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Abstract 

Background:  Segmentation of neuroendocrine neoplasms (NENs) in [64Cu]Cu-DOTATATE positron emission tomog-
raphy makes it possible to extract quantitative measures useable for prognostication of patients. However, manual 
tumor segmentation is cumbersome and time-consuming. Therefore, we aimed to implement and test an artificial 
intelligence (AI) network for tumor segmentation. Patients with gastroenteropancreatic or lung NEN with [64Cu]Cu-
DOTATATE PET/CT performed were included in our training (n = 117) and test cohort (n = 41). Further, 10 patients with 
no signs of NEN were included as negative controls. Ground truth segmentations were obtained by a standardized 
semiautomatic method for tumor segmentation by a physician. The nnU-Net framework was used to set up a deep 
learning U-net architecture. Dice score, sensitivity and precision were used for selection of the final model. AI seg-
mentations were implemented in a clinical imaging viewer where a physician evaluated performance and performed 
manual adjustments.

Results:  Cross-validation training was used to generate models and an ensemble model. The ensemble model 
performed best overall with a lesion-wise dice of 0.850 and pixel-wise dice, precision and sensitivity of 0.801, 0.786 
and 0.872, respectively. Performance of the ensemble model was acceptable with some degree of manual adjustment 
in 35/41 (85%) patients. Final tumor segmentation could be obtained from the AI model with manual adjustments in 
5 min versus 17 min for ground truth method, p < 0.01.

Conclusion:  We implemented and validated an AI model that achieved a high similarity with ground truth segmen-
tation and resulted in faster tumor segmentation. With AI, total tumor segmentation may become feasible in the 
clinical routine.

Keywords:  Tumor segmentation, Artificial intelligence, Neuroendocrine neoplasms, [64Cu]Cu-DOTATATE PET, 
Prognostication
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Background
Neuroendocrine neoplasms (NENs) originate from 
neuroendocrine cells with the primary tumor most 
often located in the lungs [1], gastrointestinal tract or 
pancreas [2]. The clinical course for patients diagnosed 
with NEN ranges from indolent to highly aggressive. 
NENs are often slow-growing and due to vague symp-
toms tumors are often diagnosed at a late stage with 
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metastatic disease. Most NENs have overexpression 
of somatostatin receptors [3], which can be used for 
tumor imaging. Positron emission tomography (PET) 
for somatostatin receptor imaging (SRI) combined with 
anatomical imaging, e.g., computer tomography (CT), 
is essential for diagnosing, staging, treatment selection 
and follow-up of patients with NEN [4].

Previously, the use of maximal standardized uptake 
value (SUVmax) in SRI PET of patients with NEN has 
been shown to be prognostic for progression-free 
survival, but not overall survival [5–8]. The degree of 
somatostatin receptor expression determined by SUV 
is linked with tumor differentiation, i.e., less somato-
statin receptors in the dedifferentiated more aggressive 
tumors. Thus, the lesion with the lowest tracer uptake, 
rather than SUVmax, would therefore be expected to 
be better linked with prognosis. Indeed, we recently 
reported that by use of minimum lesion SUVmean and 
total tumor volume, the prognostic value of SRI with 
[64Cu]Cu-DOTATATE PET in patients with NEN could 
be greatly increased [9]. However, to obtain total tumor 
volume and minimum SUVmean, total tumor segmen-
tation is required. Due to the often widely metastatic 
disease in patients with NEN this is time-consuming 
with a manual approach, thus hindering clinical imple-
mentation. We, therefore, introduced a standardized 
semiautomatic method for total tumor segmentation 
that could be performed with a median time of approxi-
mately 20  min depending on tumor burden. However, 
to increase the likelihood of clinical implementation of 
these prognostic measures, we believe further automa-
tization and faster tumor segmentation is needed. We, 
therefore, set out to employ a deep-learning approach 
for total tumor segmentation in [64Cu]Cu-DOTATATE 
PET of patients with NEN. One widespread method 
for image segmentation is using the U-net structure 
for the artificial intelligence (AI) network [10], which 
has been used for, for example, segmentation of bone 
metastasis in breast cancer patients [11], of cervical 
tumors [12] and of gliomas [13] in PET/CT. To the best 
of our knowledge, this has, however, not been applied 
to tumor segmentation in patients with NEN. Adapt-
ing a network of the U-Net architecture could therefore 
be a promising step in further automatization of tumor 
segmentation of NENs.

Hence, we aimed to implement and evaluate an AI 
model for tumor segmentation of NENs and determine 
if the performance of the model could prove useful for 
assisting or replacing our previously proposed stand-
ardized semiautomatic method for total tumor seg-
mentation. Further, the model was implemented into 
clinically used software.

Methods
Patients
Dataset 1
From 2009 to 2013, we retrospectively included 127 
patients available with histopathologically confirmed 
NENs that underwent [64Cu]Cu-DOTATATE PET /
CT performed 1  h after injection of approximately 
200  MBq [64Cu]Cu-DOTATATE PET. All images were 
acquired with a Siemens Biograph 40 or 64 TruePoint 
PET/CT and reconstructed with TrueX algorithm 
(Siemens Medical Solution). Settings were as follows; 
3 iterations, 21 subsets, 2  mm Gaussian post-filter 
smoothing, 336 × 336 matrices of 2 × 2 × 3 mm3 voxels. 
CT-based attenuation correction was applied. A diag-
nostic quality CT scan with iodine intravenous contrast 
was performed before the PET. To ensure quantita-
tively accurate measurements between the different 
PET/CT scanners, we perform a quality control every 
2  weeks, testing they are calibrated to measure within 
our acceptance range (5%). We excluded patients with 
no signs of NEN due to previous radical surgery. For 
patients included; age, gender, site of primary tumor, 
Ki67 index and WHO grade (Grade 1 (Ki67 < 3%), 
Grade 2 (Ki67 3–20%) and Grade 3 (Ki67 > 20%) were 
recorded.

Dataset 2
From 2018 to 2019, we retrospectively included 31 
patients with histopathologically confirmed NEN that 
underwent [64Cu]Cu-DOTATATE PET /CT. All PET/
CT were acquired with a Siemens Biograph 128 mCT 
using the same setup and reconstruction routine as 
described above.

Dataset 3
Also from 2018 to 2019, we retrospectively included 
10 patients with known NEN referred for [64Cu]Cu-
DOTATATE PET/CT but found to have no signs of 
NEN on PET/CT due to radical treatment and there-
fore serves as negative controls in this study. Images 
were acquired as described for dataset 2.

To ensure quantitatively accurate measurements 
between the different PET/CT scanners, we perform 
a quality control every 2  weeks, testing they are cali-
brated to measure within our acceptance range (5%). A 
Danish Patient Safety Authority approval was obtained 
(31-1521-453), and obtained informed consent was 
waived for the included patients.

Ground truth label methodology
Ground truth labels were created using a previously 
described standardized procedure for segmentation of 
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NENs in [64Cu]Cu-DOTATATE PET /CT images [9]. In 
brief, a region of interest (ROI) is drawn within the nor-
mal liver on the PET image. The SUVmean value of this 
ROI is then used to calculate a threshold value for the 
rest of the image. The threshold value is given as

with SD being the standard deviation within the ROI. In 
case of complete metastatic liver involvement the ROI 
is drawn in the spleen. The threshold formula based on 
normal spleen uptake has been adapted to the higher 
physiological uptake in the spleen and is given as

Consequently, every voxel from the PET image with 
a value larger than the threshold is by default seg-
mented. To reduce segmentation due to noise, all vol-
umes < 0.1  mL (< 9 voxels) are automatically removed. 
Finally, a physician (E.A.C) manually corrected the seg-
mentation by removing volumes with high physiological 
uptake (typically bladder, adrenal glands and kidney) and 
false-positive segmentations yielding the ground truth 
label.

Convolutional neural network
We applied the U-net architecture which involves a de-
convolutional path for extraction of features in the images 
and an up-convolutional path for localization of the fea-
tures (Fig.  1). The well-established nnU-Net framework 
was used for automatically setting up the U-net including 
preprocessing, training, inference and post-processing of 
data [14]. We used default nnU-Net settings for training 
the network with PET and CT images as input, and our 
ground truth label as target. Details regarding the pre-
processing, network architecture and hyperparameters 
are shown in Supplementary Table 1.

Threshold = (1.5 · SUVmean)+ (2 · SD)

Threshold = (0.67 · SUVmean)+ (2 · SD)

Training and validation of the network
For training and validation, a randomly selected subset 
of 117 [64Cu]Cu-DOTATATE PET/CTs from dataset 1 
were used (Fig. 2). Cross-fold training was performed in 
accordance with the nnU-Net procedure. The training 
results in a model from each fold, where individual pix-
els are predicted to be either segmented or not with some 
probability by each model. An ensemble of the models 
was created by averaging these probabilities before each 
pixel was assigned to be segmented or not in the ensem-
ble model. Post-processing with removal of any segmen-
tation outside the patient’s body was performed using 
the PET signal to automatically outline the body contour. 
Furthermore, segmentations < 0.1  mL (< 9 voxels) were 
automatically removed.

Testing of models
The remaining 10 patients from dataset 1 (not used in 
training) and 31 patients from dataset 2 constituted the 
test cohort. Patients from both dataset 1 and 2 were 
used for testing to control for possible effect of different 
PET/CT systems used. The automatically post-processed 
models were evaluated by the following metrics in the 
test cohort.

where TP, FP, TN and FN denote true/false positive/
negative. These metrics were used to select which model 

Sensitivy =
TP

TP + FN

Precision =
TP

TP + FP

Dice =
2 · TP

2 · TP + FP + FN

Fig. 1  Total tumor segmentation of neuroendocrine neoplasms by a convolutional neural network
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should be further evaluated. The selected output were 
reformatted into DICOM RT structures and imported 
into Mirada DBx 1.2.0 software package (Mirada Medi-
cal Ltd., Oxford, UK). An arbitrary scoring scheme 
(Table 1) focusing on number of false positive and false 
negative lesions was applied to evaluate the automati-
cally post-processed AI segmentation in the test cohort 
(n = 41). Time spent on any necessary manual correction 
was recorded in a randomly selected subgroup (n = 10), 
blinded to, and compared with time spent on ground 

truth labeling. Scoring of the AI segmentations in the 
test cohort was performed by a physician (E.A.C). Addi-
tionally, the AI model was tested on patients from data-
set 3, i.e., patients without any signs of NEN on PET/
CT due to radical surgery. These patients were judged by 
the number of segmentations (if any) and volume of the 
segmentation.

Fig. 2  Illustration of data used for training and test. The models and the ensemble hereof were inferred on the test cohort. Boxes are not drawn to 
scale

Table 1  Evaluation scheme of AI segmentations

* Minor is defined as only parts of a predicted lesion are wrong

Rating Criteria

1. Perfect/optimal The segmentation is as good as manual segmentation, that is, no false positive or false negative segmentations

2. Optimal with minor adjustments The segmentation contains all lesions and only minor* false positives or false negatives

3. Acceptable with minor adjustments The segmentation contains the majority of the lesions (at least 1 and ≤ 3 missing) and ≤ 2 false positive seg-
mentations. Additionally only minor* false positives or false negatives

4. Acceptable with major adjustments The segmentation contains most of the lesions (at least 1 and ≤ 6 missing) and ≤ 4 false positive segmenta-
tions. Additionally only minor* false positives or false negatives

5. Non-usable The segmentation does not contain enough of the lesions (≥ 7 lesions missing or no lesions segmented if less 
than 7 lesions present) or too many false positives (≥ 5) for correction to be meaningful
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Statistical analyses
Data are reported as mean and standard deviation 
unless otherwise indicated. To assess difference between 
groups we used chi-squared test for categorical data and 
unpaired and paired t-test for continuous data, as appro-
priate. A P-value < 0.05 was considered statistically sig-
nificant. Statistical analyses were performed in R version 
3.6.0 (R Foundation for Statistical Computing).

Results
Patients
The datasets for training and testing the models were 
similar in regards to age, gender and site of primary 
tumor. Patients most often had small intestinal primary 
tumors. Patients in the test cohort were more often clas-
sified as WHO Grade 2, but the Ki67 index did not dif-
fer significantly (Table 2). All but one patient in the test 
cohort had multiple lesions, with a median of 25 lesions 
(interquartile range: 41).

Output from nnU‑Net
The models, as well as the ensemble of the models, were 
evaluated using the defined metrics in the test cohort 

(n = 41). Since no model performed best in regards to 
both pixel and lesion-wise metrics (Table 3), the ensem-
ble was chosen for evaluation of FP/FN lesions. Because 
the ensemble is a combination of the different models, it 
comprises more variation in the dataset and should be 
the more robust model/choice for new cases.

Evaluation of AI segmentations
All 41 patients in the test cohort were evaluated and 
scored according to the scoring scheme (Table 1) with the 
detailed description reported in Supplementary Table 2. 
Examples of two patients are shown in Fig.  3. In 7/41 
(17%) patients the AI segmentation required no manual 
adjustments to obtain the final total tumor segmentation 
(Table 4). In 35/41 (85%) of patients, the AI segmentation 
was considered acceptable with either no or minor/major 
adjustment before the final total tumor segmentation was 
obtained. The time spent on any manual correction was 
compared between the output from the AI segmenta-
tion and from the standardized semiautomatic method 
used as ground truth. In the subgroup of 10 randomly 
selected patients, less time was needed to correct the 
segmentation when using the segmentation from the AI 

Table 2  Demographic data for patients with neuroendocrine neoplasms

* Denotes statistically significant difference in distribution of WHO grades between training and test data (p = 0.013). Data are number followed by percentage in 
parentheses, unless otherwise indicated. Percentage were rounded and may not add up to 100%

Training and test datasets Training Test Overall
(N = 117) (N = 41) (N = 158)

Mean age, year 62 (SD, 11) 65 (SD, 10) 63 (SD, 10)

Gender

 Male 63 (54) 24 (59) 87 (55)

 Female 54 (46) 17 (42) 71 (45)

Site of primary

 Small intestine 67 (57) 23 (56) 90 (57)

 Pancreas 23 (20) 9 (22) 32 (20)

 Lung 7 (6) 5 (12) 12 (8)

 Cecum 6 (5) 2 (5) 8 (5)

 Extrahepatic biliary tract 2 (2) 0 (0) 2 (1)

 Esophagus 1 (1) 0 (0) 1 (1)

 Gastric 1 (1) 0 (0) 1 (1)

 Unknown primary NEN 10 (9) 2 (5) 12 (8)

WHO*

 Grade 1 29 (25) 3 (7) 32 (20)

 Grade 2 75 (64) 32 (78) 107 (68)

 Grade 3 6 (5) 6 (15) 12 (8)

 Missing 7 (6) 0 (0) 7 (4)

Mean Ki67, % 8 (SD, 14) 11 (SD, 8) 9 (SD, 12)

Negative controls Training Test Overall
(N = 0) (N = 10) (N = 10)

No disease 0 (0) 10 (100) 10 (100)
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model (median 5 min) versus the semiautomatic method 
(median 17 min), p < 0.01 (Fig. 4). Further, the ensemble 
model was applied to the negative controls and in 5/10 
(50%) no segmentations were seen, and in 9/10 (90%) 
cases, the volume segmented was ≤ 1.5  mL (e.g., physi-
ological uptake in adrenal gland). The median segmented 
volume was 0.15 mL. In one negative control patient, 56 
volumes were segmented with a total volume of 68.6 mL 
with almost all of the segmentations placed in normal 
liver tissue. No explanation for the false positive segmen-
tations could be identified when reevaluating that par-
ticular patient.

Discussion
Our most important finding was that time spent on the 
laborious task of total tumor segmentation in patients 
with NEN can be reduced from 20 to 5  min by apply-
ing a convolutional neural network. The majority of the 
automatically performed segmentations by the network 
were useable for obtaining total tumor segmentation with 
either no or only minor degree of manual adjustments. 
Hence, the method proposed in our study serves to fur-
ther automate the process of total tumor segmentation. 
Recently, we and others have reported the prognostic 
power of total tumor volume determined in SRI PET [9, 
15–19]. Furthermore, with total tumor segmentation, 
several metrics may be derived in the setting of multiple 
lesions, e.g., the lesion with the lowest SUVmean can eas-
ily be determined. Underscoring the value of total tumor 
segmentation, we recently reported the prognostic value 
of a combined approach of total tumor volume and mini-
mum SUVmean [9]. The reduced time needed for perform-
ing total tumor segmentation presented in the current 
study may further improve the clinical adaptation and 
feasibility in the clinical routine.

In our train cohort, we trained the nnU-Net convolu-
tional neural network. In the test cohort, our proposed 
AI model without manual adjustments had a pixel and 
lesion-wise dice score of 0.801 and 0.850, respectively. 

This is comparable with other proposed models for 
tumor segmentation [13, 20, 21]. More importantly, 
by implementing the segmentation in a clinical imag-
ing viewer, the segmentations could be judged, adjusted 
and verified by a physician. Of note, by reformatting 
the output to DICOM RT structures, it could easily be 
integrated into other clinical imaging viewers. From the 
evaluation it was seen that most (46%) of the AI seg-
mentations of the 41 patients were scored as “Accept-
able with minor adjustments.” Only 15% were scored as 
non-usable due to the number of manual adjustments 
needed, leaving 85% of the segmentations as useable for 
obtaining total tumor segmentation. Also, in the negative 
control cases the model performed well by segmenting a 
volume of < 1.5 mL in 90% and no segmentations in 50% 
of the 10 cases. From both the test cohort and negative 
controls, however, it is evident that the proposed model 
cannot stand alone. Manual adjustments are necessary in 
some cases, and the AI segmentations should always be 
examined by a physician. Compared with the previously 
proposed methodology for a standardized semiauto-
matic segmentation, the AI model serves as an improved 
starting point for the physician, and may be corrected 
in 5 min as compared to the previously reported 20 min 
[9]. The AI predicted segmentations should be viewed as 
an aid for performing total tumor segmentation, which, 
however, ultimately is determined by the physician 

Table 3  Metrics for AI segmentations without manual adjustments applied to the test cohort (n = 41)

All values calculated as mean of the 41 patients of the test cohort with standard deviation in parentheses. Bold numbers mark the highest value across the models/
ensemble in each evaluation metric. *Denotes statistically significant difference in sensitivity between Model 4 and Model 1 (p = 0.017)

Pixel-wise AI model

Model 1 Model 2 Model 3 Model 4 Ensemble

 Dice 0.801 (0.206) 0.817 (0.176) 0.768 (0.234) 0.763 (0.233) 0.801 (0.196)

 Precision 0.772 (0.258) 0.816 (0.223) 0.752 (0.279) 0.787 (0.258) 0.786 (0.250)

 Sensitivity 0.893 (0.173) 0.860 (0.180) 0.869 (0.182) 0.821 (0.231)* 0.872 (0.177)

Lesion-wise

 Dice 0.847 (0.286) 0.828 (0.264) 0.809 (0.268) 0.803 (0.258) 0.850 (0.278)

 Sensitivity 0.854 (0.230) 0.827 (0.234) 0.843 (0.228) 0.831 (0.243) 0.844 (0.238)

Table 4  Evaluation of number of false-positive/false-negative 
segmentations by AI without manual adjustments

*Defined in Table 1

Evaluation score* n = 41

1 (Perfect/optimal) 7 (17%)

2 (Optimal with minor adjustments) 3 (1%)

3 (Acceptable with minor adjustments) 19 (46%)

4 (Acceptable with major adjustments) 6 (15%)

5 (Non-usable) 6 (15%)
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performing the adjudication. The AI predicted segmenta-
tions should not give rise to altered clinical staging of the 
patients as compared to a manual total tumor segmen-
tation approach, unless true positive lesions were over-
looked by a manual approach. The manual adjustments 
may involve removing false positive segmentations, e.g., 

the adrenal gland or bladder, and/or adding lesion(s) not 
included in the segmentation. With the unique label for 
each segmented volume entire false positive segmenta-
tions are easily removed. The manual addition of single 
lesions can be done using several approaches, e.g., as 
seed point, where a seed is placed in the lesion, and a 

Fig. 3  Representative examples of the segmentations from the AI model for two patients. Maximum intensity projection [64Cu]Cu-DOTATATE PET 
without tumor segmentation (A, D). Ground truth segmentation of tumor (B, E). AI predicted segmentations—no manual adjustments performed 
(C, F). In the AI output, all separate segmentations are given a unique color, e.g., red, blue, green, making manual adjustment with deletion of a 
segmentation easy and fast (e.g., part of the bladder was erroneously segmented in C)
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SUV threshold is used for determining the outline of the 
lesion. The threshold may be based on the standardized 
method we previously proposed, where the patient spe-
cific threshold is a based on tracer uptake in the normal 
liver. Other methods include a fixed threshold or adap-
tive threshold (e.g., 40% SUVmax).

As the model is derived from a training cohort of 117 
patients, it is evident given the large variation in pri-
mary tumor site and sites of metastatic lesions that the 
model may be further improved by having larger train-
ing cohorts. By implementing the model for segmenta-
tion, new training cohorts may be more easily generated 
given the reduction in time spent on performing tumor 
segmentation. Ideally, the model should also be validated 
in an external cohort. [64Cu]Cu-DOTATATE was devel-
oped and clinically implemented at our department at 
Rigshospitalet, Denmark, but has not been available at 
other sites until the recent Food and Drug Administra-
tion approval [22]. It is therefore likely that the proposed 
model could be externally validated in the future. The 
trained AI model may not be directly applied to a setting 
with another PET tracer for SRI, e.g., 68 Ga-DOTATOC, 
due to variations in uptake patterns in both normal tis-
sues and lesions [23]. Some issues should be addressed 
regarding the proposed AI model. For both ground 
truth segmentation and by post-processing of the model 
output, all segmentation < 0.1  mL were automatically 
removed. With a voxel size of approximately 2 × 3 × 3 
mm3 = 0.012 mL, the deletion of all lesions below 0.1 mL 
corresponds to lesions below 9 voxels. This was done 
to reduce segmentation of noise. Furthermore, in the 

training and test cohorts small intestinal and pancreatic 
primary tumors were most frequent; hence, the AI model 
may perform best in such cases.

Conclusion
We implemented and validated an AI method that 
achieved a high concordance with the ground truth label 
and resulted in much faster tumor segmentation. In the 
majority of patients, the AI segmentation was useable 
with either no or minor manual adjustments required. 
By applying this approach of total tumor segmentation, 
prognostication by quantitative measures of [64Cu]Cu-
DOTATATE PET may become more feasible and imple-
mented in the clinical routine.
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