkinson’s disease (PD) is characterised by the degener-
ation of the nigrostriatal dopamine nerve and the appear-
ance of inclusion bodies containing α-synuclein as the 
main component (i.e. Lewy bodies) [1–3]. The striatum 
to which dopamine neurones are projected is a nerve 
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nucleus constituting the basal ganglia and comprises the 
caudate nucleus and putamen. Dopamine transporter 
(DAT) single-photon emission computed tomography 
(SPECT) contributes to the diagnosis of PD and Lewy 
body dementia by providing a SPECT image reflecting 
the DAT distribution density in the striatum. Generally, 
the evaluation of DAT-SPECT images is conducted via 
visual inspection, frequently supported by semi-quanti-
tative ratios, such as the striatum uptake ratio (SUR) or 
specific binding ratio (SBR) [4–7]. In visual assessment, 
information regarding the asymmetry of the left and 
right striata and the spatial accumulation site of 123I-FP-
CIT can be obtained [8–11].

A semi-quantitative analysis is hypothesised to elimi-
nate subjectivity and experience differences among read-
ers. Accurate semi-quantitative values may be helpful in 
the early diagnosis and prediction of the prognosis of PD 
[12].

Texture analysis [13] can quantitatively represent the 
heterogeneity of radiopharmaceutical uptake, such as a 
tumour, in a region of interest [14, 15]. In recent years, 
radiomics [16–19], which includes texture analysis, is 
expected to be used not only for diagnosis but also for 
predicting patient prognosis and determining treat-
ment effects. Texture analysis has also been applied to 
DAT-SPECT, and texture features correlate with motor 
and cognitive functions and contribute to the predic-
tion of motor functions [20]. Rahmin et al. [20] showed 
that Haralick’s texture features [21, 22] in the caudate 
nucleus correlated with the Unified Parkinson’s Disease 
Rating Scale and disease duration. Among a large num-
ber of texture features, only Haralick’s texture features 
by grey-level co-occurrence matrix were used in these 
studies. In recent years, many software that can easily 
calculate radiomics features, including morphology, his-
togram, and texture, have become widely used for study 
[23]. However, to our knowledge, constructing a radi-
omics signature from a wide range of candidate features 
of DAT-SPECT images and evaluating the classification 
performance of PD have not been reported. Although 
the conventional semi-quantitative indices have high 
classification accuracy [24, 25], they do not represent 
the homogeneity or heterogeneity of radiopharmaceuti-
cal distribution in the striatum. The image heterogeneity 
may become a disturbing factor, which is not well rep-
resented through semi-quantitative indices. Therefore, 
we hypothesised that the radiomics signature, which 
includes texture information from DAT-SPECT images, 
may assist semi-quantitative indices. In this study, we 
constructed a radiomics signature using the radiomics 
features derived from DAT-SPECT that effectively dis-
criminated PD from healthy individuals and evaluated its 
classification performance.

Materials and methods
Participants
All data used in this study were obtained from the Par-
kinson’s Progression Markers Initiative (PPMI) data-
base (www.​ppmi-​info.​org/​data). At enrolment in PPMI, 
PD subjects were required to be age 30  years or older, 
untreated with PD medications (levodopa, dopamine 
agonists, MAO-B inhibitors, or amantadine), within 
2  years of diagnosis, Hoehn and Yahr < 3, and to have 
either at least two of resting tremor, bradykinesia, or 
rigidity (must have either resting tremor or bradykin-
esia) or a single asymmetric resting tremor or asymmet-
ric bradykinesia. All PD subjects underwent dopamine 
transporter (DAT) imaging with 123I Ioflupane or vesicu-
lar monoamine transporter (VMAT-2) imaging with 18F 
AV133 (Australia only) and were only eligible if DAT or 
VMAT-2 imaging demonstrated dopaminergic deficit 
consistent with PD in addition to clinical features of the 
disease [26]. The dataset contained 790 pre-processed 
123I-FP-CIT DAT-SPECT images acquired at the screen-
ing stage (accessed on 3 April 2021). This study selected 
a total of 462 subjects acquired with the two manufactur-
er’s SPECT systems [SIEMENS (dataset 1); 340 and GE 
(dataset 2); 122]. Dataset 1 excluded subjects whose diag-
nosis changed during follow-up (NC: 13, PD: 7), resulting 
in a final total of 320 subjects (NC: 81, PD: 239); dataset 
2 included 122 subjects (NC: 20, PD: 102) with no sub-
jects excluded. The remaining data were not used for the 
following reasons: the number was small when divided 
by manufacturer, and the manufacturer was unknown. 
Dataset 1 was divided into the training and test datasets 
at 7:3 so that the ratio of the NC and PD groups would be 
constant. Dataset 2 was used as the test dataset 2.

Reconstruction and spatial normalisation of SPECT images
Reconstructed DAT-SPECT images were downloaded 
from the PPMI website. As per PPMI documentation, 
pre-processing steps were performed at the Institute 
for Neurodegenerative Disorders and included the 
following steps: SPECT imaging and reconstruction: 
SPECT imaging was acquired at each imaging centre as 
per the PPMI imaging protocol and sent to the institute 
for neurodegenerative disorders for processing. SPECT 
raw projection data were imported to a HERMES 
(Hermes Medical Solutions, Stockholm, Sweden) 
system for iterative reconstruction. Iterative recon-
struction was performed without filtering. The recon-
structed files were transferred to the PMOD (PMOD 
Technologies, Zurich, Switzerland) for subsequent pro-
cessing. Attenuation correction ellipses were drawn on 
the images, and a Chang 0 attenuation correction was 
applied to images utilising a site-specific μ that was 
empirically derived from phantom data acquired during 

http://www.ppmi-info.org/data
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site initiation for the trial. Once attenuation correction 
was completed, a standard Gaussian three-dimensional 
(3D) 6.0 mm filter was applied.

Then, the DAT-SPECT images were spatially nor-
malised to Montreal Neurologic Institute (MNI) space 
using statistical parametric mapping (SPM12, Well-
come Trust Centre for Neuroimaging, London, UK) in 
MATLAB R2021a (version 9.10, The MathWorks, Inc. 
Massachusetts, USA). DAT-SPECT images were spa-
tially normalised to the MNI-based template of 123I-FP-
CIT [27, 28] using the old normalise function under 
identical conditions. After spatial normalisation, the 
radiological technologist with 13-year clinical experi-
ence visually assessed for misalignment between DAT-
SPECT and the template. Visual assessment of spatial 
normalisation checked for apparent misalignment 
in the striatum and whole brain. The pre-processed 
images were saved in the Neuroimaging Informatics 

Technology Initiative format using 91 × 109 × 91 iso-
tropic voxels of 2 mm.

Calculation of radiomics features and semi‑quantitative 
indicators
The automated anatomical labelling atlas (AAL) 3 [29] 
volume of interest (VOI) template was used to calculate 
the radiomics features. The feature calculation VOIs were 
the caudate nucleus, putamen, and pallidum (Fig.  1). 
Radiomics features were calculated using Standardized 
Environment for Radiomics Analysis (SERA) [30–32] 
and worked on MATLAB. One hundred and eighty-six 
image biomarker standardisation initiative-standardised 
features [23] were calculated using SERA, including 50 
first-order features (statistical, histogram, and intensity 
histogram features) and higher-order136 3D features 
(Table  1). A total of 558 radiomics features were calcu-
lated for the caudate, putamen, and pallidum VOIs. We 
also calculated the ratio of the caudate to the putamen 

Fig. 1  An example of settings of a voxel of interests for calculating radiomics features and semi-quantitative indices. The upper row indicates after 
the spatial normalisation dopamine transporter single-photon emission computed tomography, and the middle and lower rows indicate fused 
image. The coloured area of the middle and lower rows indicates the striatum and background (occipital lobe)
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or pallidum of radiomics features. All radiomics fea-
tures were averaged in the bilateral striatum part. These 
totalled 930 radiomics features. Furthermore, the SUR of 
the caudate nucleus (SURcaudate), putamen (SURputamen), 
and pallidum (SURpallidum) was calculated as conventional 
semi-quantification indices. The SUR was calculated 
using the following formula  [33]:

where Cstriatum is the average count of the caudate nucleus, 
putamen, or pallidum, and Cbackground is the average count 
of the occipital lobe. In addition, the ratios of the caudate 
to the putamen or pallidum (CRputamen, CRpallidum) were 
calculated. All the semi-quantitative indices were aver-
aged in the bilateral striatum and compared between the 
NC and PD groups, and receiver operating characteristic 
(ROC) [34] analysis was performed.

Radiomics feature selection and signature construction
The least absolute shrinkage and selection operator 
(LASSO) [35] function in MATLAB was used to select 
effective features from the radiomics features. Multi-
collinearity of features was not considered in this study 
because LASSO can feature selection with suppressed 
multi-collinearity [36]. All radiomics features were 
z-scored to mean 0 and standard deviation 1.0 before 
being inputted to LASSO. LASSO permits the estima-
tion and selection of explanatory variables [37, 38], that 
is, radiomics features with nonzero coefficients. For the 
selection of radiomics features using LASSO, a tenfold 

SUR(%) =
Cstriatum − Cbackground

Cbackground
× 100

cross-validation test was conducted using the training 
set. Furthermore, the linear combination sum of five 
radiomics features with nonzero coefficients was used as 
the radiomics signature. We compared the classification 
performance of the radiomics signature and semi-quan-
titative indicator that showed the highest classification 
performance.

Classification model construction with radiomics signature 
and semi‑quantitative indicator
The classification models for the NC and PD groups were 
constructed using the radiomics signature and/or semi-
quantitative indicator. The four classifiers used were 
support vector machine (SVM), k-nearest neighbour 
(KNN), linear discriminant analysis (LDA), and deci-
sion tree. The main parameters of each classifier were 
as follows: SVM (BoxConstraint = 1, KernelScale = 1, 
KernelFunction = polynomial [order = 3]), KNN (Num-
Neighbours = 1, Distance = Minkowski, Exponent = 2), 
LDA (Gamma = 0), and decision tree (MinLeafSize = 1, 
MinParentSize = 10). The features used were radiomics 
signature alone, semi-quantitative indicator alone, and 
both. The training set was used to train the classifier, and 
the performance of each classification model was evalu-
ated using each test dataset. Classification performance 
was evaluated using the area under the ROC curve 
(AUC).

Statistical analyses
The radiomics signature and SURs in the NC and PD 
groups were tested for significant differences using the 
Wilcoxon rank-sum test. ROC analysis was performed 
using semi-quantitative indicators and radiomics signa-
ture. We used the DeLong [39] test to examine the dif-
ferences in AUCs, and for multiple comparisons, the 
Bonferroni correction was performed. The sensitivity, 
specificity, and accuracy of semi-quantitative indices 
and radiomics signature were calculated using the opti-
mal cut-off values determined based on ROC analysis. 
The optimal cut-off values for radiomics signature and 
semi-quantitative indices were calculated using the train-
ing dataset. At the same time, sensitivity, specificity, and 
accuracy were assessed using test datasets 1 and 2.

Differences were considered statistically significant 
at P < 0.05. All statistical analyses were performed using 
RStudio (version 1.4.1106).

Results
Table 2 shows the characteristics of the subjects in this 
study. In dataset 1, no cases were excluded due to fail-
ure of spatial normalisation, whereas in dataset 2, 28 
subjects of PD were excluded due to failure of spatial 
normalisation, resulting in 93 subjects (NC: 20, PD 73). 

Table 1  Number of radiomics features per region and their 
family names

GLCM grey-level co-occurrence matrix, GLRLM grey-level run-length matrix, 
GLZSM grey-level zone size matrix, GLDZM grey-level distance zone matrix, 
NGTDM neighbourhood grey tone difference matrix, NGLDM neighbourhood 
grey-level dependence matrix

Feature family Number 
of 
features

Local intensity 2

Intensity-based statistics 18

Intensity histogram 23

Intensity-volume histogram 7

GLCM 50

GLRLM 32

GLZSM 16

GLDZM 16

NGTDM 5

NGLDM 17

Total 186
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The number of subjects included 320 subjects for data-
set 1 and 93 subjects for dataset 2.

Figures 2 and 3 show the distribution of semi-quanti-
tative indices for test datasets 1 and 2. There was a sig-
nificant difference between the NC and PD groups in 
all of the SURs (P < 0.001). Caudate-to-putamen or pal-
lidum ratios showed significant differences (P < 0.001) 

between NC and PD, except for CRpallidum (P = 0.064) in 
test dataset 1.

Figure  4 shows the ROC curves of the semi-quanti-
tative indices for each test dataset. The AUCs and 95% 
confidence interval (CI) of SURs and CRs for test data-
set 1 were, in order from highest to lowest, as follows: 
SURputamen (0.980, 0.951–1.000), SURpallidum (0.907, 
0.831–0.982), CRputamen (0.885, 0.805–0.965), SURcaudate 
(0.877, 0.793–0.960), and CRpallidum (0.625, 0.502–0.747). 
Similarly, for test dataset 2 as follows: SURputamen (0.929, 
0.879–0.979), SURpallidum (0.925, 0.872–0.977), CRputamen 
(0.848, 0.749–0.834), SURcaudate (0.834, 0.740–0.927), and 
CRpallidum (0.780, 0.687–0.873). There was a significant 
difference between SURputamen and other SURs or CRs 
(P < 0.05) for test dataset 1. For test dataset 2, there was a 
significant difference between SURputamen and two indices 
(SURcaudate and CRpallidum) (P < 0.05).

Table  3 shows the radiomics features and coefficients 
selected by LASSO in the training set. The lambda 
value was set to 0.0967, and five radiomics features were 
selected. The selected radiomics features included four 
putamen features and CRpallidum. Coefficients and radi-
omics features were used to construct the radiomics 
signature:

Table 2  Characteristics of subjects

MDS-UPDRS movement disorder society-unified Parkinson’s disease rating 
scale, MoCA Montreal Cognitive Assessment, NC normal control, PD Parkinson’s 
disease, NA not applicable

Characteristics Dataset 1 (SIEMENS) Dataset 2 (GE)

NC PD NC PD

Number of subjects 81 239 20 73

Male/female 57/24 151/88 13/7 53/20

Age 61.2 ± 9.5 59.8 ± 11 60.3 ± 13 60.8 ± 10

Age of diagnosis NA 60.7 ± 9.5 NA 59.0 ± 11

Hoehn and Yahr stage 0.01 ± 0.1 1.58 ± 0.5 0.00 ± 0.0 1.64 ± 0.5

MDS-UPDRS III 1.0 ± 1.9 21.8 ± 9.3 0.89 ± 2.2 17.0 ± 9.9

MoCA 28.2 ± 1.1 27.3 ± 2.3 28.6 ± 1.2 27.1 ± 3.3

Fig. 2  Striatum uptake ratio (SUR) and caudate ratio (CR) between the normal control and Parkinson’s disease for test dataset 1. Box-and-whisker 
plots indicate the semi-quantitative indices distribution. a SURcaudate, b SURputamen, c SURpallidum; d, CRputamen, e CRpallidum. ***P < 0.001
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Radiomics signature =  − 0.00863 × ih_medianputa-

men − 0.18100 × dzm_zdnu_3Dputamen − 0.02485 × ngl_
d c n u _ 3 D p u t a m e n  −   0 . 0 0 0 0 1  ×   n g l _ d c n u _
norm_3Dputamen − 0.05259 × szm_lzlge_3DCRpallidum.

Figure 5 shows the distribution of radiomics signatures 
between the NC and PD groups. There was a significant 
difference between the NC and PD groups (P < 0.001) for 
test datasets 1 and 2.

A comparison of the ROC curves for the radiom-
ics signature and SURputamen is shown in Fig.  6. In the 
test dataset 1, the AUCs of the radiomics signature and 
SURputamen were 0.990 (95% CI, 0.976–1.00) and 0.980 
(95% CI, 0.951–1.00), respectively (P = 0.302). In the 
test dataset 2, the AUCs of the radiomics signature and 
SURputamen were 0.986 (95% CI, 0.967–1.00) and 0.929 
(95% CI, 0.879–0.979), respectively (P = 0.041).

Table 4 shows the classification accuracy of the radiom-
ics signature and SURputamen. The accuracy, sensitivity, 
and specificity of the radiomics signature and SURputamen 
were 95.8%, 98.6%, and 88.0% and 95.8%, 97.2%, and 
92.0% and 96.8%, 100%, and 85.0% and 82.8%, 78.1%, and 
100% for the test datasets 1 and 2, respectively.

Tables  5 and 6 show the AUCs of each classification 
model when radiomics signature alone, SURputamen alone, 

and both features were combined. There were no signifi-
cant differences in the AUCs between SURputamen alone 
and in combination with SURputamen and radiomics signa-
ture for test dataset 1. However, the AUC was better in all 
models when combined with SURputamen and radiomics 
signature compared to SURputamen alone.

A similar trend to test dataset 1 was observed in test 
dataset 2. Radiomics signature in combination with SUR-
putamen improved AUC for KNN and LDA models.

Discussion
In this study, we constructed and evaluated the poten-
tial of a radiomics signature derived from DAT-SPECT 
images to classify the NC and PD groups.

The main findings of this study are as follows. First, 
radiomics signature may have a similar or slightly higher 
classification performance than semi-quantitative indi-
cators. Second, the combination of radiomics signature 
and semi-quantitative indicator as features for the clas-
sification models would improve the classification per-
formance compared to that of the semi-quantitative 
indicator alone.

SURputamen showed the highest classification perfor-
mance among the semi-quantitative indices for each 

Fig. 3  Striatum uptake ratio (SUR) and caudate ratio (CR) between the normal control and Parkinson’s disease for test dataset 2. Box-and-whisker 
plots indicate the semi-quantitative indices distribution. a SURcaudate, b SURputamen, c SURpallidum; d, CRputamen, e CRpallidum. ***P < 0.001
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region obtained from spatially normalised DAT-SPECT 
images. It is well known that 123I-FP-CIT decline began 
in the caudal putamen loss in patients with PD [40]. 
Therefore, SURputamen reflected the difference in radiop-
harmaceutical accumulation in the putamen between 
the NC and PD groups and showed high classification 
performance. The high classification performance of the 
semi-quantitative indicator of the putamen is consistent 
with those of several previous studies [41–43].

For radiomics feature selection, the most common 
region to which the eight features selected by LASSO 
belonged to the putamen, followed by the pallidum. This 

is because radiopharmaceuticals accumulate less from 
the putamen in PD, similar to the above. Radiomics fea-
tures reflect the heterogeneity of radiopharmaceutical 
accumulations in VOIs. GLDZM (zone distance non-
uniformity; tag name, dzm_zdnu_3Dputamen), which had 
the most significant coefficient, is a matrix that shows 
how far the connected regions with the same concentra-
tion value are from the edge of the region of interest. The 
dzm_zdnu_3D measures the distribution of zone counts 
over the different zone distances and is low when the 
zone counts are equally distributed along with the zone 
distances. In the putamen region, dzm_zdnu_3Dputamen 

Fig. 4  Receiver operating curves for semi-quantitative indices. a The AUCs and 95% confidence interval (CI) for the test dataset 1of 
semi-quantitative indices in each region were SURputamen (0.980, 0.951–1.000), SURpallidum (0.907, 0.831–0.982), CRputamen (0.885, 0.805–0.965), 
SURcaudate (0.877, 0.793–0.960), and CRpallidum (0.625, 0.502–0.747). There was a significant difference between SURputamen and other semi-quantitative 
indices (P < 0.001). b The AUCs and 95% confidence interval (CI) for the test dataset 2 of semi-quantitative indices in each region were SURputamen 
(0.929, 0.879–0.979), SURpallidum (0.925, 0.872–0.977), CRputamen (0.848, 0.740–0.834), SURcaudate (0.834, 0.740–0.927), and CRpallidum (0.780, 0.687–0.873). 
There was a significant difference between SURputamen and SURcaudate, (P < 0.01), or CRpallidum (P < 0.05). AUC​ area under the curve, CI confidence 
interval, SUR striatum uptake ratio, CR caudate ratio

Table 3  Radiomics features and coefficients selected using LASSO

GLDZM grey-level distance zone matrix, NGLDM neighbourhood grey-level dependence matrix, GLSZM grey-level size zone matrix

Feature family Feature name (tag name) Region Coefficients

Intensity histogram Median (ih_median) Putamen  − 0.00863

GLDZM (3D) Zone distance non-uniformity (dzm_zdnu_3D) Putamen  − 0.18100

NGLDM (3D) Dependence count non-uniformity normalised (ngl_dcnu_norm_3D) Putamen  − 0.02485

NGLDM (3D) Dependence count non-uniformity normalised (ngl_dcnu_norm_3D) Putamen  − 0.00001

GLSZM (3D) Large zone low grey-level emphasis (szm_lzlge_3D) Caudate/pallidum  − 0.05259
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in the PD group was significantly lower than in the PD 
group (data not shown). This result indicates that the 
number of connected zones of PD was lower than that of 

the NC group. Comparing the histogram features in the 
putamen region of NC and PD in dataset 1, uniformity 
(0.03 vs 0.04, p < 0.001), kurtosis (−0.83 vs 0.24, p < 0.001), 

Fig. 5  Comparison of radiomics signature between the normal control and Parkinson’s disease. Box-and-whisker plots indicate the radiomics 
signature distribution. a Test dataset 1, b test dataset 2. ***P < 0.001

Fig. 6  Comparison of receiver operating curves between radiomics signature and striatum uptake ratio of the putamen. a The AUCs for the test 
dataset 1of the radiomics signature and SURputamen were 0.990 (95% CI, 0.976–1.00) and 0.980 (95% CI, 0.951–1.00), respectively (P = 0.302). b The 
AUCs for the test dataset 2 of the radiomics signature and SURputamen were 0.986 (95% CI, 0.967–1.00) and 0.929 (95% CI, 0.879–0.979), respectively 
(P = 0.041). AUC​ area under the curve, CI confidence interval, SUR striatum uptake ratio
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and skewness (0.21 vs 0.82, p < 0.001) of PD were higher 
than those of NC. These results indicate that voxel val-
ues in the putamen region of NC were widely distributed, 
whereas they tend to be biased towards lower voxel val-
ues in PD. In other words, the number of connected vox-
els per connected region was higher in PD because the 
voxel values were similar to each neighbouring voxel [the 
number of connected regions (= zone counts) was lower]. 
On the other hand, NCs are more likely to have different 
neighbouring voxel values, which means they may have 
fewer connected voxels per connected region and a larger 
number of connected regions than PD. In PD, the loss of 
dopamine transporters progresses from the posterior to 
the anterior of the putamen. The lower dzm_dcnu_3D 
in putamen for PD suggests large areas of reduced dopa-
mine transporter. Based on the results of the two test 
datasets for radiomics signature, texture information of 
the putamen can be a robust and powerful indicator for 
the differentiation of PD.

The radiomics signature showed a similar or slightly 
higher classification performance between the PD and 
NC groups than that of SURputamen. Furthermore, when 
the various classification models were constructed using 
both the radiomics signature and SURputamen as features, 
the classification performance was better than that of 
SURputamen alone. This result suggests that the radiom-
ics signature provides robust texture information to sup-
plement the semi-quantitative indicators. Iwabuchi et al. 
[44] reported that the combined diagnostic accuracy of 
the three types of indices, SBR, putamen-to-caudate ratio 
(PCR), and fractal dimension (or asymmetry index), used 
for SVM improves diagnostic accuracy. Generally, semi-
quantitative indicators assess the quantity of radiophar-
maceuticals, and their spatial distribution depends on 
visual assessment. Adding an indicator for the radiophar-
maceutical spatial distribution (e.g. texture information, 
PCR, fractal dimension) to the semi-quantitative indica-
tor would improve the diagnostic accuracy. We believe 
that the combination of the semi-quantitative indicator 
and radiomics signature would lead to the development 
of highly accurate automatic diagnosis or diagnostic 
assistant models. On the other hand, constructing a radi-
omics signature is more complicated and time-consum-
ing than conventional semi-quantitative indicators such 
as SBR. The meaning indicated by the radiomics signa-
ture might be difficult to understand for physicians.

This study investigated the robustness of the radiom-
ics signature by using two test datasets. The radiomics 
signature showed a high classification performance in 

Table 4  Classification accuracy of radiomics signature and 
SURputamen for the test datasets

SUR striatum uptake ratio

Test dataset 1 Test dataset 2

Radiomics 
signature

SURputamen Radiomics 
signature

SURputamen

Accuracy (%) 95.8 95.8 96.8 82.8

Sensitivity (%) 98.6 97.2 100 78.1

Specificity (%) 88.0 92.0 85.0 100

Table 5  Classification performance of various classification models using radiomics signature and SURputamen for test dataset 1

SVM support vector machine, KNN k-nearest neighbour, LDA linear discriminant analysis, SUR striatum uptake ratio, AUC​ area under the curve, CI confidence interval

Classifier Features AUC (95% CI) P value (SURputamen 
vs. combination)

Radiomics signature SURputamen Combination

SVM 0.983 (0.943–0.996) 0.983 (0.944–0.996) 0.991 (0.967–0.999) 0.333

KNN 0.930 (0.835–0.979) 0.918 (0.817–0.972) 0.950 (0.866–0.991) 0.261

LDA 0.990 (0.956–0.999) 0.980 (0.910–0.997) 0.987 (0.931–1.000) 0.167

Decision tree 0.970 (0.877–0.999) 0.965 (0.909–0.988) 0.970 (0.879–0.998) 0.825

Table 6  Classification performance of various classification models using radiomics signature and SURputamen for test dataset 2

SVM support vector machine, KNN k-nearest neighbour, LDA linear discriminant analysis, SUR striatum uptake ratio, AUC​ area under the curve, CI confidence interval

Classifier Features AUC (95% CI) P value (SURputamen 
vs. combination)

Radiomics signature SURputamen Combination

SVM 0.977 (0.934–0.994) 0.921 (0.847–0.963) 0.940 (0.746–0.995) 0.755

KNN 0.896 (0.768–0.998) 0.857 (0.729–0.941) 0.997 (0.986–1.000) 0.006

LDA 0.986 (0.947–0.998) 0.929 (0.858–0.967) 0.996 (0.961–1.000) 0.009

Decision tree 0.973 (0.929–0.990) 0.928 (0.858–0.966) 0.952 (0.909–0.985) 0.300
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each test dataset, which could be a robust indicator for 
PD and NC classification; SURputamen also showed a high 
classification performance, which was slightly lower in 
test dataset 2. The differences in image quality due to 
SPECT system were reflected in the SURs [45]. Further-
more, the difference in image quality may also affect the 
accuracy of spatial normalisation. In dataset 2, 28 cases 
of spatial normalisation failed. This failure was due to 
the lower prefrontal cortex and cerebellar areas omitting 
from the field of view. These SPECT images were taken 
at the same facility and may be an issue of imaging tech-
nique. In this study, VOI settings based on the AAL label 
images were applied to DAT-SPECT images after spatial 
normalisation. Buchert et al. [46] reported that the diag-
nostic performance of the caudate SBR was lower than 
that of putamen when using the VOI of AAL. Nonokuma 
et  al. [47] used an MRI-based ROI similar to the AAL 
VOI but failed to accurate radioactivity in the caudate 
nucleus. They described that the tissue mixture effect due 
to the dilated anterior horn of the lateral ventricle might 
decrease the radioactivity in the caudate nucleus and shift 
the peak caudally. Similarly, our results also showed that 
the SURcaudate and its classification performance tend to 
be lower than the putamen. Therefore, using an optimal 
VOI to calculate the SUR is necessary. Several research-
ers [48, 49] reported that PD patients had significantly 
lower DAT uptake ratios in the pallidum than healthy 
controls. Based on these reports, we also settled pallidum 
VOI, and SURpallidum of PD indicated lower than that of 
NC. However, it is not easy to accurately spatial normal-
ise and delimit each region on DAT-SPECT. Therefore, 
we should be careful in interpreting each VOI result.

This study had some limitations. First, we employed a 
single-manufacturing SPECT system to exclude the influ-
ence of the differences in SPECT image quality among 
manufacturers. Consequently, there was an imbalance 
between the NC and PD groups. Therefore, it is neces-
sary to investigate an increase in the number of patients. 
Second, wavelet features were not included in the radi-
omics features. Because SERA does not support wave-
let analysis, other software should be used. Finally, we 
did not consider differences in the striatum laterally 
based on a previous report that showed lower accuracy 
for the asymmetry index than that of SBR and PCR [24]. 
As lateral differences might be useful for distinguishing 
between PD in the early stage and other Parkinsonism, 
such as progressive supranuclear palsy of the Parkinson-
ism subtype [50], signature construction is required.

Conclusions
In conclusion, the radiomics signature derived from 
DAT-SPECT images could help distinguish between NC 
and PD. Furthermore, the classification performance 

of various classification models was improved using 
both radiomics signature and semi-quantitative indica-
tors. Therefore, a radiomics signature, which includes 
texture information, could provide a robust diagnos-
tic performance when used with semi-quantitative 
indicators.

Abbreviations
DAT-SPECT: Dopamine transporter single-photon emission computed 
tomography; PD: Parkinson’s disease; NC: Normal control; SUR: Striatum uptake 
ratio; ROC: Receiver operating characteristics; AUC​: Area under the ROC curve; 
SBR: Specific binding ratio; 3D: Three-dimensional; MNI: Montreal Neurologic 
Institute; AAL: Automated anatomical labelling atlas; VOI: Voxel of interest; 
SERA: Standardized Environment for Radiomics Analysis; SURcaudate: SUR of 
the caudate nucleus; SURputamen: SUR of the putamen; SURpallidum: SUR of the 
pallidum; CRputamen: Ratio of the caudate to the putamen; CRpallidum: Ratio of 
the caudate to the pallidum; LASSO: Least absolute shrinkage and selec-
tion operator; MSE: Mean square error; SVM: Support vector machine; KNN: 
K-nearest neighbour; LDA: Linear discriminant analysis; CI: Confidence interval; 
PCR: Putamen-to-caudate ratio.

Acknowledgements
Data used in the preparation of this article were obtained from the PPMI 
database. PPMI—a public–private partnership—is funded by the Michael J. 
Fox Foundation for Parkinson’s Research funding partners 4D Pharma, Abbvie, 
Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiophar-
maceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, 
Celgene, Dacapo Brain Science, Denali, The Edmond J. Safra Foundation, GE 
Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, 
Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, Meso Scale Discovery, 
Neurocrine Biosciences, Pfizer, Piramal, Prevail, Roche, Sanofi Genzyme, Servier, 
Takeda, Teva, UCB, Verily, and Voyager Therapeutics.

Author contributions
All authors contributed to the conception and design of the study. Material 
preparation, data collection, and analysis were performed by TS and KT. 
Spatially normalised SPECT was visually assessed by TS. TS wrote the original 
draft of the manuscript, and KT, AT, and SS wrote the review and edited the 
previous versions of the manuscript. All authors have read and approved the 
final manuscript.

Funding
This work was supported by the JSPS KAKENHI (Grant Number: 18K15565 and 
21K15791).

Availability of data and materials
The datasets analysed during the current study are available in the PPMI 
repository, https://​www.​ppmi-​info.​org.

Declarations

Ethics approval and consent to participate
All the clinical and imaging data acquired in this study were conducted 
in accordance with the Declaration of Helsinki after the approval of the 
local ethics committees of the sites participating in the PPMI. The relevant 
local institutional review boards approved the PPMI protocol, and written 
informed consent was obtained from all patients prior to inclusion. Additional 
approval was obtained from the Ethics Committee of Fujita Health University 
(HM21–074) for data analysis.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://www.ppmi-info.org


Page 11 of 12Shiiba et al. EJNMMI Research           (2022) 12:39 	

Author details
1 Department of Molecular Imaging, School of Medical Sciences, Fujita Health 
University, 1‑98, Dengakubo, Kutsukake‑cho, Toyoake, Aichi 470‑1192, Japan. 
2 Department of Radiological Technology, Faculty of Fukuoka Medical Tech-
nology, Teikyo University, 6‑22 Misakimachi, Omuta‑shi, Fukuoka 836‑8505, 
Japan. 3 Department of Neurology and Center for Clinical Neuroscience, 
National Hospital Organization Okinawa National Hospital, 3‑20‑14 Ganeko, 
Ginowan 901‑2214, Okinawa, Japan. 

Received: 3 February 2022   Accepted: 21 June 2022

References
	1.	 Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. 

Lancet Neurol. 2006;5:75–86.
	2.	 Booth TC, Nathan M, Waldman AD, Quigley AM, Schapira AH, Buscombe J. 

The role of functional dopamine-transporter SPECT imaging in parkinso-
nian syndromes, part 1. Am J Neuroradiol. 2015;36(2):229–35.

	3.	 Booth TC, Nathan M, Waldman AD, Quigley AM, Schapira AH, Buscombe J. 
The role of functional dopamine-transporter SPECT imaging in Parkinso-
nian syndromes, part 2. Am J Neuroradiol. 2015;36:236–44.

	4.	 Darcourt J, Booij J, Tatsch K, Varrone A, Vander Borght T, Kapucu ÖL, 
et al. EANM procedure guidelines for brain neurotransmission SPECT 
using123I-labelled dopamine transporter ligands, version 2. Eur J Nucl 
Med Mol Imaging. 2010;37:443–50.

	5.	 Tossici-Bolt L, Hoffmann SMA, Kemp PM, Mehta RL, Fleming JS. Quanti-
fication of [123I]FP-CIT SPECT brain images: an accurate technique for 
measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 
2006;33:1491–9.

	6.	 Benamer HTS, Patterson J, Wyper DJ, Hadley DM, Macphee GJA, Grosset 
DG. Correlation of Parkinson’s disease severity and duration With I-FP-CIT 
SPECT striatal uptake. Mov Disord. 2000;15:692–8.

	7.	 Bonab AA, Fischman AJ, Alpert NM. Comparison of 4 methods for quanti-
fication of dopamine transporters by SPECT with [123I]IACFT. J Nucl Med. 
2000;41:1086–92.

	8.	 Kahraman D, Eggers C, Schicha H, Timmermann L, Schmidt M. Visual 
assessment of dopaminergic degeneration pattern in 123I-FP-CIT SPECT 
differentiates patients with atypical parkinsonian syndromes and idi-
opathic Parkinson’s disease. J Neurol. 2012;259:251–60.

	9.	 Habraken JB, Booij J, Slomka P, Sokole EB, van Royen EA. Quantification 
and visualization of defects of the functional dopaminergic system using 
an automatic algorithm. J Nucl Med. 1999;40:1091–7.

	10.	 Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L. Akinetic-
rigid and tremor-dominant Parkinson’s disease patients show different 
patterns of FP-CIT Single photon emission computed tomography. Mov 
Disord. 2011;26:416–23.

	11.	 Lloyd JJ, Petrides G, Donaghy PC, Colloby SJ, Attems J, O’Brien JT, et al. 
A new visual rating scale for Ioflupane imaging in Lewy body disease. 
NeuroImage: Clin. 2018;20:823–9.

	12.	 Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter 
single photon emission CT (DaT-SPECT) with (123I) ioflupane in 
diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatr. 
2013;84(11):1288–95.

	13.	 Ojala T, Pietikäinen M, Harwood D. A comparative study of texture meas-
ures with classification based on featured distributions. Pattern Recognit 
Pergamon. 1996;29:51–9.

	14.	 Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. 
Tumor texture analysis in 18F-FDG PET: relationships between texture 
parameters, histogram indices, standardized uptake values, metabolic 
volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.

	15.	 Chen S, Harmon S, Perk T, Li X, Chen M, Li Y, et al. Diagnostic classification 
of solitary pulmonary nodules using dual time 18F-FDG PET/CT image 
texture features in granuloma-endemic regions. Sci Rep. 2017;7(1):1–8.

	16.	 van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. 
Radiomics in medical imaging—“how-to” guide and critical reflection. 
Insights Imaging. 2020;11:91.

	17.	 Schernberg A, Orlhac F, Sun R, Chargari C, Dercle L, Deutsch E, et al. 
Radiomics in nuclear medicine applied to radiation therapy: methods, 
pitfalls, and challenges. Int J Radiat Oncol Biol Phys. 2018;102:1117–42.

	18.	 Hirata K, Shiga T. Radiomics in nuclear medicine. Nihon Hoshasen 
Gijutsu Gakkai Zasshi. 2018;74:1368–76.

	19.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, 
Granton P, et al. Radiomics: extracting more information from medi-
cal images using advanced feature analysis. Eur J Cancer Pergamon. 
2012;48:441–6.

	20.	 Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al. 
Improved prediction of outcome in Parkinson’s disease using radiom-
ics analysis of longitudinal DAT SPECT images. NeuroImage: Clin. 
2017;16:539–44.

	21.	 Haralick RM, Dinstein I, Shanmugam K. Textural features for image clas-
sification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.

	22.	 Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 
1979;67:786–804.

	23.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, 
Apte A, et al. The image biomarker standardization initiative: standard-
ized quantitative radiomics for high-throughput image-based phe-
notyping. Radiology. 2020;295:328–38. https://​doi.​org/​10.​1148/​radiol.​
20201​91145.

	24.	 Iwabuchi Y, Nakahara T, Kameyama M, Yamada Y, Hashimoto M, 
Matsusaka Y, et al. Impact of a combination of quantitative indices rep-
resenting uptake intensity, shape, and asymmetry in DAT SPECT using 
machine learning: comparison of different volume of interest settings. 
EJNMMI Res. 2019. https://​doi.​org/​10.​1186/​s13550-​019-​0477-x.

	25.	 Wenzel M, Milletari F, Krüger J, Lange C, Schenk M, Apostolova I, 
et al. Automatic classification of dopamine transporter SPECT: deep 
convolutional neural networks can be trained to be robust with 
respect to variable image characteristics. Eur J Nucl Med Mol Imaging. 
2019;46:2800–11.

	26.	 Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, 
et al. The Parkinson’s progression markers initiative (PPMI)—establishing a 
PD biomarker cohort. Ann Clin Transl Neurol. 2018;5:1460–77.

	27.	 Salas-Gonzalez D, Górriz JM, Ramírez J, Illán IA, Lang EW. Linear intensity 
normalization of FP-CIT SPECT brain images using the α-stable distribu-
tion. Neuroimage. 2013;65:449–55.

	28.	 Salas-Gonzalez D, Górriz JM, Ramírez J, Illán IA, Padilla P, Martínez-Murcia 
FJ, et al. Building a FP-CIT SPECT brain template using a posterization 
approach. Neuroinformatics. 2015;13:391–402.

	29.	 Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical label-
ling atlas 3. Neuroimage. 2020;206:116189.

	30.	 Feliciani G, Mellini L, Carnevale A, Sarnelli A, Menghi E, Piccinini F, et al. 
The potential role of MR based radiomic biomarkers in the characteriza-
tion of focal testicular lesions. Sci Rep. 2021;11(1):1–9.

	31.	 Du D, Feng H, Lv W, Ashrafinia S, Yuan Q, Wang Q, et al. Machine learning 
methods for optimal radiomics-based differentiation between recurrence 
and inflammation: application to nasopharyngeal carcinoma post-ther-
apy PET/CT images. Mol Imaging Biol. 2020;22(3):730–8.

	32.	 S. Ashrafinia Quantitative nuclear medicine imaging using advanced 
image reconstruction and radiomics. (2019)

	33.	 Crespo C, Gallego J, Cot A, Falcón C, Bullich S, Pareto D, et al. Quantifica-
tion of dopaminergic neurotransmission SPECT studies with 123I-labelled 
radioligands. A comparison between different imaging systems and data 
acquisition protocols using Monte Carlo simulation. Eur J Nucl Med Mol 
Imaging. 2008;35(7):1334–42.

	34.	 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver 
operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

	35.	 Tibshirani R. The lasso method for variable selection in the cox model. 
Stat Med. 1997;16(4):385–95.

	36.	 Oyeyemi GM, Ogunjobi EO, Folorunsho AI. On performance of shrinkage 
methods-a Monte Carlo study. Int J Stat Appl. 2015;5:72–6.

	37.	 Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development 
and validation of a radiomics nomogram for preoperative predic-
tion of lymph node metastasis in colorectal cancer. J Clin Oncol. 
2016;34(18):2157–64.

	38.	 Wang H, Wang L, Lee EH, Zheng J, Zhang W, Halabi S, et al. Decoding 
COVID-19 pneumonia: comparison of deep learning and radiomics CT 
image signatures. Eur J Nucl Med Mol Imaging. 2021;48:1478–86. https://​
doi.​org/​10.​1007/​s00259-​020-​05075-4.

	39.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44:837–45.

https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1186/s13550-019-0477-x
https://doi.org/10.1007/s00259-020-05075-4
https://doi.org/10.1007/s00259-020-05075-4


Page 12 of 12Shiiba et al. EJNMMI Research           (2022) 12:39 

	40.	 Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares JMRS. Extrac-
tion, selection and comparison of features for an effective automated 
computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT 
SPECT images. Eur J Nucl Med Mol Imaging. 2018;45:1052–62. https://​doi.​
org/​10.​1007/​s00259-​017-​3918-7.

	41.	 Cuberas-Borrós G, Lorenzo-Bosquet C, Aguadé-Bruix S, Hernández-Vara 
J, Pifarré-Montaner P, Miquel F, et al. Quantitative evaluation of striatal 
I-123-FP-CIT uptake in essential tremor and parkinsonism. Clin Nucl Med. 
2011;36(11):991–6.

	42.	 Seibyl JP, Marchek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. 
Decreased single-photon emission computed tomographic {123I}β-CIT 
striatal uptake correlates with symptom severity in Parkinson’s disease. 
Ann Neurol. 1995;38(4):589–98.

	43.	 Palumbo B, Fravolini ML, Buresta T, Pompili F, Forini N, Nigro P, et al. 
Diagnostic accuracy of Parkinson disease by support vector machine 
(SVM) analysis of 123I-FP-CIT brain SPECT data: implications of putaminal 
findings and age. Medicine. 2014;93(27):e228 (Baltimore).

	44.	 Iwabuchi Y, Nakahara T, Kameyama M, Yamada Y, Hashimoto M, Matsu-
saka Y, et al. Impact of a combination of quantitative indices representing 
uptake intensity, shape, and asymmetry in DAT SPECT using machine 
learning: comparison of different volume of interest settings. EJNMMI 
Res. 2019;9:7. https://​doi.​org/​10.​1186/​s13550-​019-​0477-x.

	45.	 Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. 
European multicentre database of healthy controls for [123I]FP- CIT 
SPECT (ENC-DAT): age-related effects, gender differences and evalu-
ation of different methods of analysis. Eur J Nucl Med Mol Imaging. 
2013;40:213–27.

	46.	 Buchert R, Lange C, Spehl TS, Apostolova I, Frings L, Jonsson C, et al. Diag-
nostic performance of the specific uptake size index for semi-quantitative 
analysis of I-123-FP-CIT SPECT: harmonized multi-center research setting 
versus typical clinical single-camera setting. EJNMMI Res. 2019;9(1):1–13.

	47.	 Nonokuma M, Kuwabara Y, Hida K, Tani T, Takano K, Yoshimitsu K. Optimal 
ROI setting on the anatomically normalized I-123 FP-CIT images using 
high-resolution SPECT. Ann Nucl Med. 2016;30:637–44.

	48.	 Lee JY, Lao-Kaim NP, Pasquini J, Deuschl G, Pavese N, Piccini P. Pallidal 
dopaminergic denervation and rest tremor in early Parkinson’s disease: 
PPMI cohort analysis. Parkinsonism Relat Disord. 2018;51:101–4.

	49.	 Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunc-
tion drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 
2011;69:269–81.

	50.	 Shigekiyo T, Arawaka S. Laterality of specific binding ratios on DAT-SPECT 
for differential diagnosis of degenerative parkinsonian syndromes. Sci 
Rep. 2020;10(1):1–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s00259-017-3918-7
https://doi.org/10.1007/s00259-017-3918-7
https://doi.org/10.1186/s13550-019-0477-x

	Dopamine transporter single-photon emission computed tomography-derived radiomics signature for detecting Parkinson’s disease
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Participants
	Reconstruction and spatial normalisation of SPECT images
	Calculation of radiomics features and semi-quantitative indicators
	Radiomics feature selection and signature construction
	Classification model construction with radiomics signature and semi-quantitative indicator
	Statistical analyses

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


