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Abstract 

Background:  Radiomics is a promising tool for identifying imaging-based biomarkers. Radiomics-based models are 
often trained on single-institution datasets; however, multi-centre imaging datasets are preferred for external general‑
izability owing to the influence of inter-institutional scanning differences and acquisition settings. The study aim was 
to determine the value of preselection of robust radiomic features in routine clinical positron emission tomography 
(PET) images to predict clinical outcomes in locally advanced non-small cell lung cancer (NSCLC).

Methods:  A total of 1404 primary tumour radiomic features were extracted from pre-treatment [18F]fluorodeoxyglu‑
cose (FDG)-PET scans of stage IIIA/N2 or IIIB NSCLC patients using a training cohort (n = 79; prospective Swiss multi-
centre randomized phase III trial SAKK 16/00; 16 centres) and an internal validation cohort (n = 31; single centre). 
Robustness studies investigating delineation variation, attenuation correction and motion were performed (intraclass 
correlation coefficient threshold > 0.9). Two 12-/24-month event-free survival (EFS) and overall survival (OS) logistic 
regression models were trained using standardized imaging: (1) with robust features alone and (2) with all available 
features. Models were then validated using fivefold cross-validation, and validation on a separate single-centre data‑
set. Model performance was assessed using area under the receiver operating characteristic curve (AUC).

Results:  Robustness studies identified 179 stable features (13%), with 25% stable features for 3D versus 4D acquisi‑
tion, 31% for attenuation correction and 78% for delineation. Univariable analysis found no significant robust features 
predicting 12-/24-month EFS and 12-month OS (p value > 0.076). Prognostic models without robust preselection 
performed well for 12-month EFS in training (AUC = 0.73) and validation (AUC = 0.74). Patient stratification into two 
risk groups based on 12-month EFS was significant for training (p value = 0.02) and validation cohorts (p value = 0.03).

Conclusions:  A PET-based radiomics model using a standardized, multi-centre dataset to predict EFS in locally 
advanced NSCLC was successfully established and validated with good performance. Prediction models with robust 
feature preselection were unsuccessful, indicating the need for a standardized imaging protocol.
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Background
Imaging is a fundamental tool in medicine and espe-
cially in personalized medicine [1]. Medical imaging in 
oncology is important for diagnosis, staging, treatment 
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and response assessment. However, data extracted from 
radiological imaging have traditionally largely been quali-
tative, limiting the role of imaging in precision medicine. 
Only recently, imaging has been recognized as non-
invasive biomarkers by extracting a large amount of data 
using mathematical image-analysis methodologies [2, 3]. 
Imaging-based biomarkers have therefore found their 
way into prognostic models to predict clinical outcome in 
investigative settings [4].

Radiomics refers to the extraction of a large number of 
quantitative features from medical images [5]. In addition 
to using standard imaging tumour characteristics, such 
as tumour volume, contrast enhancement, or maximum 
standardized uptake value (SUVmax), numerous other 
parameters, which may not be visible to the naked eye, 
may be extracted with radiomics [6, 7]. Radiomic features 
quantitatively describe different tissue characteristics, 
such as grey-value distribution or inter-pixel relation-
ships. They can be categorized into shape, intensity, tex-
ture and filter-based (wavelet) features [5]. Radiomics has 
been applied to a variety of imaging, including computed 
tomography (CT), magnetic resonance imaging (MRI) 
and positron emission tomography (PET), with good 
prognostic power for different entities in a research set-
ting [8–13].

Biomarkers are objective, quantifiable characteristics 
of a biological process [14]. Biomarkers are commonly 
seen as molecular markers, measured in biological sam-
ples, such as blood or tissue. However, medical param-
eters and indexes, such as heart rate or blood oxygen 
saturation, and imaging-based biomarkers can function 
as biomarkers following the same principles. Radiom-
ics, as image-based biomarkers, has emerged as a novel 
approach in precision medicine, as it allows for thorough 
multi-modality image assessment accounting for intra-
tumoural heterogeneity and change over time in a non-
invasive, fast and affordable way by extracting a large 
number of phenotypic tumour characteristics from rou-
tine imaging [3, 15–18]. Radiomic features are currently 
being used in research studies, but before becoming part 
of clinical decision making, further validation and quali-
fication are needed [19]. Addressing variability of PET 
imaging and radiomics methodology has been called for 
by several studies [20, 21].

One of the major strengths of radiomic biomarkers 
is that they can be extracted non-invasively, from rou-
tinely acquired imaging, which makes it cost-effective 
[5]. However, the protocols in these routinely acquired 
images have been mostly optimized for qualitative 
assessment. Therefore, image quality often varies 
among centres or among scanners, as well as over time. 
In PET imaging, several studies showed high instability 

rates of radiomic features depending for example on 
tumour motion, delineation, image reconstruction or 
image resampling [4, 22–27]. These robustness stud-
ies were based on phantom investigations or repeated 
imaging of the same patients. They are however often 
limited to investigation of one single cause of feature 
instability. Moreover, the robustness studies mostly 
focused on the stability of the features without its 
implication on the prognostic power of PET radiomics.

This study aims to investigate the value of preselec-
tion of robust radiomic features in clinical routine PET 
images, which are subject to the aforementioned varia-
tions, to predict clinical outcomes in locally advanced 
non-small cell lung cancer (NSCLC). If indeed prog-
nostic models based on robust PET-based radiomic 
features alone are feasible, image acquisition stand-
ardization may not be necessary, allowing for wider 
implementation of the methodology and higher gen-
eralizability of the results. On the other hand, it might 
be that robust preselection removes features with high 
prognostic values and image standardization is there-
fore the preferred option. Patient-based datasets were 
used to evaluate three sources for radiomic feature 
instability: tumour delineation, attenuation correction 
and tumour motion. Consecutively, throughout stable 
features for tumour delineation, attenuation correction 
and tumour motion were tested for prediction of event-
free survival (EFS) and overall survival (OS) using 
standardized image datasets. For comparability, two 
sets of models using standardized datasets were built, 
with the first set using all available features, independ-
ent of their robustness, and the second one using robust 
features only, to test the hypothesis whether EFS and 
OS prediction using robust features in locally advanced 
NSCLC using a real-life highly heterogenous dataset is 
feasible, or if image standardization is required.

Methods
Workflow
Robust radiomic features (delineation, attenuation cor-
rection, motion) were identified in different subsets of 
clinical [18F]fluorodeoxyglucose (FDG)-PET images 
(Figs.  1 and 2). Two predictive models, first using 
robust features only and second using all available fea-
tures, were used for prediction of EFS and OS at 12, 18 
and 24  months. For redundancy reasons, results were 
reported for 12- and 24-month outcomes only (18-
month results are listed in Additional file  1: Supple-
ment A1). Models were validated using an independent 
single-centre validation cohort. Finally, performance of 
all models was assessed.



Page 3 of 12Oliveira et al. EJNMMI Res           (2021) 11:79 	

Prognostic modelling
Studied cohorts
The training cohort (TC) was derived from a prospec-
tive Swiss multi-centre randomized phase III trial (SAKK 
16/00) on IIIA/N2 NSCLC patients [28]. In this multi-
modality treatment comparison trial, patients underwent 
neoadjuvant chemotherapy or chemoradiotherapy prior 

to surgery (43 vs. 36). Radiomic features of pre-treatment 
PET scans of primary tumours of ≥ 72 voxels (after resiz-
ing to 5.5  mm cubic voxels) were included in the TC 
(n = 79). Small tumours (< 72 voxels) were excluded to 
ensure meaningful wavelet feature calculations. In the 
validation cohort (VC), separate pre-treatment PET scans 
of 31 stage IIIA/N2 or stage IIIB NSCLC patients were 
included. Patients were treated with induction chemo-
therapy or chemoradiotherapy in curative intent (30 vs. 1) 
prior to surgery at the University Hospital Zurich (USZ). 
Initial datasets consisted of 103 and 38 patients, of which 
24 and 7 cases were excluded due to small tumour size in 
the TC and VC, respectively. Median EFS was 13.3 and 
16.3 months, and median OS was 55.6 and 53.6 months, 
for the TC and VC, respectively.

Ethics amendment approvals were received from all 
involved Swiss canton ethics committees and informed 
consent was obtained from all individual participants. 
Ethics amendments requesting inclusion of the current 
study were documented in Additional file  1: Supple-
ment A2. Ethics board approval and written consent were 
obtained for the VC as well (KEK ZH 2018-02405).

Patients were staged according to the 6th edition of 
the TNM classification as defined in the SAKK 16/00 
trial. The two outcomes of interest were EFS and OS. For 
the TC, clinical outcomes were defined according to the 
SAKK 16/00 trial, with EFS being time from randomi-
zation to relapse, progression, second tumour, or death, 
whichever occurred first, and OS being defined by death 
[28]. The same definitions were applied for the VC with 
the date of diagnosis being used instead of the date of 
randomization.

Imaging, delineation and radiomics
The analysis was performed based on pre-treatment [18F]
FDG-PET/CT imaging. The TC imaging dataset con-
sisted of imaging from different centres (n = 16). The VC 
dataset included 31 pre-treatment PET scans. The imag-
ing datasets were standardized for tumour delineation, 
attenuation correction and tumour motion. Additional 
file 1: Supplement A3 lists technical details on the used 
PET scanners.

Primary tumours were contoured based on CT and 
PET images manually by a medical student and radia-
tion oncology trainee using MIM VISTA (Version 6.7.9., 
MIM Software Inc., Cleveland, USA). The contours were 
checked for consistency by a senior radiation oncolo-
gist. Initial registration of the PET and CT scans was 
optimized manually. Contouring was based on the PET 
signal and CT findings. Images were resized to cubic vox-
els (5.5 mm) with linear interpolation. A fixed bin size of 
0.25 SUV was used for texture calculation. A Hounsfield 

Fig. 1  Workflow. Robust radiomic features (delineation, attenuation 
correction, 3D vs. 4D acquisition) were identified. Two prognostic 
models, using robust features only and using all available features, 
respectively, were constructed for 12- and 24-month event-free 
survival (EFS) and overall survival (OS) based on a standardized 
multi-centre imaging dataset. Model performance was validated 
using a separate internal validation cohort
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unit (HU) range of − 300 to 200 was used to exclude bone 
and lung tissue from the analysis based on CT intensities 
and PET/CT registration.

Robustness studies
Three potential sources of radiomic feature instabil-
ity (tumour motion, attenuation correction and tumour 
delineation) were studied individually while two factors 
were kept constant in each dataset used for robustness 
studies. Each dataset consisted of 9–10 separate, sin-
gle-centre IIIA/N2 or IIIB NSCLC patients. First, three 
delineation methods were investigated: manual deline-
ation and semi-automated delineation (threshold based 
and gradient based). Contours were created in the MIM 
VISTA software (Version 6.7.9., MIM Software Inc., 
Cleveland, USA). Primary lesions were manually deline-
ated using fused PET/CT images. For semi-automated 
segmentation, threshold and gradient tools in MIM 
VISTA were used. The threshold was adapted for indi-
vidual patients and ranged from 27 to 41% of SUVmax 
[29]. Second, motion effects were evaluated using free-
breathing 3D data acquisition and gated 4D phase acqui-
sition. In the gated acquisition, the quiescent phase of the 
respiratory cycle was chosen for comparison as it was 
considered the most stable phase [4]. Third, attenuation 
correction was evaluated by comparing PET radiomic 
features from PET/CT and PET/MR scans of the same 
patient according to Vuong et  al. [29]. The summary of 
imaging, reconstruction and delineation protocols for the 
three datasets is presented in Table 1.

Radiomics calculation
Radiomics calculation was performed with an in-house 
developed radiomics software Z-rad implemented in 
Python programming language (Version 2.7.10). Resa-
mpling of the images to 5.5  mm cubic voxels was per-
formed using linear interpolation. A fixed bin size of 
0.25 standardized uptake value (SUV) was chosen. In 
total, 1404 radiomic features were calculated, i.e. shape 
(n = 18), intensity (n = 17), texture (n = 137) and wavelets 
(n = 1232) (for further details see https://​medic​al-​physi​
cs-​usz.​github.​io/). Shape, intensity and texture feature 
definition were standardized to the image biomarker 
standardization initiative (IBSI) [18]. To compare the 
radiomic features within a certain robustness dataset, 
the intraclass correlation coefficient (ICC) was calculated 
[30]. Type of ICC used for each individual robustness 
study is listed in Table 1. An ICC larger than 0.9 was con-
sidered stable.

Statistical analysis
PET radiomics prognostic models were trained to predict 
EFS and OS at 12, 18 and 24  months as defined by the 
SAKK 16/00 trial protocol [28]. Models were trained sep-
arately using all 1404 features and robust features alone, 
referred to as standard and robust models, respectively. 
Principal component analysis (PCA) was performed to 
group correlated features. The Horn method [31] was 
used to select the number of retained components. Fea-
tures were grouped based on their correlations to the 
principal component group. As a group surrogate, the 

Fig. 2  Robustness studies. The influence of delineation variability or image was investigated using either a pair of scans for each patient as it is the 
case for the PET/CT/PET/MR and motion comparison, or different methods of defining the regions of interest (ROI), as applied for the delineation 
study. Radiomics calculation was performed on each individual ROI. Robust features were determined using the intraclass correlation coefficient 
(ICC)

https://medical-physics-usz.github.io/
https://medical-physics-usz.github.io/
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feature with the largest area under receiver operating 
characteristics curve (AUC) in the univariable analysis 
was selected. Only features with a p value < 0.05 were 
considered. Final feature selection was performed in the 
multivariable logistic regression with backward selection 
of variables based on Akaike information criterion (AIC). 
Performance of the models was tested in fivefold cross-
validation using the TC.

Per clinical endpoint (EFS, OS) and feature set (stand-
ard, robust), models performing best in the TC, defined 
as best trade-off between the largest average AUC and 
the smallest range of AUCs in the cross-validation 
folds, were validated in the independent VC. To further 
investigate effects of different robustness factors on the 
prognostic value PET radiomics, a set of features with 
AUC > 0.6 in both training and validation cohorts was 
selected (12-month EFS and 12-month OS). Within this 
set, the percentage of features robust against each of the 
3 factors (tumour motion, attenuation and delineation) 
was reported separately. Model building, validation and 
comparison were performed using R (Version 3.5.3), with 
packages base, survival [32], survcomp [33], boot [34], 
pROC [35] and glmnet [36].

Results
Robustness studies
Robustness results are shown in Fig.  3. The majority of 
features (78%) were stable with regard to delineation dif-
ferences. Attenuation correction method and motion had 
a stronger influence on feature stability. Thirty-one per 
cent of the features were not affected by attenuation cor-
rection, and 25% were stable regardless of motion. Alto-
gether, only 13% of the features were robust in respect 
to all three studied factors. Shape features showed poor 
reproducibility in the delineation dataset, but they were 
robust against motion and attenuation correction. On 
the other hand, wavelet features were highly dependent 
on motion and attenuation correction, but they showed 
high stability in the delineation dataset. The overlap of 
the three studies is visualized with Venn diagrams (Addi-
tional file  1: Supplement A4). Overall, the overlap of 
robust features was small among all feature types, with 
shape and intensity features showing the highest over-
lap (> 35% of robust features stable), followed by texture 
(23.4%) and wavelet features (10.3%).

Prognostic modelling
Robust features
Univariable analysis identified no significant robust fea-
tures for EFS at 12 and 24 months, and OS at 24 months. 

Table 1  Overview of image acquisition characteristics

PET image dataset acquisition characteristics including reconstruction and delineation protocols for the three datasets are listed

Robustness study Delineation (3 
methods)

Attenuation correction Motion

CT based MR based Average Gating

Number of patients 9 9 10

Scanner manufacturer GE Healthcare, Wauke‑
sha

GE Healthcare, Waukesha GE Healthcare, Wauke‑
sha

GE Healthcare, Waukesha

Scanner model Discovery 690 Discovery 690 SIGNA PET/MR SIGNA PET/MR SIGNA PET/MR

Reconstruction method VPFXS VPFXS VPFXS VPFXS VPFXS

Attenuation correction MR based: LAVA-flex 
pulse sequence

CT based MR based: 
LAVA-Flex pulse 
sequence

MR based: LAVA-Flex pulse sequence

Time delay between 
FDG injection and PET 
scan start (min)

71.5–92.5 71.5–92.5 40.3–117.6 57.1–75.9 36.8–82.0

Injected activity (MBq) 181.2–252.3 181.2–252.3 136.2–259.3

Acquisition type 3D 3D 3D 4D (phase-gated)

Time per bed position 
(min)

2 2 2 2 2

Resolution (mm) 2.73 × 2.73 × 3.27 2.73 × 2.73 × 3.27 2.34 × 2.34 × 2.78 2.34 × 2.34 × 2.78 2.34 × 2.34 × 2.78

Delineation Gradient-based thresh‑
old-based manual

Gradient based Gradient based Gradient based Gradient based

Intraclass correlation 
coefficient (ICC)

ICC(1,1) ICC(3,1) ICC(3,2)
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Fig. 3  Robust radiomic features. Percentage of stable features for each of the robustness studies, i.e. the interobserver delineation variability, PET/
CT/PET/MR, and respiratory motion are depicted. For each robustness study, the percentage of stable features is shown for the four feature types: 
shape, intensity, texture and wavelet. The feature type with the highest stability differed between the studies, with the lowest stability in the 
delineation study being shape, and wavelet in the PET/CT / PET/MR and motion studies

Table 2  Results of the multivariable analysis

Results multivariable analysis for EFS and OS. Radiomic features were selected using backward selection. Good classification performances of models without robust 
preselection were observed for the training cohort (AUC = 0.69–0.85) and the validation cohort (AUC = 0.67–0.74). Performance of the robust model was moderate in 
training (AUC = 0.67) and weak in validation (AUC = 0.53)

Outcome Radiomic features 
(feature type)

Robustness 
delineation 
(ICC)

Robustness 
attenuation 
correction (ICC)

Robustness 
motion 
(ICC)

AUC training (range) AUC validation (95% CI)

12-month EFS LHL coefficient of varia‑
tion (wavelet)

0.79 0.81 0.00 0.73 (0.65–0.81) 0.74 (0.55–0.93)

LHH neighbouring 
grey-level dependence 
matrix high dependence 
high grey-level emphasis 
(wavelet)

0.91 0.35 0.92

HLH skewness (wavelet) 0.58 0.37 0.43

24-month EFS HLH mean (wavelet) 0.49 0.17 0 0.74 (0.58–0.94)

LHH neighbouring 
grey-level dependence 
matrix high dependence 
high grey-level emphasis 
(wavelet)

0.91 0.35 0.92

12-month OS LLH skewness (wavelet) 0.74 0.06 0.47 0.85 (0.6–1) 0.67 (0.43–0.91)

HLL kurtosis (wavelet) 0.93 0.93 0.75

HHL skewness (wavelet) 0.85 0.00 0.49

LLH grey-level run length 
matrix short run high 
grey-level emphasis 
(wavelet)

1.00 0.83 0.93

24-month OS HLL skewness (wavelet) 0.82 0.91 0.39 0.69 (0.57–0.8)

12-month OS 
robust prese‑
lection

HHL NGLDM depend‑
ence count entropy 
(wavelet)

0.95 0.98 0.96 0.67 (0.46–0.85) 0.53 (0.26–0.81)
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Only one significant robust feature was identified for OS 
at 12 months: HHL NGLDM dependence count entropy, 
a wavelet feature (Table  2). This 12-month OS model 
using robust features only was tested in the validation 
cohort, but did not perform well (AUC = 0.53, 95% con-
fidence interval (95% CI) 0.26–0.81).

The different impact of the robustness factors on 
the prognostic value of PET radiomics was observed. 
For 12-month EFS, 9 features showed AUC > 0.6 in 
both training and validation, but only 22% were stable 
against motion and delineation, and 0% were stable 
against attenuation. Similarly, for 12-month OS, 116 
prognostic features were identified, from which 68% 
were stable against delineation and 19% were stable 
against attenuation and motion.

All features
Prognostic models using features irrespective of 
their robustness were identified for EFS and OS at all 
timepoints (Table  2). The final multivariable mod-
els consisted of 3 and 2 radiomic features for 12- and 
24-month EFS, respectively. For 12- and 24-month OS, 
4 and 1 significant radiomic features were identified, 
respectively.

The best trade-off between the largest average 
AUC and smallest AUC range in cross-validation was 
observed for 12-month EFS (average AUC = 0.73) 
and 12-month OS models (average AUC = 0.85). Only 
the 12-month EFS model was successfully validated, 
resulting in AUC = 0.74 with a 95% CI of 0.55–0.93 
(Table 2 and Fig. 4).

The probabilities from the 12-month EFS model 
were used to create Kaplan–Meier curves, based on 
the median in the TC (Fig. 5). The split was significant, 
both in the TC (g-rho test, p value = 0.03) and VC (p 
value = 0.02). The low-risk group had significantly 
longer median EFS, 8 versus 25 months in the TC and 
11 versus 29 months in the VC.

Discussion
Event-free survival prediction of locally advanced 
NSCLC based on radiomics models was successfully 
performed using multi-centre clinical routine FDG-PET 
datasets and validated using an independent internal 
VC. The 12-month EFS model using LHL coefficient of 
variation (wavelet feature), LHH neighbouring grey-level 
dependence matrix high dependence high grey-level 
emphasis (wavelet feature) and HLH skewness (wave-
let feature) resulted in the highest AUC in validation 
(AUC = 0.74). Increased LHL coefficient of variation as 
well as decreased LHH neighbouring grey-level depend-
ence matrix high dependence high grey-level emphasis 
and HLH skewness were associated with no events at 
12  months, suggesting that more heterogeneous FDG 
uptake pattern is associated with worse prognosis, which 
has been observed in other studies [37, 38]. Except for 
12-month OS, models using preselected robust fea-
tures only, could not be built using our feature selection 
scheme. The 12-month OS model with robust feature 
preselection yielded poor performance (AUC = 0.53). 
This indicates that robust feature preselection excluded a 
prohibitive large number of important radiomic features 
from the prognostic models. It can therefore be extrap-
olated that a clean, standardized dataset with similar 

Fig. 4  ROC curves. Receiver operating characteristic (ROC) curves with 95%-CI for a 12-month EFS, b 12-month OS and c robust 12-month OS for 
training (dark grey, solid lines) and validation cohorts (light grey, interrupted lines) are shown. Only the 12-month EFS model trained on the entire 
feature set without robust preselection was successful in the validation cohort
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imaging quality, especially in terms of attenuation correc-
tion and motion compensation, is required for generaliz-
able and transferable EFS and OS prediction allowing for 
all available features to be potentially included.

While a majority of radiomics studies in locally 
advanced NSCLC assessed the prognostic value of CT-
based features, our study is adding to the emerging body 
of the literature on PET-based models [4, 16, 22, 23, 37–
44]. Although it is challenging to systematically compare 
NSCLC PET-based radiomics studies at this time due 
to different cohorts in terms of stage and treatment, as 
well a different radiomic, biological and clinical features 
tested, varied statistical methodology employed and com-
mon scarcity of model validation, some studies indicate a 
link between higher heterogeneity and worse prognosis 
[37, 38]. Interpretation of radiomic features as biomark-
ers may be challenging for clinicians, given their large 
number and not yet well-understood association with 
tumour characteristics and biological processes. Imag-
ing variations not only affect the robustness of features 
but may also influence the association between imaging 
features and the underlying tumour activity distribution. 
In a phantom study, the association between PET radi-
omic features in the lung and underlying intratumoural 
heterogeneity was shown to be strongly influenced by 
image acquisition and PET imaging reconstruction [45]. 
While these results need additional validation for wavelet 
features, they point to an inherent problem in radiom-
ics. In addition to modelling strategies, where our results 

indicate improved modelling performance with stand-
ardized imaging, feature association with tumour activity 
distribution can be maintained across all patients when 
using standardized imaging settings. On the other hand, 
simpler imaging-based biomarkers have already found 
their way into clinical practice, such as the SUVmax [4]. 
However, conventional PET-parameters, such as SUVmax, 
SUVpeak or SUVmean were not selected into our final mod-
els, as they showed lower prognostic value than more 
complex radiomic features. While this is in agreement 
with previous publications, other studies have shown 
some prognostic value of SUV descriptors [37, 38, 42, 43, 
46]. In our study, a comprehensive number of radiomic 
features (n = 1404) were tested for their predictive value, 
including shape, texture, intensity and wavelet features. 
This is in contrast to other studies, where a more selec-
tive number of features was assessed [16, 38–40, 42–44]. 
This comprehensive approach allowed to identify the 
prognostic value of wavelet features, which is different 
from other studies, where mostly textural features were 
included in predictive models. The majority of PET-
based outcome prediction studies in NSCLC used single-
institution imaging, thereby minimizing heterogeneity 
within datasets. Ohri et  al. tested 43 textural features, 
metabolic tumour volume (MTV) and SUVmax, using a 
multi-centre trial dataset, and identified one texture fea-
ture, SumMean, an indicator of homogeneity, as prog-
nostic for OS among patients with large primary tumours 
[40]. The authors hypothesize that the strong association 

181881

Follow−up Time [months]
0 5 10 15 20 25 30

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 33 32 27 23 19

39 27 15 12 12 11 10

p value = 0.03 p value = 0.02

a) b)
Low risk
High risk

Low risk
High risk

Follow−up Time [months]
0 5 10 15 20 25 30

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

16 14 14 10 9 8 6

15 14 8 6 4 4 4

Fig. 5  Patient stratification based on 12-month EFS. Patient stratification into high risk (light grey, interrupted lines, 95%-CI in light grey) and low risk 
(dark grey, solid lines, 95%-CI in dark grey) was significant for 12-month EFS: a training cohort, p value = 0.03 and b validation cohort, p value = 0.02



Page 9 of 12Oliveira et al. EJNMMI Res           (2021) 11:79 	

may indicate feature robustness in their multi-institu-
tional dataset, thereby increasing generalizability [40]. A 
second multi-centre study by Arshad et  al. claimed that 
slice thickness and matrix size did not significantly affect 
the predictive feature vector discovered (FVX), conclud-
ing that robustness of FVX permits this variable to be 
applied in multi-institutional studies [42]. In our study, 
standardized multi-centre PET imaging was used to allow 
for generalizable comparison of prediction models, using 
robust feature preselection and all available features.

After the initial success of radiomic models for pre-
diction of different outcomes, robustness of the fea-
tures started to be frequently discussed in the context of 
multi-centre validation [3, 4]. By its design, PET imag-
ing characterizes tumour biology by the use of different 
radiopharmaceuticals, which makes it a perfect modality 
for prognosis assessment. However, an inherent complex 
nature of image acquisition (processes linked to radi-
otracer uptake, signal acquisition, image reconstruction 
and postprocessing) makes it a challenging modality to 
analyse with quantitative methods. Several initiatives 
exist worldwide to improve the comparability between 
images acquired in different institutions [47–51]. Rapid 
development of detector technology and reconstruction 
methods makes collection of large and homogenous data-
sets difficult. Recently, in the context of quantitative tex-
ture analysis, specialized PET radiomics phantoms have 
been investigated to depict heterogeneity of PET tracer 
uptake [4]. While phantoms may facilitate the analysis of 
a larger number of confounding factors in a single study, 
to date, most radiomics robustness studies have focused 
on a single factor only.

The secondary investigation focus of our study was the 
robustness of radiomic features in presence of multiple 
confounding factors (delineation variability, attenuation 
correction and tumour motion). Only 13% of the features 
were robust against all three studied factors. In the indi-
vidual studies, a higher percentage of stable features was 
observed for delineation variability (78%) than for attenu-
ation correction (31%) and motion difference (25%). This 
translated into a larger number of stable and prognos-
tic features (AUC > 0.6) in the presence of interobserver 
delineation variability than different attenuation correc-
tion and motion compensation. However, the types of 
stable features differed considerably between robustness 
studies. For delineation variability, shape features were 
found to be the least stable ones, which is expected since 
shape is directly affected by different delineations. On the 
other hand, wavelet and texture features, which are less 
dependent on boundary definition, displayed a higher 
number of robust features. In the case of attenuation cor-
rection and motion studies, findings were the opposite. 
Shape features were less affected by these factors, but the 

number of stable texture and wavelet features was lower. 
Texture and wavelet features constitute a majority of the 
studied features, and thus, the overall percentage of fea-
tures stable against attenuation correction and motion 
was low. Impact of delineation variability and motion on 
robustness of PET radiomic features was also studied by 
other groups and results were comparable to ours. For 
delineation variability, a study by Leijenar et al. reported 
robustness of 91% of the features for NSCLC patients 
[23]. The value is 13% higher than in our study; however, 
they used a less strict criterium of ICC > 0.8 [23]. A study 
conducted by Takeda et al. found 86% (ICC > 0.8) robust 
features for interobserver variability, but only seven 
radiomic features were investigated [39]. The impact of 
motion on feature robustness was studied by Oliver et al. 
finding that the percentage of stable features between 
respiration-gated images and averaged images over all 
phases was 26.2% [22]. This value is very close to the one 
obtained in our study; however, a detailed comparison is 
not possible as stability was not defined using ICC.

Strengths of our study include a prospective multi-
centre training dataset, a large number of tested radi-
omic features, radiomic feature robustness assessment, 
model validation on a separate dataset and stratification 
by disease stage and treatment. This study adds to our 
recent publication on CT-based radiomics to predict OS 
of locally advanced NSCLC and shows that in contrast 
to CT-based radiomics, prognostic PET-based radiom-
ics models require harmonized PET imaging, as robust 
feature preselection excluded a prohibitive large num-
ber of important radiomic features from the prognostic 
models [52]. Generalizability of our models is therefore 
restricted to patients who underwent similar PET imag-
ing. The importance of using a clean imaging dataset was 
further illustrated by a recent phantom study by Ger et al. 
which found that most radiomic feature values showed 
good reliability when PET imaging protocol parameters 
were within clinically used ranges, but that interscan-
ner variability was similar to interpatient variability, 
leading the authors to caution radiomics analyses on 
patients scanned on different PET scanners [53]. While 
our results support the need for harmonized PET imag-
ing and we advocate for standardization of protocols, 
the impact assessment of different PET scanners was 
not the thrust of our study. Often heterogeneity by dif-
ferent PET scanners is unavoidable in a clinical setting. 
Another limitation of our study may be the restricted 
reproducibility of our results, as they depend on an in-
house software. However, our software was benchmarked 
within the Image Biomarker Standardization Initia-
tive (IBSI) [18]. While the TC consisted of prospectively 
acquired data following a strict trial protocol, the VC 
consisted of a retrospective dataset potentially allowing 
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for introduction of patient selection bias. Further, while 
our study stratified for stage and surgical treatment, it did 
not include other clinical or molecular outcome predic-
tors, such a smoking habits or epidermal growth factor 
receptor (EGFR) status, which may influence EFS and 
OS and could hypothetically improve the models’ predic-
tive power. However, inclusion of clinical parameters was 
out of scope of this study, as we aimed to investigate the 
optimal modelling strategy for robust multi-centre PET 
radiomics models. Similarly, only the primary tumour 
was taken into account in our study, as it is commonly 
the case in radiomics studies and in accordance with 
the study objectives. While we were able to categorize 
the patient cohort into low-risk and high-risk groups, 
biological correlation of these groups and individual 
radiomic factors used in the prognostic models remain 
unknown. In addition, sample size is another limitation 
of our study, which is related to availability of data. How-
ever, methodological steps were taken to address poten-
tial related statistical issues such as using PCA to reduce 
dimensionality, excluding correlated features and evalu-
ating model performance in cross-validation using the 
TC as well as testing the models in a completely separate 
VC as recommended by the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) statement [54]. Additional data 
is needed to further validate the study findings. Further, 
although this study investigated more than one robust-
ness factor, the set of factors was still limited. However, 
two factors (motion and attenuation correction) are 
linked to new developments in the field, motion correc-
tion (with the recent advent of data-driven deviceless gat-
ing techniques) and PET/MR hybrid devices, and thus 
make them relevant factors to be studied. A recent study 
showed that randomization of voxel intensities had an 
impact on model prognostication [55]. Since the goal of 
this study was to simulate a real-world environment, this 
aspect remained outside the scope of this work. Another 
limitation is the fact that all the robustness studies were 
conducted on different datasets with a small number of 
patients. This may be solved in the future with introduc-
tion of highly specialized heterogenous PET phantoms. 
Only one setting of radiomics calculation parameters was 
investigated (bin size, voxel size, HU range). The results 
of robustness studies might be influenced by this choice 
but considering the low number of patients in the robust-
ness studies and moderate size of datasets in the prog-
nostic modelling step, it was deemed important to limit 
the number of extracted features.

In conclusion, a PET-based radiomics model using 
multi-centre datasets to predict EFS in locally advanced 
NSCLC was successfully established. However, PET 
acquisition standardization is necessary, as prediction 

models using robust features alone could not be built 
or showed poor performance. Therefore, a standardized 
dataset with similar image acquisition and reconstruction 
is required for EFS prediction based on PET-based radi-
omics models.
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