
Halme et al. EJNMMI Research           (2022) 12:27  
https://doi.org/10.1186/s13550-022-00897-9

ORIGINAL RESEARCH

Convolutional neural networks for detection 
of transthyretin amyloidosis in 2D scintigraphy 
images
Hanna‑Leena Halme1   , Toni Ihalainen1, Olli Suomalainen2, Antti Loimaala1,3, Sorjo Mätzke1, Valtteri Uusitalo1, 
Outi Sipilä1 and Eero Hippeläinen1,4* 

Abstract 

Background:  Transthyretin amyloidosis (ATTR) is a progressive disease which can be diagnosed non-invasively using 
bone avid [99mTc]-labeled radiotracers. Thus, ATTR is also an occasional incidental finding on bone scintigraphy. In this 
study, we trained convolutional neural networks (CNN) to automatically detect and classify ATTR from scintigraphy 
images. The study population consisted of 1334 patients who underwent [99mTc]-labeled hydroxymethylene diphos‑
phonate (HMDP) scintigraphy and were visually graded using Perugini grades (grades 0–3). A total of 47 patients 
had visual grade ≥ 2 which was considered positive for ATTR. Two custom-made CNN architectures were trained to 
discriminate between the four Perugini grades of cardiac uptake. The classification performance was compared to 
four state-of-the-art CNN models.

Results:  Our CNN models performed better than, or equally well as, the state-of-the-art models in detection and 
classification of cardiac uptake. Both models achieved area under the curve (AUC) ≥ 0.85 in the four-class Perugini 
grade classification. Accuracy was good in detection of negative vs. positive ATTR patients (grade < 2 vs grade ≥ 2, 
AUC > 0.88) and high-grade cardiac uptake vs. other patients (grade < 3 vs. grade 3, AUC = 0.94). Maximum activation 
maps demonstrated that the automated deep learning models were focused on detecting the myocardium and not 
extracardiac features.

Conclusion:  Automated convolutional neural networks can accurately detect and classify different grades of cardiac 
uptake on bone scintigraphy. The CNN models are focused on clinically relevant image features. Automated screening 
of bone scintigraphy images using CNN could improve the early diagnosis of ATTR.

Keywords:  Amyloidosis, Transthyretin, Scintigraphy, Deep learning, Convolutional neural network

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Cardiac amyloidosis is a progressive disease character-
ized by myocardial deposition of misfolded proteins, 
mainly transthyretin or light chain amyloid fibrils, which 
eventually leads to progressive heart failure [1]. Cardiac 
amyloidosis can be diagnosed by either invasive biopsy or 
non-invasively by cardiac multimodality imaging [1].

Non-invasive diagnosis of transthyretin amyloido-
sis (ATTR) is based on nuclear imaging using bone avid 
[99mTc]-labeled radiotracers such as pyrophosphate 
(PYP), diphosphono-1,2-propanodicarboxylicacid (DPD) 
and hydroxymethylene diphosphonate (HMDP) [1]. 
Thus, ATTR is also an occasional incidental finding on 
standard bone scintigraphy imaged due to non-cardiac 
reasons, which is also associated with increased mortality 
[2]. Currently, novel amyloid-stabilizing treatments are 
entering clinical practice, and early detection of ATTR 
has become a topic of interest, as the efficacy of medical 
interventions is greatest at the early stages of the amyloid 
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cardiomyopathy [3]. Unfortunately, the diagnostic delay 
of ATTR is commonly long and the patients often have 
poor quality of life due to advanced amyloid cardiomyo-
pathy at the time of the diagnosis [4].

Nuclear medicine departments could play an impor-
tant role in the early diagnosis of ATTR by screening 
cardiac uptake on all bone scintigraphy images. The 
related workload could be reduced by an automated deep 
learning-based workflow. In addition, automated image 
analysis could detect unnoticed cardiac uptake or retro-
spectively screen large databases of scintigraphy images, 
which could lead to earlier detection and improved prog-
nosis of ATTR. This would also facilitate novel preventive 
clinical studies for patients at the early stages of their dis-
ease process. Moreover, automated detection of cardiac 
uptake could notify the technician performing the study 
to obtain additional cross-sectional imaging of the heart 
to identify the radiotracer accumulation specifically in 
the myocardium, and not in the blood pool [1].

Convolutional neural networks (CNN) have proven to 
be efficient particularly in the classification and segmen-
tation of 2D images [5–10]. Cardiac amyloidosis has been 
detected with CNN from cardiac magnetic resonance 
and PET images [11, 12]. However, to our knowledge, 
CNNs have not been applied in the detection of ATTR 
on bone scintigraphy. In this study, we apply CNN mod-
els to 2D bone scintigraphy for automated detection and 
classification of patients with ATTR. We present two 
CNN architectures and compare their classification per-
formance to four state-of-the-art CNNs designed for 2D 
image classification. Our aim is to use CNNs to auto-
matically detect clinically significant cardiac uptake from 
bone scintigraphy images.

Methods
Patients and imaging protocol
The study population consists of 1334 patients who 
underwent bone scintigraphy between 2012–2021 in 
four Finnish nuclear medicine units. The data were col-
lected using standard clinical single-photon emission 
computed tomography (SPECT) scanners: Philips/ADAC 
Forte (Philips Healthcare, Eindhoven, The Netherlands; 
N = 100), Philips Brightview (N = 200), Siemens e.cam 
(Siemens Healthcare, Erlangen, Germany; N = 547), 
Siemens Symbia (N = 372), GE Infinia Hawkeye (GE 
Healthcare, Waukesha, Wisconsin, USA; N = 96), and 
GE Discovery 670 (N = 19). Low-energy high-resolution 
(LEHR) collimators were used in all scanners.

Of all participants, 1319 were scanned using a whole-
body bone scintigraphy protocol, and 15 patients with 
thoracic planar scintigraphy included in the clinical 
cardiac amyloidosis imaging protocol. The emphasis of 
patient selection was in the inclusion of patients with 

positive cardiac uptake as their prevalence is low in over-
all population. All studies were performed using [99mTc]
Tc-HMDP imaged at three-hours post-injection. The 
administered activity was 500–700 MBq. Both visual and 
CNN analysis of bone scintigraphy data were done for 
research purposes only. The study was approved by the 
ethics committee of Helsinki University Hospital and was 
conducted according to the Declaration of Helsinki.

Visual analysis of cardiac uptake
Three physicians participated in grading bone scintigra-
phy images for cardiac uptake. All patients with a positive 
scan (≥ grade 2) were reviewed by one nuclear medicine 
physician with most clinical experience in amyloid imag-
ing. Different grades of cardiac uptake are demonstrated 
in Fig. 1. The figure shows both the original whole-body 
images and the corresponding preprocessed and cropped 
images used in our further analyses.

Grade 0 Grade 1

Grade 2 Grade 3

Fig. 1  Whole-body and cropped bone scintigraphy images of 
patients with different Perugini grades of cardiac uptake (0–3)
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The grading of cardiac uptake was visually defined 
from images using the standard Perugini grade for car-
diac uptake [1, 13]:

•	 Grade 0: no cardiac uptake
•	 Grade 1: cardiac uptake less than bone uptake
•	 Grade 2: cardiac uptake with intensity similar to bone 

uptake
•	 Grade 3: cardiac uptake greater than bone uptake

Cases borderline for positive (grade 1–2) were graded 
as positive to optimize the sensitivity of our automated 
image analysis. We analyzed the reproducibility of 
the visual grading using 40 anonymized patients. Two 
nuclear medicine physicians (VU and SM) graded the 
patients twice. The patients were presented in rand-
omized order, and the physicians were unaware of the 
prevalence of each Perugini grade in the dataset. Both 
intra- and interobserver reliability were evaluated using 
Cohen’s kappa coefficient [14].

Data preprocessing
Only anterior (AP) images were retained for further 
analyses since the inclusion of posterior (PA) images 
did not improve classification accuracy in preliminary 
tests. The preprocessing workflow is illustrated in Fig. 2. 
Images were cropped into a 128 × 128 matrix centered 
at the thoracic region using an automated Python work-
flow. The location of the cropping region in whole-body 
images was determined as follows: first, we measured a 
line profile in the y-direction and found all nonzero pix-
els, corresponding to the position of the patient in the 
image. Next, the upper edge of the cropped image was 
positioned at a height corresponding to 0.85 × patient 
height. The lower edge was set 128 pixels lower than the 
upper edge. The left and right edges were set 64 pixels to 
the left and right from the image center, respectively.

In case of planar images, the image matrix was down 
sampled to 256 × 256 resolution if necessary, and a 
128 × 128 region was cropped at the center of the 
256 × 256 matrix.

Finally, all nonzero pixel intensities in both cropped 
whole-body and planar images were log-transformed 

Crop rectangular region Log transform

Whole-body AP 
image 

Define upper boundary
for cropping region

256 x 1024

h
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256 x 256
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Fig. 2  Preprocessing workflow for whole-body and thoracic planar images
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in order to reduce the intensity of possible hot spots 
(e.g., injection site and uptake in bones due to injury, 
small fracture or metastatic lesion), which could nega-
tively affect the classification results. The data were 
anonymized during preprocessing, so that the data used 
in further analyses included only the cropped image 
matrix, patient’s age and Perugini grade.

CNN models
We developed two CNN models, referred to as Lin-
ear and Residual. The models were implemented using 
Python 3.8.3 and functions in Tensorflow 2.2.0 [15] and 
Keras 2.3.0 [16]. The Linear model included one convo-
lutional layer, followed by four convolution blocks with 
six consecutive convolutional layers (3 × 3 kernel, stride 
1, ReLu activation function) and one average pooling 
layer (2 × 2 kernel, stride 1) in each. After the convolu-
tion blocks, there was a flattening layer, a dropout layer 
(dropout 0.2) and the final fully connected layer (softmax 
activation function, dimension equal to the number of 
classes).

The Residual model was otherwise similar to the Lin-
ear model but included skip connections between every 
other convolutional layer, i.e., the weights of the layer 
n–2 were added to layer n and the activation function 
was applied to this summed layer (see details in [17]). The 
architectures of these models are shown in Fig. 3.

For comparison, we classified data with four state-of-
the-art models implemented in Keras library: VGG16 
[18], ResNet50 [17], InceptionV3 [19] and MobileNet 
[20]. For all these models, we used the pre-trained ver-
sions with ImageNet weights as initial weights. The out-
put layer of all state-of-the-art models was omitted and 
replaced with similar flattening layer, dropout layer and 
fully connected layer as implemented in the Linear and 
Residual models.

CNN training and validation
We first classified the images using the visually deter-
mined Perugini grades (0, 1, 2 and 3) as the ground truth 
labels (four-class classification). We also studied the 
accuracy of CNN for detection of positive (grade > 2) and 
negative (grade < 2) cardiac uptake for ATTR and dif-
ferentiation of high-grade (grade 3) cardiac uptake from 
other patients.

Similar training and validation procedures were used 
for all CNN models. We quantified the classification 
accuracy with fivefold cross-validation, in which 80% of 
the data were used for training and 20% for testing the 
CNNs. We used stratified cross-validation, i.e., the pro-
portion of different classes in each cross-validation fold 
was equal.

As the size of the dataset was limited, we increased the 
number of training images by data augmentation. On 
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each cross-validation fold, 5330 augmented images were 
generated by shifting (range ± 10% in both x- and y-direc-
tions), rotating (range ± 20°), and scaling (range ± 20%) 
the original training images in a randomized way, using 
the ImageDataGenerator function implemented in Keras. 
Finally, both the training and testing images were z-score 
normalized pixel-wise with respect to the training data, 
i.e., the average of the training images was subtracted 
from each image and subsequently, the image was divided 
with the standard deviation of the training images.

The model training process was carried out with 50 
epochs and a batch size of 128. As the dataset was imbal-
anced, i.e., the number of patients with grades 0 and 1 
was significantly higher than that of patients with grades 
2 and 3, we decided to use class weights in the classifi-
cation. The penalty for misclassification of the minority 
classes (grades 2 and 3) was set higher than that of the 
majority classes (grades 0 and 1) in order to overcome 
the uneven distribution in the dataset. For model opti-
mization, we used sparse categorical cross-entropy loss 
function and an Adam optimizer with an initial learn-
ing rate 1e–4. Ten percent of the training data were used 
for validation during the training process. The validation 
data were used for guiding the training, so that the learn-
ing rate was reduced whenever the validation loss did 
not decrease in two consecutive epochs; the minimum 
learning rate was set to 1e–7. Classification performance 
was evaluated by receiver operating characteristic (ROC) 
analysis. We calculated the area under the curve (AUC), 
total accuracy and class-specific precision (number of 
true positives over the number of true positives plus the 
number of false positives) and recall (number of true pos-
itives over the number of true positives plus the number 
of false negatives) for each CNN model using the roc_
auc_score function implemented in Scikit-Learn [21]. 
The above training and testing process took about 1 h on 
an NVIDIA Quadro P5000 graphical processing unit.

After classifying all patients, we investigated whether 
bone metastases have an effect on the classification 
results of the CNN. We selected only the Residual CNN 
for this analysis for simplicity. As we had the final CNN 
classification for each patient, we divided them to those 
with and without bone metastases. Thereafter, AUC and 
total accuracy were calculated separately for these two 
groups.

CNN layer visualization
Besides detection and classification of cardiac uptake on 
bone scintigraphy, we studied which parts of the image 
contribute most to the CNN output, i.e., “what the CNN 
is looking for”. We visualized the maximum activation 
maps of layers 2, 10, 17, and 24 of the Linear model and 

layers 2, 12, 22, and 32 of Residual model, corresponding 
to the first convolutional layer of each convolution block.

Results
Patient characteristics
The study involved 1334 patients of which 245 were 
females (18%) with mean age of 77 ± 10  years. The 
patients were imaged due to prostate cancer (N = 1013), 
breast cancer (N = 159), other cancer (N = 81), ortho-
pedic or metabolic indication (N = 55) or with suspi-
cion of cardiac amyloidosis (N = 26). Grade 1 cardiac 
uptake was found in 296 patients (22.2%), grade 2 in 23 
patients (1.7%) and grade 3 in 24 patients (1.8%) [2]. A 
positive study (grade ≥ 2 cardiac uptake) was found in 31 
patients with prostate cancer, 3 patients with breast can-
cer, 2 patients with other cancer and 11 patients in whom 
ATTR was suspected.

Intra‑ and interobserver reliability
Cohen’s kappa for detection of significant cardiac uptake 
(≥ grade 2) was very good for the intraobserver variabil-
ity (0.89) and good for interobserver variability (0.79). 
Similarly, Cohen’s kappa for both intra- and interobserver 
variability of different Perugini grades was good (0.79 and 
0.69, respectively).

Four‑class Perugini grade classification of cardiac uptake
In four-class classification of Perugini grade, VGG16 
obtained the best total accuracy (0.74) and AUC (0.87). 
Our custom-made models obtained nearly similar AUCs: 
0.86 for both Linear and Residual model. VGG16 yielded 
better total accuracy mainly due to a better recall for 
grade 0; however, it performed worse than our models in 
detection of classes 1, 2 and 3.

Grade 3 uptake got the highest classification scores 
with both Linear (precision 0.91, recall 0.83) and Residual 
(precision 0.83, recall 0.83) models.

Grades 1 and 2 were the most difficult classes to dis-
criminate. The Residual model yielded the best recall for 
both grade 1 (0.65), and grade 2 (0.65).

Grade 0 was well classified with all models, but the best 
precision (0.88) was obtained with the Residual model. 
As the majority (73%) of the patients in our dataset rep-
resented grade 0, it was crucial that the other grades were 
not misclassified as grade 0, i.e., high precision for this 
class was preferred over high recall. On the contrary, as 
grade 3 represented only 1.7% and grade 2 1.8% of the 
data, it was important that these rare cases were classi-
fied with a high recall, i.e., few false negatives. The Linear 
and Residual models both yielded the highest precision 
for grade 0 and highest recall for grades 2 and 3.

The cross-validated results for four-class classification 
are summarized in Table 1.
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Detection of high‑grade cardiac uptake
Differentiation of severe grade 3 cardiac uptake from 
other patients yielded better results than four-class 
Perugini grade classification. Grades 0–2 were classified 
with precision and recall of 0.99–1 with all models. For 
grade 3, the best precision and recall were achieved with 
the Residual model (0.83 and 0.89, respectively). Also in 
this case, Keras’ pre-trained models did not perform as 
well as our custom-made CNN models in the classifica-
tion of grade 3. The results are shown in Table 2.

Automated detection of significant cardiac uptake
Classification of negative (grade < 2) and positive 
(grade ≥ 2) cases of cardiac uptake was more challenging 
than discriminating high-grade (grade 3) cardiac uptake 
from other patients. The best AUCs were achieved using 
the Residual (0.90) and Linear (0.88) models. VGG16 
yielded the best total accuracy (0.98). For detection of 
negative patients, all models performed reasonably well 
in terms of precision and recall, which were both > 0.95 
with all models except ResNet50 which resulted in a 
recall of 0.80. For detection of positive ATTR patients, 
ResNet50 achieved the best recall (0.90), but the poorest 
precision (0.14). The best precision (0.81) was obtained 
with VGG16; however, the recall for that model was only 
0.54. The Linear model achieved both high precision 

(0.59) and recall (0.79). Also, the Residual model yielded 
a high recall (0.85) as shown in Table 3.

The effect of bone metastases on automatic image analysis
The presence of bone metastasis did not significantly 
affect the automatic Perugini grading or detection of pos-
itive cardiac uptake. The accuracy in four-class Perugini 
grade classification was 0.71 for patients with and 0.66 
for those without metastases and AUCs were 0.43 and 
0.51, respectively. In classification of positive vs. nega-
tive study, the results were similar regardless of the pres-
ence of metastases. Total accuracies were 0.97 and 0.98 
for patients with and without metastases and AUCs were 
0.90 and 0.89, respectively.

CNN layer visualization
The maximum activation maps for layers 2, 10, 17 and 24 
of the Linear model are shown in Fig. 4, and for layers 2, 
12, 22 and 32 of the Residual model in Fig. 5. The figures 
demonstrate how both models emphasized characteris-
tic image features for different classes. For patients with 
Perugini grades 0 and 1, the  activation maps show the 
highest weights around the sternum, shoulders and ribs; 
and for patients with grades 2 and 3, in the sternum and 
heart.

Table 1  Cross-validated results for automated CNN four-class Perugini grade classification

ACC = accuracy; AUC = area under the curve; Precis = precision

AUC​ ACC​ Grade 0 Grade 1 Grade 2 Grade 3

Precis Recall Precis Recall Precis Recall Precis Recall

Linear 0.86 0.66 0.86 0.68 0.37 0.59 0.29 0.61 0.91 0.83

Residual 0,86 0,67 0,88 0,68 0,40 0,65 0,22 0,65 0,83 0,83

VGG16 0.87 0.74 0.83 0.83 0.44 0.45 0.46 0.57 1.00 0.79

ResNet50 0.78 0.66 0.81 0.78 0.33 0.31 0.11 0.04 0.20 0.76

InceptionV3 0.75 0.62 0.80 0.70 0.30 0.40 0.06 0.13 0.59 0.64

MobileNet 0.76 0.74 0.76 0.97 0.42 0.07 0.00 0.00 1.00 0.17

Table 2  Cross-validated results for classification of Perugini grade 0–2 vs grade 3 cardiac uptake

AUC​ Accuracy Grade 0–2 Grade 3

Precision Recall Precision Recall

Linear 0.94 0.99 1.00 0.99 0.73 0.89

Residual 0.94 0.99 1.00 1.00 0.83 0.89

VGG16 0.92 0.99 1.00 0.99 0.62 0.85

ResNet50 0.82 0.99 0.99 1.00 0.94 0.63

InceptionV3 0.80 0.99 0.99 1.00 0.80 0.59

MobileNet 0.72 0.99 0.99 1.00 0.92 0.44



Page 7 of 11Halme et al. EJNMMI Research           (2022) 12:27 	

Table 3  Cross-validated results for automated detection of patients with positive cardiac uptake suggestive for ATTR​

* Perugini grade ≥ 2

AUC​ Accuracy Negative patients Positive patients*

Precision Recall Precision Recall

Linear 0.88 0.97 0.99 0.98 0.59 0.79

Residual 0,89 0,97 0,99 0,98 0,58 0,81

VGG16 0.77 0.98 0.98 1.00 0.81 0.54

ResNet50 0.85 0.80 1.00 0.80 0.14 0.90

InceptionV3 0.78 0.95 0.98 0.97 0.39 0.60

MobileNet 0.76 0.95 0.98 0.96 0.35 0.56

Grade 0

Grade 1

Grade 2

Grade 3

Layer 2 Layer 10 Layer 17 Layer 24

Fig. 4  Maximum activation maps for layers 2, 10, 17 and 24 of the Linear model for input images representing different grades of cardiac uptake. 
Activation maps demonstrate that the convolutional neural network model finds abnormal myocardial signal in patients with cardiac uptake 
suggestive for ATTR and not extracardiac features, similarly to standard clinical reading by a physician
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Discussion
In the current study, we classified different grades of 
cardiac uptake on bone scintigraphy images using auto-
mated convolutional neural networks. We found that 
two custom-made CNN models performed better in 
this classification task than four state-of-the-art mod-
els implemented in the Keras library. It is noteworthy 
that the imaging data were heterogeneous, since the 
scintigraphy images were collected with multiple dif-
ferent scanners during a time span of nine years and 
included both planar and whole-body images. The data-
set was imbalanced since only 4% of patients had car-
diac uptake positive for ATTR similarly to real-world 

clinical practice. Yet, our CNN models could accurately 
detect and classify different grades of cardiac uptake.

Similarly to clinical practice, patients with cardiac 
uptake around the visual cut-off value (grade 1 vs. 2) were 
the most difficult to discriminate. In contrast, absence of 
cardiac uptake or high-grade uptake (grade 3) were clas-
sified with a high precision using both of our CNN mod-
els. In the diagnosis of ATTR (> grade 2), the Linear and 
Residual models performed better than, or equally well 
as, the state-of-the-art models. Although VGG16 per-
formed quite well in the current dataset, it was the most 
computationally heavy of the tested models, consisting of 
138 million trainable parameters and requiring 528  MB 

Grade 0

Grade 1

Grade 2

Grade 3

Layer 2 Layer 12 Layer 22 Layer 32

Fig. 5  Maximum activation maps for layers 2, 12, 22 and 32 of the Residual model for input images representing different grades of cardiac uptake. 
Activation maps demonstrate that the convolutional neural network model finds abnormal myocardial signal in patients with cardiac uptake 
suggestive for ATTR similarly to physician and not extracardiac features similarly to standard clinical reading by physician
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of memory. In comparison, the Linear and Residual 
models both included only 1 million parameters, making 
them much more efficient.

Previous studies in brief
While deep learning has previously been used to diag-
nose cardiac amyloidosis from MRI and PET images 
[11, 12], cardiac uptake from bone scintigraphy images 
has not been previously studied. In previous studies, 
CNNs have performed well in detecting metastases in 
whole-body bone scintigraphy images. Papandrianos 
and colleagues reported a 96% sensitivity for detection of 
prostate cancer metastases with a simple CNN model [7]. 
However, they manually removed artifacts (e.g., injec-
tion site) from the images before applying the model 
and discarded patients with degenerative lesions from 
their dataset. In a later article from the same group [8], 
a more complicated CNN architecture classified bone 
scintigraphy images into normal, metastatic lesion and 
degenerative lesion categories with 97% accuracy. Zhao 
and colleagues presented similar results for detection of 
bone metastases from different cancer types [5]. Their 
CNN approach yielded 0.96–0.99 AUCs depending on 
the primary cancer type, and the data included patients 
with degenerative lesions as well. Recently, good results 
in bone metastasis analysis have also been reported in 
other studies [6, 9, 10].

While the previous studies regarding the use of deep 
learning in nuclear medicine are promising, they can-
not be directly compared to the current study. Firstly, 
the uptake of bone metastases is typically higher than 
myocardial signal in ATTR, which makes the metastases 
more easily detectable. Secondly, metastatic lesions and 
image artifacts have not been removed from our dataset. 
Thirdly, distinguishing between different visual grades of 
cardiac uptake is subjective. However, our primary clini-
cal aim is to aid screening of incidental cardiac uptake 
and not to substitute visual analysis with machine learn-
ing methods. Positive findings would be confirmed by a 
physician or by further multimodality imaging, as neces-
sary [2].

CNN layer visualization
The visualization of maximal activation maps for dif-
ferent CNN layers revealed that both the Linear and 
Residual models were highlighting similar features in the 
images. For negative patients (grade 0 or 1), the highest 
weights were located in bones, and for ATTR patients, 
the highest weights were located in the heart. Thus, 
CNNs are focusing, like reading physicians, on clini-
cally relevant features in the images and have appropri-
ately learned these features from the training data. This 
finding is important regarding to the ethical principles 

of deep learning in medicine as it provides transparency 
and visibility to the decisions made by the CNNs [21]. On 
the other hand, it seemed that the CNN models did not 
find any additional relevant features which would have 
been unnoticed by the physician; it remains to be investi-
gated in further studies whether such incidental findings 
emerge when the models are trained with larger datasets.

Clinical significance of the results
Bone scintigraphy is a common imaging procedure, and 
one of its main indications is prostate cancer which is 
frequent in elderly males. This results in overlap between 
a population with indication to bone scintigraphy and 
a population where the incidental ATTR is the most 
prevalent [22]. Scintigraphy is positive in the early stage 
of an amyloid process, even before echocardiography 
[23] Therefore, automated CNN analysis might result in 
earlier diagnosis of ATTR by detecting cases missed by 
clinical reading or by large scale screening of bone scin-
tigraphy databases. Patients with subclinical cardiac 
uptake suggestive for early amyloid process represent an 
interesting target population for further studies. Auto-
mated analysis might also decrease the interobserver var-
iation of visual reading in clinicians with less exposure to 
amyloid imaging.

For patients with suspected cardiac amyloidosis, the 
diagnostic yield of our automated analysis would be 
low, as they will undergo SPECT/CT in any case and 
the images will be read by a physician with expertise in 
nuclear cardiology. However, the value of automated 
screening of bone scans lies in the warning of less experi-
enced technicians during the quality check of whole-body 
images. In case of a positive ATTR finding, additional 
cross-sectional imaging can be acquired to confirm the 
diagnosis. This will reduce the need for repeated nuclear 
imaging and unnecessary radiation exposure. Further-
more, although the visual analysis of planar images has 
been shown to be accurate in previous studies [23, 24], 
ESC currently recommends the use of SPECT or SPECT/
CT for diagnosis of ATTR [1]. Thus, possible treat-
ment decisions would be made based on cross-sectional 
images and further multimodality imaging according to 
ESC position statement [1].

Limitations and future work
The CNN architectures in the current study were fairly 
simple: the Linear model included mainly consecutive 
convolutional layers and pooling layers, and the Resid-
ual model had additional skip connections between 
every other layer. More complicated architectures could 
be designed to improve accuracy. However, it seemed 
that very deep CNNs, such as ResNet50, did not per-
form as well as our models, probably due to overfitting. 
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Thus, merely increasing the depth of the CNN is likely 
not beneficial if there is no simultaneous increase in 
training data.

Another limitation in our study was the low number 
of patients with cardiac uptake suggestive for ATTR. 
Although the size of the dataset was in principle suf-
ficient for deep learning (1334 images), the number of 
positive patients was low and unbalanced. Therefore, 
we used weighted probabilities for different classes to 
compensate for the skewed study population. More 
data from patients with cross-sectional imaging for 
comparison would be necessary to improve the clas-
sification. CNN analysis of whole-body images might 
have resulted in better differentiation of grade 2 versus 
3 cardiac uptake. However, we chose the current heart-
focused approach requiring less computational power. 
Of note, our study population was selected and can-
not be used to study the prevalence of cardiac uptake. 
Visual analysis of cardiac uptake is subjective, and we 
chose to emphasize sensitive reading of images as our 
machine learning algorithm would be applied to onco-
logic population with very low pretest probability of 
ATTR. Initial screening with high sensitivity would 
then be supplemented by cross-sectional imaging with 
high specificity in the same imaging session. Final diag-
nosis would be done by the reading physician. HMDP 
is less validated for amyloid imaging compared to PYP 
or DPD but it is commonly used in bone scintigraphy 
imaging. Therefore, our study represents the real-world 
target-group for screening of ATTR.

One way to improve the detection of myocardial signal 
would be focusing the analysis more strictly to the car-
diac region by cropping or smaller image matrix centered 
in the heart. This would require localization of the heart 
before the CNN analysis, either manually or with an 
automated feature detection algorithm. It is also possible 
to implement a CNN-based cardiac segmentation work-
flow and classify each pixel to a different category, e.g., 
normal or abnormal signal. However, it would require 
the ground truth labels for each pixel. Thus, a physician 
would have to manually segment all images before the 
CNN training.

In the future, the proposed CNNs could be imple-
mented into an automated image analysis workflow 
which could assist the physicians in detection of inci-
dental ATTR on bone scintigraphy. A possible analysis 
pipeline could be structured as follows: 1) whole-body 
bone scintigraphy images are sent directly from the 
scanner to an analysis server, 2) the images are auto-
matically preprocessed and classified, 3) if the classifi-
cation result suggests cardiac uptake, an alert message 
is sent to either the technician or physician, and 4) the 

physician can further inspect the whole-body images 
and decide whether additional cross-sectional imaging 
is needed and refer the patient to a cardiologist.

Conclusions
Convolutional neural networks can accurately detect 
and classify different grades or cardiac uptake. The Lin-
ear and Residual CNN models performed better than 
the state-of-the-art models. In addition, the maximum 
activation maps of these models showed that the CNN 
models are focused on cardiac region on patients with 
cardiac uptake suggestive for ATTR. These models 
could be used for automated screening of ATTR from 
bone scintigraphy images.
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