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Abstract 

Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence 
worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival 
rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include sur-
gical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase 
inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic 
nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic mela-
noma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different 
magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, 
multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
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Introduction
Cutaneous melanoma (CM) is a tumor of the skin 
accounting only for approximately 4% of all skin tumors, 
but it causes most skin-cancer-related deaths [1]. The 
incidence of CM is growing and has drastically increased 
especially in the last 50  years when compared to other 
malignant tumors [2]. For 2021, 5.8% more newly diag-
nosed cases and 4.8% more deaths are expected in the 
USA. CM is a highly aggressive tumor with a propen-
sity to metastasize early. The relative 5-year survival rate 
based on the time of initial diagnosis is 99% for localized 
CM, but decreases to 66% and 27% after regional spread 
and distant metastasis, respectively (American Cancer 
Society. Cancer Facts & Figs.  2021. Atlanta: American 
Cancer Society; 2021).

Melanoma develops from melanocytes which are neu-
ral crest-derived pigmented cells mainly found in the 

dermoepidermal junction and hair follicle [3]. Several 
factors can contribute to the transformation of mel-
anocytes, but exposure to ultraviolet (UV) radiation is 
thought to be the predominant environmental risk fac-
tor [4]. This includes recurrent sunburns and frequent 
and extensive sunbathing [5] by indoor tanning, in par-
ticular in younger age-groups (< 30  years) [6]. Consist-
ent with this, CM compared to other tumor entities is 
characterized by a high mutational burden with typical 
UV signatures [7, 8]. Other risk factors include a fair skin 
phenotype (fair complexion, blond or red hair, blue eyes, 
tendency to freckle) [9], the number and type of naevi 
[10, 11], and a personal or family history of melanoma 
[12–14].

For a long period of time, only few therapeutic options, 
including surgery, chemo- and radiotherapies, the develop-
ment of immune checkpoint inhibitors and targeted thera-
pies have significantly improved the outcome of CM. Yet, 
up to 50% of all metastatic patients do not benefit from 
modern melanoma therapy due to primary or second-
ary resistance. The current strategy is to overcome these 
problems with combined therapies that facilitate known 
and new molecular melanoma vulnerabilities. In addition 

Open Access

*Correspondence:  tilo.biedermann@tum.de
†Maxim Shevtsov and Susanne Kaesler contributed equally to this work.
4 Department of Dermatology and Allergology, Klinikum rechts 
der Isar, School of Medicine, Technical University Munich (TUM), 
Biedersteinerstrasse 29, 80802 Munich, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5352-5105
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13550-021-00868-6&domain=pdf


Page 2 of 15Shevtsov et al. EJNMMI Research          (2021) 11:127 

to new therapeutic approaches, this requires a profound 
knowledge of the regulation of the immune system such 
as mechanisms that induce tolerance and suppression or 
activate effector cells as well as of key signaling pathways in 
melanoma biology [15–22].

In recent decades, nanoparticles (NPs) have emerged as 
a new theranostic modality for the treatment of melanoma 
patients [23]. Employment of nanotechnologies has greatly 
improved the early diagnosis and the therapy of cancer by 
providing novel strategies for a targeted delivery of anti-
tumor agents (e.g., drugs, anti-proliferative proteins, etc.), 
and genes to the site of tumor [24–26]. Nanoscale agents 
can originate from inorganic (e.g., iron, superparamagnetic 
iron oxide, gold, mesoporous silica, graphene and carbon, 
etc.) and organic nanomaterials (e.g., lipids, proteins, silica, 
carbohydrates, etc.) of various formulations and shapes 
(e.g., spheres, nanotubes, quantum dots) [27–40]. Among 
the proposed nanocarriers, metal-based NPs, particularly 
magnetic nanoparticles (MNPs), gained much attention 
due to their beneficial physicochemical properties.

Among other properties of MNPs, excellent magnetic 
contrast-enhancing properties, biodegradability and bio-
compatibility gained specific interest in clinical oncol-
ogy [41, 42]. Thus, magnetic particles could significantly 
improve the magnetic resonance contrast enhancement of 
the tumors when being applied as T2 contrast agents [43, 
44]. Additionally, MNPs could be used either for heating of 
the tumors in an alternating electromagnetic field (AMF) 
or for a targeted delivery of anti-tumor agents [45, 46]. The 
clinical relevance of MNPs is further supported by the fact 
that several iron oxide nanoparticle formulations have been 
approved by the Food and Drug Administration (FDA) as 
MR contrast agents, including Feridex IV® for detection 
of liver lesions and Combidex® for visualization of lymph 
nodes metastasis [47, 48]. Recent advances in the physico-
chemical formulations of NPs including surface modifica-
tions such as binding of various tumor-homing ligands 
(e.g., antibodies, Fab-fragments, peptides, etc.) have sig-
nificantly broadened the potential of MNPs application in 
translational and clinical dermato-oncology.

In the current review, the application of NPs for diag-
nosis and therapy of malignant melanoma is discussed 
with a special focus on translational studies. Addition-
ally, we describe currently applied combined therapeu-
tic approaches of MNPs together with other treatment 
modalities.

Current treatment strategies of malignant 
melanoma
Depending on a histopathological combination of tumor 
thickness with or without ulceration, and the presence 
of local, lymph node or distant metastasis (TNM sys-
tem), the American Joint Committee on Cancer (AJCC) 

classified melanoma in five different stages [49], which 
are important for treatment decisions. The prognosis 
worsens with increasing stage, it starts with stage 0, the 
melanoma in  situ, which is restricted to the epidermis 
without any indication of invasion, and ends with stage 4, 
advanced malignant melanoma, which has already spread 
to distant parts of the body [49, 50]. While early disease 
is limited to the epidermis (melanoma in situ, “Tis”) and 
most melanomas with a tumor thickness of less than 
1 mm can be cured surgically, metastatic disease requires 
multidisciplinary treatment approaches.

For a long time, surgery, chemotherapy and radiation 
were the only available therapeutic options, but in most 
cases response rates were low and patients with advanced 
tumor stages had a short life expectancy [51]. The cyto-
static drug dacarbazine, approved in 1974 by the FDA 
(Table  1), has long been used for systemic treatment of 
metastatic melanoma, but with low response rates and 
without improvements in overall survival [52, 53]. Immu-
notherapies with interferon (IFN)α-2b and interleukin 
(IL)-2 also failed to result in high response rates [54, 55]. 
However, anti-tumor effects have been reported for both 
cytokines [56, 57], and both cytokines are presently still 
used in combination with other treatment modalities in 
clinical trials (Clinical trials.gov). An improved patho-
mechanistic understanding has led to a paradigm shift 
in the last 10 years, and treatment options for malignant 
melanoma dramatically changed due to the development 
of new innovative systemic and local therapies. The use 
of immune checkpoint inhibitors on the one hand and 
the targeted treatment of tumor-specific genetic altera-
tions with kinase inhibitors on the other hand signifi-
cantly contributed to this success.

Immune checkpoint inhibitor therapies
Immune checkpoints are important regulatory elements 
of the immune system. As gatekeepers, they prevent 
overshooting and autoreactive immune responses by a 
mechanism dependent on a ligand-induced signaling. 
In 2011, the FDA approved the first checkpoint inhibi-
tor (ICI) ipilimumab for the treatment of metastatic 
melanoma (Table 1). Ipilimumab is a human monoclonal 
antibody that binds to the cytotoxic T-lymphocyte-asso-
ciated protein 4 (CTLA-4), a surface molecule expressed 
on T cells after T cell receptor (TCR) engagement [58]. 
Checkpoint inhibitor binding to CTLA-4 prevents a 
negative feedback loop and maintains T cells in an acti-
vated, proliferating state. Although the response rate to 
anti-CTLA-4 monotherapy was generally low, in case of 
a response it was long-lasting and significantly increased 
overall survival [59, 60]. The disadvantage of this non-
specific treatment with anti-CTLA-4 is several immune-
related adverse events (irAEs) [59, 61]. Approvals for 
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other ICIs such as programmed cell death protein 1 
(PD-1) blocking antibodies nivolumab and pembroli-
zumab followed in 2014 (Table 1). Compared to CTLA-4, 
PD-1 is also expressed on activated T cells and NK cells, 
at a lower density in primary lymphoid tissues, but in 
the periphery [62]. Compared to ipilimumab, the PD-1 
inhibitors reached even higher overall response rates of 
30–40% [63], with less irAEs and longer relapse-free and 
overall survival rates [64, 65]. Currently, for patients with 
unresectable metastatic melanoma anti-PD-1 blockage 
alone or in combination with CTLA-4 blockage is rec-
ommended and approved as a first-line treatment [50]. 
Unfortunately, a large proportion of patients still does 
not benefit from ICIs because they either initially do 
not respond or develop resistances during the course of 
treatment [64, 66, 67]. The reasons for this are complex 
and include immunosuppressive factors of the tumor 
microenvironment, immune editing, lack of neoantigens, 
loss of antigen presentation, heterogeneity of the mela-
noma tumor cells and an impaired function of tumor-
infiltrating T and NK cells [64, 68–75]. A summary of 
FDA-approved therapy options for metastatic melanoma 
is shown in Table 1.

Targeted therapies
With a high mutational burden [7], CM provides a wide-
ranging landscape of genomic alterations. Mutations in 

the mitogen-activated protein kinase (MAPK) signaling 
pathway are among the most common genetic altera-
tions in CM. MAPK signaling cascades are evolutionarily 
conserved, complex pathways that transfer extracellu-
lar signals to intracellular responses, thereby controlling 
many cellular processes, including proliferation, differen-
tiation, migration and apoptosis [76]. Three MAPK cas-
cades—the extracellular signal-regulated kinases (ERK), 
p38 MAPK and c-Jun-N-terminal kinase (JNK)—have 
been intensively studied in mammalian cells, in which the 
binding of an extracellular signal to a membrane-bound 
receptor activates a multistep phosphorylation pathway. 
In the ERK1/2 pathway, this is the RAS-RAF-MEK-ERK 
cascade, initially activated by the binding of a mitogenic 
factor to its receptor. Dysregulation of the ERK1/2 path-
way mainly due to an activation of genetic alterations is 
most often involved in oncogenesis [77] and is associ-
ated with an increase in the growth and proliferation of 
tumor cells [78, 79]. In melanoma, this is of particular 
interest, as about 50% of the melanomas show mutations 
in BRAF (a member of the RAF family), about 25% show 
mutations in NRAS (a member of the Ras family) [80, 81] 
and around 15% have mutations in NF1 (neurofibromin), 
a tumor suppressor that negatively regulates Ras. Based 
on these most commonly mutated genes, The Cancer 
Genome Atlas (TCGA) Network established a genomic 
classification of melanoma into four subtypes: mutant 

Table 1  FDA-approved drugs for the treatment of metastatic melanoma

Table with chronological listing of drugs approved by the FDA for the treatment of malignant melanoma

Drug Active ingredient Mechanism FDA approval

Dacarbazine Imidazole carboxamide, alkylating agent Cytostatic; blocks cell division by methylation of DNA com-
ponent

1975

Interferon a-2b Cytokine Adjuvant therapy, immunostimulant 1995

Interleukin -2 (IL-2) Cytokine Adjuvant therapy, immunostimulant 1998

Vemurafenib Small molecule Protein kinase inhibitor targeting mutated BRAF 2011

Ipilimumab Antibody, checkpoint inhibitor Blocks the immune inhibitory receptor CTLA-4 2011

PEG-IFN alpha-2b Cytokine Adjuvant therapy with reduced clearance of agent 2011

Dabrafenib Small molecule Protein kinase inhibitor targeting mutated BRAF 2013

Trametinib Small molecule Protein kinase inhibitor targeting MEK1/2 2013

Dabrafenib + Trametinib Small molecules Protein kinase inhibitor targeting mutant BRAF and MEK1/2, 
respectively

2014

Nivolumab Antibody, checkpoint inhibitor Blocks the immune inhibitory receptor PD-1 2014

Pembrolizumab Antibody, checkpoint inhibitor Blocks the immune inhibitory receptor PD-1 2014

Talimogene laherparepvec Modified herpes simplex virus Induction of cell lysis 2014

Vemurafenib + Cobimetinib Small molecules Protein kinase inhibitor targeting mutant BRAF and MEK1/2, 
respectively

2015

Nivolumab + Ipilimumab Antibodies, checkpoint inhibitors Block the immune inhibitory receptors PD-1 and CTLA-4, 
respectively

2015

Encorafenib + Binimetinib Small molecules Protein kinase inhibitor targeting mutant BRAF and MEK1/2, 
respectively

2018

Atezolimab + Vemu-
rafenib + Cobimetinib

Antibody and small molecules Immune checkpoint inhibitor against PD-L1 and protein 
kinase inhibitors

2020
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BRAF, mutant NRAS, mutant NF1 and triple wildtype 
[82]. About 90% of BRAF mutations in CM involve amino 
acid 600 with an exchange of valine to glutamic acid 
(BRAfV600E), resulting in an enhanced, Ras-independent 
activation of MEK [83] and an increased proliferation of 
the affected cells. With Vemurafenib, a sulfonamide that 
selectively inhibits the BRAFV600E kinase, the first BRAF 
inhibitor for unresectable or metastatic melanoma was 
approved in 2011 [84–86]. Dabrafenib, a second-line 
BRAFV600E-specific kinase inhibitor followed shortly 
afterward [87, 88] (Table 1). Although the treatment ini-
tially showed promising therapeutic effects (even com-
plete remissions), relapses occurred within 8–12 months 
due to (mainly secondary) resistance mechanisms with 
alterations leading to reactivation of the MAPK pathway 
[84, 87, 89]. Furthermore, about 10% of patients did not 
respond to the drug at all due to an intrinsic, primary 
resistance [90]. To counteract this effect, a combination 
of inhibitors targeting BRAF and MEK, the downstream 
kinase of BRAF, was tested. Trametinib, a MEK inhibitor 
licensed in 2013 for monotherapy, was approved in 2014 
for the combined treatment with dabrafenib [91], others 
followed in 2015 (vemurafenib and cobimetinib) [92] and 
in 2018 (encorafenib and binimetinib) [93] (Table 1).

Combination of checkpoint inhibitor and targeted therapy
Interestingly, BRAF inhibitors also seem to have immu-
nomodulatory properties by impacting melanoma anti-
gen presentation [94], tumor-infiltrating T cells [95] 
and cytokines indicative for immune response [96], sug-
gesting that the tumor microenvironment is less immu-
nosuppressive under this treatment regimen. Based on 
this, ICIs have been combined with targeted therapies. 
The combination with atezolimab (anti-PD-1 antibody) 
plus cobimetinib and vemurafenib showed a significant 
improvement compared to targeted therapy alone and 
was approved for the treatment of BRAFV600E-positive 
patients with metastatic melanoma by the FDA in 2020 
(Table  1). Today, it still remains unclear which patients 
benefit most from a triple therapy consisting of BRAF 
plus MEK plus PD-1 inhibition and whether this treat-
ment is superior to a combined PD-1 and CTLA-4 
checkpoint blockade. Significant treatment-related 
side effects also limit the use of combined targeted and 
immunotherapy.

Oncolytic virus therapy
In 2015, the FDA approved a therapy with modified 
herpes simplex virus type I, talimogene laherparepvec 
(T-VEC), for melanoma patients with locally advanced 
disease. T-VEC lacks a virulence gene, an immuno-
genicity gene but contains a gene to express the human 
granulocyte macrophage colony-stimulating factor 

(GM-CSF) [97] (Table 1). T-VEC is injected directly into 
metastatic lesions, where the virus selectively replicates 
in tumor cells, causing them to lyse, while healthy tissue 
remains unaffected. A systemic immune response is also 
induced by tumor cell lysis [97]. The treatment resulted 
in improved durable responses, objective response rates 
and progression-free survival in a randomized phase III 
clinical trial for patients with locally advanced melanoma 
[98, 99], although overall survival was not improved. In 
most cases, only injected lesions responded to therapy. 
Thus, T-VEC has to be considered as a local treatment.

Considering the increasing incidence and aggressive-
ness of melanoma, prevention and early diagnosis are key 
for combating melanoma. Nevertheless, approximately 
10% of patients already have advanced, metastatic mela-
noma at first diagnosis. Furthermore, a large proportion 
of affected patients currently do not benefit from the 
available therapies and it remains challenging to develop 
more effective approaches. Figure  1 provides a sche-
matic overview of presently FDA-approved treatment 
options including targeted therapy, chemotherapy, viro-
therapy and immunotherapy for patients with malignant 
melanoma. Significant progress in nanotechnology has 
already been made with the emerging of new biomedical 
nanoplatforms, particularly in the development of MNPs 
that can be applied for theranostic purposes in mela-
noma. Currently, the NIH database of the U.S. National 
library of Medicine (ClinicalTrials.gov) lists only 10 clini-
cal trials worldwide using NPs for the treatment and/or 
diagnostics of malignant melanoma (Table 2) [100–104]. 
Due to their unique intrinsic physicochemical properties, 
MNPs can be used for imaging and therapy after coat-
ing with dyes, radionuclides, antibodies, drugs, etc.; drug 
release and positioning of the MNPs can be controlled in 
a localized magnetic field; different modes of cell death 
(e.g., ferroptosis) and thermotherapy can be induced in 
an alternating electromagnetic field (Fig. 2). Tailoring of 
extrinsic properties of NPs by introducing biocompatible 
and biodegradable coatings, surface modifications with 
various bioligands, incorporation of various molecules 
with diagnostic and therapeutic properties can increase 
their tumor-targeting (and thus decrease off-target side 
effects) and theranostic potential.

Nanoparticles in melanoma theranostics
Basic principles of nanomaterials
Organic and inorganic nanomaterials can improve diag-
nosis and therapy of melanomas. Liposomes with a high 
biocompatibility can be utilized as drug vehicles for a tar-
geted delivery of anti-tumor agents, while sparing normal 
tissues [105]. Changing the composition, size, shape and 
load of NPs can alter tissue specificity, pharmacokinet-
ics and tumor-homing capacity of NPs [23]. Inorganic 
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Fig. 1  Schematic overview of currently applied therapies for the treatment of malignant melanoma. Abbreviations: T: T cells; APC: 
antigen-presenting cell; CTLA-4: cytotoxic T-lymphocyte-associated protein-4; PD-1: programmed cell death protein 1; PD-L1: PD ligand 1; i: 
inhibitor

Table 2  Clinical trials using nanoparticles with melanoma patients

Completed and recruiting clinical studies currently listed in the NIH database of the U.S. National Library of Medicine(https://​clini​caltr​ials.​gov)

Clinical trial no. Phase Patients Study design Status Purpose Refs

NCT00626405 II Unresectable stage IV melanoma Bevacizumab + Temozolomide vs Beva-
cizumab + paclitaxel albumin-stabilized 
nanoparticle formulation + carboplatin

Completed Treatment [100]

NCT00081042 II Unresectable stage IV melanoma Paclitaxel albumin-stabilized nanoparticle 
formulation; previously chemotherapy vs 
chemotherapy-naive

Completed Treatment [101]

NCT00738361 II Unresectable metastatic uveal melanoma Paclitaxel albumin-stabilized nanoparticle 
formulation; single group

Completed Treatment

NCT00404235 II Unresectable stage IV melanoma Paclitaxel albumin-stabilized nanoparticle 
formulation; chemotherapy-naïve; single 
group

Completed Treatment [100]

NCT02158520 II Unresectable stage IV melanoma Bevacizumab + paclitaxel albumin-stabilized 
nanoparticle formulation vs ipilimumab

Completed Treatment [103]

NCT01300533 I Advanced or metastatic cancer including 
melanoma

BIND-014: targeted docetaxel polymeric 
nanoparticle; single group

Completed Treatment [104]

NCT02668536 I Melanoma and UV ray damaged skin Standard sunscreen vs sunscreen based on 
bioadhesive nanoparticles

Completed Prevention [105]

NCT04899908 II Cancer with brain metastasis including 
melanoma

Stereotactic radiation with vs without AGuIX 
gadolinium-based nanoparticles

Recruiting Treatment

NCT03739931 I Advanced malignancies including mela-
noma

Lipid nanoparticle encapsulating mRNAs 
with vs without durvalumab

Recruiting Treatment

NCT02106598 II Head and neck melanoma Silica nanoparticles with fluorescent cRGDY-
PEG-Cy5.5-C dots for real-time image-
guided intraoperative mapping of nodal 
metastases

Recruiting Diagnostic

https://clinicaltrials.gov
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(e.g., metal- or non-metal-based) nanomaterials harbor 
theranostic potential: On the one hand, they can be used 
as vehicles for drug delivery; on the other hand, they 
improve the monitoring of response of a tumor toward 
a drug by utilizing its imaging properties in MR [43, 44, 
47]. Coating of NPs with biological materials is able to 
improve biocompatibility of metal-based nanomateri-
als in vivo. Functionalization of NPs with tumor-specific 
antibodies, proteins, peptides, enzymes [34], dyes, radio-
nuclides, etc., enhances their efficacy and tumor-specific 
targeting. Due to their conductivity properties, metal-
based nanomaterials are able to induce local hyperther-
mia at the site of the tumor [46] (Table 3).

Magnetic hyperthermia (MH)
Magnetic NPs typically consist of an iron oxide core 
(including magnetite (Fe3O4), hematite (α-Fe2O3) and 

maghemite (γ-Fe2O3 and β-Fe2O3)) coated with bio-
compatible and biodegradable polymers (e.g., dextran, 
polyethylene glycol (PEG), polylactic-co-glycolic acid 
(PLGA), etc.). Due to their magnetic properties, NPs 
can be employed for thermotherapy via an increase in 
the temperature inside the tumor (ranging from 41 to 
46  °C) and an induction of apoptotic signaling cascades 
[106]. Additionally, the rise in temperature alters the 
enzymatic activity and structure of numerous proteins 
and affects the synthesis of the nucleic acids that in turn 
impairs cell differentiation and proliferation [107–110]. A 
further increase in the temperature (above 50 °C), that is 
employed for thermal ablation, results in irreversible cel-
lular damage due to coagulation and necrosis [68, 69].

When exposed to an external alternating mag-
netic field, magnetic particles generate the heat via the 
mechanisms of hysteresis loss and Brownian and Néel 

Fig. 2  Schematic representation of magnetic nanoparticle and its application in melanoma theranostics
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relaxation [111, 112]. Indeed, several preclinical stud-
ies reported the efficacy of the MH in melanoma treat-
ment [113–115]. Thus, highly focalized thermotherapy 
in the B16F10 melanoma model in C57/Bl6 mice inhib-
ited the tumor growth by 70% as compared to a sham-
treated control group [115]. Intriguingly, in another study 
MH resulted in a decrease in transforming growth factor 
(TGF)-β(1) protein expression that also might have an 
impact on the tumor progression [114].

One of the future efforts in the application of MH in 
melanoma treatment could be based on the immunostim-
ulatory effects of hyperthermia. As shown by Duval 
et al., modest magnetic hyperthermia of B16 melanoma 
cells induced the expression of various immunogenic 
genes including heat shock protein (Hsp)70, CXCR3, 
and innate immune activators Toll-like receptor (TLR)3, 
TLR4 [116]. Further in  vivo studies demonstrated that 
localized MH strongly correlated with the expression of 
Hsp70 in the tumor and the influx of activated cytotoxic 
CD8+ T lymphocytes [45, 117]. Presumably, combination 
of MH with other immunotherapeutic approaches might 
have a synergistic therapeutic effect [118, 119]. Hoopes 
et al. reported application of MH (43 °C/60 min) of intra-
tumorally delivered immunoadjuvant plant-based virus-
like nanoparticle VLP (4 × 200  µg) and magnetic NPs 
(2 × 7.5  mg/g tumor) combined with hypofractionated 
radiotherapy in the canine oral melanoma patients. The 
authors demonstrated an increased immune cell infiltra-
tion into the tumor and extended tumor control intervals 
[120].

Further modifications of magnetic NP formulations can 
increase their theranostic properties. Thus, hybrid gold 
ferric oxide NPs enable the magnetic targeting of NPs 

to the tumor site for subsequent photothermal therapy 
[121–123]. Subsequent application of magnetically tar-
geted nano-photothermal therapy based on Fe3O4@Au 
NPs decreased tumor progression in a preclinical mela-
noma model [124]. Furthermore, in the recent report 
by Zhang et  al. it was demonstrated that NPs could be 
used as a platform for the multimodal theranostics in 
melanoma [125]. Thus, MSN(Mn)-ICG/DTIC NPs (that 
incorporated dacarbazine (DTIC), indocyanine green 
(ICG), mesoporous silica NPs (MSN(Mn))) achieved a 
significant anti-tumor chemo-photothermal effect [125].

Magneto‑mechanical manipulation
Therapeutic approaches based on magneto-mechanical 
effect of particles are a growing field in the treatment of 
tumors [126, 127]. Upon application of the external mag-
netic field, internalized NPs align themselves to the plane 
of the rotating magnetic field, creating a strong mechani-
cal force which damages tumor cells and induces apop-
tosis [128]. Oscillation of the NPs under a low-frequency 
magnetic field can result in the mechanical stretching 
of the cytoskeleton and an impairment of the ion chan-
nel activity [129]. Furthermore, after lysosomal targeting 
(via antibodies targeting the lysosomal protein marker 
LAMP1), rotating NPs damage lysosomal membranes 
and thus induce apoptotic cell death [130].

One of the promising approaches for the treatment of 
melanoma could be based on nanosecond pulsed electric 
fields (nsPEF) that have thus far been evaluated in vitro 
and in superficial malignancies, in vivo. Previously, Bar-
det et  al. demonstrated for the first time that a single 
10  ns, high-voltage electric pulse (35–45  kV/cm), col-
lapses the perfusion of the neovasculature and alters the 

Table 3  Magnetic nanoparticles in melanoma theranostics

Nanoparticles Method Mode of action Refs

Intrinsic properties Magnetic core Magnetic hyperthermia Induction of apoptosis [106]

Impaired cell differentiation and pro-
liferation due to protein alteration

[107–110]

Irreversible cell damage [68, 69]

Immunostimulation [45, 116, 117]

Photothermal therapy [121–124]

Magneto-mechanical effects Cell damage, apoptosis induction [128–130]

Damage of neovasculature [131]

Magnetoporation, magnetolysis [132, 133]

Localized magnetic field Drug release [134–138, 141–144]

Nanozyme Induction of ferroptosis [145–150]

Extrinsic properties Coating with attachments Release of chemotherapeutic agents Cytotoxicity, apoptosis [152–158]

Immunoadjuvants Immunostimulation [159, 165]

Tumor-targeting molecules [143, 169]

Labels for imaging Diagnostics [172—175]
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diameter of capillaries and larger vessels in normal tissue 
[131]. Furthermore, weak magnetic fields (40–75  mT) 
applied on tumor cells containing polymer-coated multi-
walled carbon nanotubes induce magnetoporation of 
tumor cell membranes and tumor cell death by magne-
tolysis [132, 133] (Fig. 3).

Although magneto-mechanical approaches demon-
strated a therapeutic potency in vitro, only a few in vivo 
studies were reported with highly heterogenous magnetic 
nanocarriers. Further preclinical studies in clinically 
relevant melanoma models are mandatory to decipher 
the mechanisms underlying the observed therapeutic 
effect (particularly taking into consideration the recent 
advances in mechano-transduction pathways).

Localized magnetic field for drug release
Application of drug-eluting beads triggered by the exter-
nal alternating magnetic field demonstrated promising 
results in various preclinical models [134–138]. Indeed, 
encapsulation of anti-melanoma drugs in triggerable 
magnetic NPs can beneficially modify biodistribution and 
pharmacokinetics of therapeutic agents (thus increasing 
on-site drug concentration and reducing off-target side 
effects) and trigger the release of the chemotherapeutic 
compound by electromagnetic field in the required time 
period [139, 140] (Fig. 3). Additionally, magnetic NPs as 
shown by numerous studies can induce vasodilatation 

that increases blood circulation and thereby enhances 
chemotherapeutic drug delivery. Furthermore, employ-
ment of the magnetoresponsive particles facilitated the 
doxorubicin release and its efficient distribution inside 
the tumor tissue upon application of low-frequency (Lf ) 
electromagnetic-induced magnetophoresis [135] (Fig. 3). 
In another study, a radical initiator (AIPH) loaded into 
porous hollow iron oxide nanoparticles (PHIONs) under 
AMF resulted in production of oxygen-independent alkyl 
radicals with significant therapeutic potency [141]. Col-
loidally stable core–shell cobalt ferrite@barium titanate 
(CFO@BTO) ME NPs were shown to release doxorubicin 
and methotrexate upon application of the magnetic field 
(5 mT) inhibiting the growth of human malignant mela-
noma cells HT144 [142]. In another study, cell-penetrat-
ing peptides (CPP) and tumor necrosis factor (TNF)-α 
(CTNF-α)-anchored exosomes coupled to superpara-
magnetic iron oxide NPs (CTNF-α-exosome-SPIONs) 
showed a membrane-targeting anticancer activity in a 
melanoma model when external magnetic fields were 
applied [143]. In the recently published work of García-
Hevia et al., the authors developed a nanoplatform based 
on magnetic lipid nanocomposite vehicles (mLNVs) 
loaded with doxorubicin that demonstrated a thera-
peutic potency in B16 mouse melanoma models [144]. 
Presumably, a combination of a triggered release of anti-
melanoma drugs with other therapies (e.g., radiotherapy, 

Fig. 3  Schematic overview of the potential use of nanoparticles alone or in combination with approved treatment options in malignant 
melanoma, exemplified for nanoparticles with Fe3O4 core. Abbreviations: CA: contrast agent; Ab: antibody
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immunotherapy, targeted therapy, etc.) could further 
increase the therapeutic potential of the magnetic parti-
cles (Fig. 3).

Enzyme mimetic for melanoma therapy
In 2007, it was demonstrated for the first time that metal 
NPs, particularly magnetite (Fe3O4) particles, possess 
an intrinsic enzyme mimetic activity similar to that of 
peroxidase [145]. This discovery triggered the develop-
ment of a new class of catalytic agents that were termed 
“nanozyme,” thus distinguishing nanomaterials with 
intrinsic enzyme properties from other particles with 
externally immobilized enzymes [146] (Fig.  3). Up to 
date, more than 300 nanomaterials are described with 
enzyme-mimicking activity [147]. Currently, nanozyme 
has demonstrated to mimic activities of enzymes belong-
ing to the oxidoreductase family (i.e., catalase and per-
oxidase) and therefore can also be applied for cancer 
theranostics [145, 148]. The developed nanoparticle-
based sensor platform successfully identified circulating 
tumor cells in melanoma by catalyzing the oxidation of 
TMB (3,3’,5,5’-tetramethylbenzidine) into a blue-colored 
product [25]. Subsequent studies reported that magnetite 
NPs catalyzing decomposition of hydrogen peroxide with 
production of reactive oxygen species (ROS) can signifi-
cantly inhibit the growth of subcutaneously implanted 
HeLa tumors in BALB/c mice. Tumor inhibition rates of 
99% could be achieved when NPs were combined with 
H2O2 [149]. Furthermore, as shown by Kim et  al., ultr-
asmall NPs could induce ferroptosis via the enhanced 
generation of ROS in cancer cells (Fig. 3) that was abro-
gated by the application of liproxstatin-1, an inhibitor 
of ferroptosis [150]. In another study, ferumoxytol, an 
FDA-approved iron supplement, induced polarization of 
tumor-associated macrophages into pro-inflammatory 
type 1 macrophages that corresponded with an inhibi-
tion of growth of subcutaneous adenocarcinomas in mice 
[151]. Taking into consideration the immunomodulatory 
and anti-tumor effects of MNPs, further combinations 
with other immunotherapeutic approaches, particularly 
with ICIs, might further improve melanoma theranostics 
(Fig. 3).

Theranostic approaches based on extrinsic properties 
of nanoparticles
Apart from applications of MNPs as tools for direct 
tumor eradication due to their unique intrinsic char-
acteristics, also other types of NPs are employed for a 
targeted melanoma theranostics in combination with 
other treatment modalities (Fig.  3). Their properties 
can be improved by introducing biocompatible and bio-
degradable coatings and by attaching various target-
ing and diagnostic therapeutic agents to their surface. 

It was demonstrated that decoration of particle surfaces 
with anti-melanoma agents could result in an enhanced 
potential in the delivery of chemotherapeutic drugs into 
tumor cells, thereby avoiding side effects. The most stud-
ied nanoparticle system, PEG-PLGA, mediates effective 
anti-melanoma effects [152–154]. In a recent work of 
Zhou et al., it was demonstrated that celastrol-containing 
PEG-PLGA NPs coated with membranes of neutrophils 
displayed significantly enhanced cytotoxicity and apop-
tosis rate in a B16F10 melanoma mouse model [155]. In 
another study, fabricated PLGA containing ursolic acid 
(UA) (pentacyclic triterpenoid extracted from plants) also 
demonstrated a therapeutic efficacy in the management 
of melanoma [156]. To further potentiate the therapeutic 
properties, these particles could be loaded with magnetic 
active substances such as iron. Liposomes loaded with 
dichloro(1,10-phenanthroline) copper (II) (CuPhen), a 
cytotoxic metallodrug, enabled iron oxide nanoparti-
cles (IONPs) to retain their magnetic properties and to 
exert anti-melanoma effects [157]. Indeed, inclusion 
of iron oxide provides the possibility for an MR-guided 
assessment of tumor volume and allows the monitoring 
of therapy responses. MR imaging-guided chemother-
apy by LDH-stabilized ultrasmall iron oxide Fe3O4 NPs 
coated with hyaluronic acid (HA) and loaded with the 
anticancer drug doxorubicin (DOX) demonstrated effi-
ciency in melanoma treatment [158]. In addition to the 
loading with chemotherapeutic agents, magnetic NPs can 
also be conjugated to other molecules (e.g., fluorescent 
dyes, radionuclides, contrast-enhancing agents for MRI, 
siRNA, shRNA, etc.) to improve their theranostic capac-
ity. A promising approach is the delivery of immunoadju-
vants such as agonists for pattern recognition receptors 
by NPs [159]. Activation of TLR has been shown to mod-
ulate immune responses by stimulating recruitment and 
effector functions of T cells [21, 160–164]. In fact, several 
TLR ligands have already been coupled to NPs and used 
in preclinical models for cancer immunotherapy [165].

Accumulation of non-targeted magnetic particles in 
the tumor tissue occurs due to the enhanced permeability 
and retention effect (EPR). However, undesirable off-tar-
get uptake of NPs by the reticuloendothelial system (par-
ticularly in liver, spleen, and lungs) cannot be ruled out 
that can lead to toxic side effects. Inclusion of iron into 
NPs can enable magnetic targeting of NPs to the region 
of interest inside the body. Thus, cell-penetrating pep-
tides (CPP) and TNF-α (CTNF-α)-anchored exosomes 
coupled to superparamagnetic iron oxide NPs (CTNF-α-
exosome-SPIONs) showed an enhanced membrane tar-
geting in a melanoma model when an external magnetic 
field was applied [143].

Among tumor-associated antigens for the develop-
ment of targeted NPs, the 70  kDa heat shock protein 
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Hsp70 is of particular interest as the presentation of this 
protein on the cell surface of tumor cells was shown in 
a large variety of solid tumors, hematological malignan-
cies and melanoma but not on corresponding normal 
cells [166–168]. The tumor-specific cell surface locali-
zation of Hsp70 could be explained by an association of 
the chaperone with globotriaosylceramide Gb3, a tumor 
cell-specific sphingolipid residing in cholesterol-rich 
microdomains [169]. Subsequent in  vitro studies clearly 
demonstrated that Hsp70 predominantly attaches to 
artificial liposomes that contain Gb3 (PC/SM/Chol/Gb3 
at a ratio of 17/45/33/5), indicating that Gb3 is indeed 
an interacting partner of Hsp70 [169]. Apart from Gb3, 
phosphatidylserine (PS), a non-lipid raft component, also 
was shown to interact with Hsp70 in stressed tumor cells 
[170, 171]. Indeed, decoration of the nanoparticle surface 
with anti-Hsp70 bioligands (i.e., monoclonal antibod-
ies, Fab-fragments of antibodies, peptides) significantly 
increased the targeting potential of the applied nano-
materials, thus enhancing their diagnostic properties in 
guided detection of the tumor employing magnetic reso-
nance imaging (MRI), computed tomography (CT), posi-
tron emission tomography (PET) and fluorescent imaging 
[34, 172–175]. Furthermore, the attachment of therapeu-
tic molecules to NPs targeting membrane-bound Hsp70 
on tumor cells has the potential to further enhance anti-
melanoma properties of MNPs. Granzyme B, a serine 
protease, has been shown to interact with membrane-
bound Hsp70 on tumor cells [169]. Upon binding and 
uptake, granzyme B induces apoptosis selectively in 
tumor cells. Therefore, a decoration of MNPs with gran-
zyme B resulted not only in an efficient homing of NPs to 
tumor cells, but also provides therapeutic effects via the 
stimulation of a granzyme B-mediated apoptosis 34.

Conclusions
NPs and MNPs have been widely applied in the ther-
apy of cancer. Due to their biophysical properties, they 
improve the accuracy of diagnosis and increase the effi-
cacy of therapy. Over the last decade, the composition 
as well as the targeting properties (e.g., fluorescent dyes, 
radionuclides, chemotherapeutic molecules, antibodies, 
etc.) of MNPs has been optimized.

Another promising approach involves the combination 
of nanoparticle-based theranostics with other treatment 
modalities (i.e., radio- and/or chemotherapy, immuno-
therapy, targeted therapy, etc.) that can help to achieve 
a synergistic anti-melanoma effect. In conclusion, these 
further developments of nanoparticle composition 
through molecular tuning supported by comprehensive 
analysis could lead to the establishment of novel nano-
platforms for melanoma therapy (Fig. 3).
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