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Abstract 

Background:  When Alzheimer’s disease (AD) is occurring at an early onset before 65 years old, its clinical course is 
generally more aggressive than in the case of a late onset. We aim at identifying [ 18F]florbetaben PET biomarkers sen-
sitive to differences between early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD). We 
conducted [ 18F]florbetaben PET/CT scans of 43 newly diagnosed AD subjects. We calculated 93 textural parameters 
for each of the 83 Hammers areas. We identified 41 independent principal components for each brain region, and we 
studied their Spearman correlation with the age of AD onset, by taking into account multiple comparison corrections. 
Finally, we calculated the probability that EOAD and LOAD patients have different amyloid-β ( Aβ ) deposition by com-
paring the mean and the variance of the significant principal components obtained in the two groups with a 2-tailed 
Student’s t-test.

Results:  We found that four principal components exhibit a significant correlation at a 95% confidence level with 
the age of onset in the left lateral part of the anterior temporal lobe, the right anterior orbital gyrus of the frontal lobe, 
the right lateral orbital gyrus of the frontal lobe and the left anterior part of the superior temporal gyrus. The data are 
consistent with the hypothesis that EOAD patients have a significantly different [ 18F]florbetaben uptake than LOAD 
patients in those four brain regions.

Conclusions:  Early-onset AD implies a very irregular pattern of Aβ deposition. The authors suggest that the identified 
textural features can be used as quantitative biomarkers for the diagnosis and characterization of EOAD patients.

Keywords:  Early-onset Alzheimer’s disease, Textural analysis, Positron emission tomography

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Alzheimer’s disease (AD) is a neurodegenerative disor-
der characterized by a progressive cognitive decline and 

dementia [1, 2]. The occurrence rate of such a diagnos-
tic scenario is approximately doubling every 5 years after 
the age of 65 years old. Such a state, which represents 
the majority of patients, is called late-onset AD (LOAD). 
However, in the case of an early onset of the AD before 
an age of 65 years old (EOAD), the clinical course is more 
aggressive than in LOAD patients [3–9]. Clinical features 
of AD are characterized by the impairment of cognitive 
functions leading to a progressive loss of the autonomy of 
patients, especially in the daily activities [10]. The correct 
identification of the disease is crucial to distinguish AD 
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from other types of dementia and to use the correct ther-
apeutic approach [11, 12]. In the last decade, the role of 
amyloid β(Aβ )- and tau-mediated pathology in the devel-
opment of the disease has been stressed. Currently, the 
most promising approaches involve, on the one hand, the 
detection of soluble biomarkers in the cerebrospinal fluid 
and, on the other hand, the molecular imaging of glucose 
metabolism, Aβ and tau accumulation in the brain cor-
tex with positron emission tomography (PET). Glucose 
metabolism shows typical alterations in AD, which are 
significantly related to the accumulation of tau and Aβ 
[13, 14]. However, EOAD introduces an additional ele-
ment of complication in the AD landscape. While differ-
ences in cerebral metabolic impairment between EAOD 
and LOAD were observed and also supported by histo-
pathological findings [15, 16], suggesting the existence of 
biological subtypes of AD, the Aβ deposition seems not 
to be correlated with the age of onset of AD [17].

One possibility, which so far has been explored only 
theoretically, is to find heterogeneity patterns of the Aβ 
deposition, which may significantly depend on the age 
of the AD onset. Textural analysis is an emerging tech-
nique for the quantitative study of tracer uptake in differ-
ent regions of the brain. For example, in neuropsychiatric 
disorders, textural differences were found between the 
autism spectrum disorder and control groups in the right 
hippocampus, left choroid-plexus, corpus callosum and 
cerebellar white matter [18]. Another recent study indi-
cated that cerebral morphometric alterations allow dis-
crimination between the patients with attention deficit 
hyperactivity disorder and control subjects [19]. As the 
three-dimensional radiomic features quantify localized 
heterogeneities in brain morphology and functionality, 
they can be associated with neurodegenerative phenom-
ena. By way of example, corpus callosum textures were 
considered as magnetic resonance imaging (MRI)-based 
biomarkers of AD [20]. Recently, it has been found that 
textural features have a distinct ability to classify AD 
versus healthy control (HC), mild cognitive impairment 
(MCI) versus HC, and AD versus MCI with maximum 
average accuracies of 91.5%, 83.1%, and 85.9%, respec-
tively [21]. On this basis, biomarkers have been identified 
in 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG) PET by 
distinguishing AD from MCI in brain regions mainly dis-
tributed in the temporal, occipital and frontal areas [22]. 
However, textural-based analysis of the Aβ deposition 
for the classification of EOAD and LOAD has not been 
reported yet.

It cannot be expected that the difference of the Aβ 
deposition between EOAD and LOAD can be identified 
in the entire cortex. In fact, it was observed that EOAD 
patients exhibit a higher degree of cortical atrophy and 
reduced perfusion and metabolism in parietal and lateral 

temporal cortices with respect to LOAD patients [14, 23, 
24]. Although no evidence regarding the Aβ deposition 
has been found in these regions [17], it has been not con-
sidered until now that the heterogeneity of the accumula-
tion of plaques may present also signs of the structural 
decline of AD brain and may differ between EOAD and 
LOAD patients. As a result, a reliable textural indicator 
of EOAD is currently missing and a texture-based analy-
sis of the difference between EOAD and LOAD patients 
is not reported in the literature.

In this paper, we study 93 textural features defining the 
patterns of the Aβ deposition extracted from [ 18F]flor-
betaben PET in 83 Hammers [25] regions covering the 
entire brain. By analyzing the correlations between the 
principal components extracted from each brain region 
and the age of onset of AD in a sample of 43 patients 
with AD diagnosis, we aim at identifying the brain areas 
that can express significant differences in the Aβ deposi-
tion between EOAD and LOAD subjects. We anticipate 
our essay to be a starting point in the investigation of the 
use of textural parameters extracted in [ 18F]florbetaben 
PET as potential biomarkers for early diagnosis of EOAD 
patients, thus going beyond the traditional concepts of 
quantitative PET for the study of neurodegenerations.

Methods
Patient selection
All subjects gave their informed consent. The study was 
conducted in accordance with the Declaration of Hel-
sinki, and the protocol was approved by the Ethics Com-
mittee of the Policlinic Tor Vergata (Project identification 
code 158/16).

We enrolled 43 newly diagnosed AD patients accord-
ing to the NIA-AA criteria. All AD patients were found 
positive to Aβ deposition. Moreover, 27 control group 
subjects (CG) were recruited among a group of patients 
with subjective cognitive decline. They did not show sub-
sequent progression to mild cognitive impairment at fol-
low-up (average 24 months) and were considered as the 
control group. All the control subjects were found nega-
tive to Aβ deposition. Doubtful cases at the visual exami-
nation were further checked by an experienced nuclear 
medicine physician (A.C.) by means of semi-quantitative 
analysis. We excluded subjects corresponding to the fol-
lowing criteria: 

1.	 Subjects with the isolated deficit and/or unmodi-
fied mini-mental state examination (MMSE) during 
revisits, with a Hachinski scale and radiological evi-
dence of sub-cortical lesions;

2.	 Presence of neurological symptoms as dysfunction of 
the hypothalamus and/or appendices suprasphenoi-
dalis disease;
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3.	 Presence of pyramidal and/or extrapyramidal signs at 
the neurological examination;

4.	 Presence of chronic illnesses: thyroid disease, diabe-
tes, HIV, cancer, or previous brain injury.

We report the basic information of the complete dataset 
in Table 1.

Scanning protocol
We conducted PET/CT scans in the Nuclear Medicine 
Facility of the Policlinic Tor Vergata, Rome, Italy. The Sie-
mens Biograph PET/CT system at Tor Vergata was used 
to assess [ 18F]florbetaben uptake.

All the subjects were injected intravenously with 295–
320 MBq [ 18F]florbetaben and hydrated with 500 ml of 
saline (0.9% sodium chloride). PET/CT scan was started 
approximately 90 min after [ 18F]florbetaben injection. To 
avoid movement artifacts, four stacks of dynamic images 
(4 frames of 300 s each) were acquired in a 3D-mode 
standard technique.

The voxel size of PET image was 2.0× 2.0× 2.0 mm3 . 
PET image reconstruction was performed using the 
three-dimensional ordered-subsets expectation maximi-
zation (OSEM) method with 4 subsets and 14 iterations.

Image processing
We performed the PET image registration and nor-
malization steps by using statistical parametric map-
ping (SPM12). We first converted each individual [ 18F]
florbetaben PET brain DICOM image to Neuroimaging 
Informatics Technology Initiative (NIFTI) data. We then 
normalized the obtained NIFTI images to the standard 
International Consortium for Brain Mapping (ICBM) 
template using the mutual information affine registra-
tion (standard space composed of 91× 109× 91 voxels 
with a resolution of 2× 2× 2 mm3 ) as in Fig. 1a. We res-
liced the Hammers N30R83 Atlas [25, 26] to the standard 
ICBM template using the mutual information affine reg-
istration with a resolution of 2× 2× 2 mm3 as reported 
in Fig.  1b. We identified each of the 83 Hammers areas 
as volume of interests (VOIs) with a point multiplication 
between the masks and the normalized PET images. For 
instance, we report the example of the superior temporal 
gyrus and the parietal gyrus in Fig. 1c, d, respectively.

We represented the Standardized Uptake Value 
(SUV) in each region using 256 gray levels. We 
further considered a rebinning with bin width 
W = 1, 2, 8, 16, 32, 64, 128 . For each VOI and each bin 
width, we calculated 93 textural features by using the 

Table 1  Overview of the subjects included in the study

EOAD LOAD Control (age < 65) Control (age ≥ 65)

[n = 14] [n = 29] [n = 9] [n = 18]

Age (mean ± SD) 58.93± 3.00 70.76± 4.28 60.89± 2.62 72.28± 3.71

Gender (Woman; Man) 10 W; 4 M 16 W; 13 M 7 W; 2 M 13 W; 5 M

MMSE (mean ± SD) 15.77± 6.56 18.82± 5.45 – –

Fig. 1  Registration of PET image and Hammers N30R83 Atlas. First, a the NIFTI PET image is normalized to the standard template (standard space 
composed of 91× 109× 91 voxels with a resolution of 2× 2× 2 mm3 ). Second, b the Hammers N30R83 Atlas is normalized to the standard 
template space. Third, the VOIs are further extracted. As an example, the superior temporal gyrus c and the parietal gyrus d are shown
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software framework pyradiomics (v3.0.1) [27]. The tex-
tural parameters are extracted from six classes of matri-
ces. The gray-level co-occurrence matrix (GLCM) 
quantifies the frequency of co-occurrence of a certain 
gray level within 26-connected neighbors of each pixel 
of the PET image [28, 29]. The gray-level dependence 
matrix (GLDM) quantifies gray-level dependencies in an 
image, and these gray-level dependencies quantify the 
distribution frequency of the 26-connected neighbors 
dependent on the center voxels [30]. To quantify the spa-
tial distribution of adjacent gray levels, the gray-level run 
length matrix (GLRLM) textural features are used to rep-
resent the number of runs of a given length for each gray 
level [29, 31]. To identify structures with a certain tracer 
uptake, the gray-level size zone matrix (GLSZM) is used 
to classify the size of 3D volume with a given gray level 
[29]. Finally, in order to identify proper border features 
in a certain brain region, the neighborhood gray-tone dif-
ference matrix (NGTDM) is used to represent the sum 
of the gray-level differences between each pixel and the 
26-connected neighbors [29, 32]. We report the list of 
studied parameters in Table 2.

Although control subjects were found negative to Aβ 
deposition, the background tracer perfusion is visible 
in the PET images. Therefore, the textural analysis of 
the [ 18F]florbetaben PET of the control group provides 
a measurement of the textural parameters level of the 
background.

Statistical analysis
The first step of the statistical analysis consisted of select-
ing the proper bin width for each textural parameter. To 
this aim, we calculated the correlation of the textural 
parameters and the age of onset in the AD patients group 
for each bin width by using a Spearman correlation sta-
tistical test. We selected the optimal bin width for which 
the Spearman correlation coefficient was maximal. At 
this stage, we remained 7719 parameters describing the 
textural properties of the [ 18F]florbetaben uptake distri-
bution in the brain, namely 93 textural features for each 
of the 83 Hammers regions.

The second step of the statistical analysis consisted of 
applying a features reduction strategy based on the prin-
cipal components analysis (PCA). We identified in each 
brain region r the number Nr

ind of independent principal 
components f ri  accounting for 90% of the total variance 
[33, 34]. We restricted the further analysis to these inde-
pendent principal components f ri  . We studied the cor-
relation between f ri  and the age of AD onset using the 
Spearman correlation statistical method, by selecting 
only those significant principal components f ri  exhibit-
ing a correlation coefficient |r| > 0.5 ( P < 0.05/Nr

ind ). We 
applied a Bonferroni correction taking into account the 

Table 2  Textural parameters used in the analysis
Type ID Name Width

GLDM 1 Dependence entropy 64

2 Dependence non uniformity 64

3 Dependence non uniformity normalized 64

4 Dependence variance 64

5 Gray level non uniformity 64

6 Gray level variance 64

7 High gray level emphasis 32

8 Large dependence emphasis 64

9 Large dependence high gray level emphasis 32

10 Large dependence low gray level emphasis 32

11 Low gray level emphasis 64

12 Small dependence emphasis 1

13 Small dependence high gray level emphasis 64

14 Small dependence low gray level emphasis 64

GLSZM 15 Gray level non uniformity 1

16 Gray level non uniformity normalized 64

17 Gray level variance 64

18 High gray level zone emphasis 64

19 Large area emphasis 1

20 Large area high gray level emphasis 8

21 Large area low gray level emphasis 2

22 Low gray level zone emphasis 64

23 Size zone non uniformity 1

24 Size zone non uniformity normalized 1

25 Small area emphasis 1

26 Small area high gray level emphasis 64

27 Small area low gray level emphasis 8

28 Zone entropy 2

29 Zone percentage 1

30 Zone variance 64

GLCM 31 Autocorrelation 32

32 Cluster prominence 128

33 Cluster shade 128

34 Cluster tendency 64

35 Contrast 128

36 Correlation 64

37 Difference average 64

38 Difference entropy 64

39 Difference variance 128

40 Id 64

41 Idm 64

42 Idmn 64

43 Idn 64

44 Imc1 8

45 Imc2 64

46 Inverse variance 64

47 Joint average 32

48 Joint energy 64
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multiple comparisons between independent statistical 
tests within each brain region [35–38].

The third step of the statistical analysis consisted of 
identifying the age range at which EOAD and LOAD 
exhibit significant differences. To this aim, we considered 
the null hypothesis that EOAD and LOAD do not dif-
fer, where EOAD and LOAD were defined with respect 
to a variable threshold age of onset A . We divided the 
patients into two groups, with the age of onset higher 
and lower than A . Within each group, we calculated the 
average µi and the variance σi of each of the significant 
principal components f ri  . The A was spanned from 55 
to 75 years. For each A and for each selected principal 
component, we calculated the probability that the null 
hypothesis was satisfied with a 2-tailed Student’s t-test 
by comparing the mean µi and the variance σi in the two 
groups. We indicated the P-value obtained with [ 18F]
florbetaben PET imaging for each A as PFBB(A) . We con-
sidered a P-value PFBB(A)sig = 0.05/Nr

ind as expressing a 
95% confidence level on the rejection of the null hypoth-
esis, by including the multiple comparisons correction. 
Finally, we considered the range of threshold age of onset 
A of which the P-value was lower than PFBB(A)sig as the 
range of age of onsets for which EOAD and LOAD are 
significantly different at a 95% confidence level.

Results
Correlation of [ 18F]florbetaben SUV and AD age of onset
The SUV of [ 18F]florbetaben uptake in the different Ham-
mers brain areas of patients with AD diagnosis does not 
exhibit a dependence on the age of onset of the disease. 
As an example, we report the maximal projection [ 18F]
florbetaben PET image of the right lateral orbital gyrus 
of the frontal lobe for an EOAD and a LOAD patient in 
Fig. 2. As we observe in the figure, the average [ 18F]flor-
betaben PET uptake does not significantly differ from 
EOAD and LOAD patients. To support this qualitative 
statement, we studied the dependence of the average [ 18
F]florbetaben PET uptake versus AD age of onset for the 
entire cohort of patients. We report the example of the 
left lateral part of the anterior temporal lobe, the right 
anterior orbital gyrus of the frontal lobe, the right lat-
eral orbital gyrus of the frontal lobe and the left anterior 
part of the superior temporal gyrus in Fig. 3. We did not 
find any significant correlation between the average SUV 
and the age of onset of AD. We confirmed the absence 
of the correlation of average [ 18F]florbetaben PET SUV in 
all the Hammers regions. Similarly, the Standard Uptake 
Value Ratio (SUVR) calculated by normalizing the value 
of the SUV to the background estimated in the amygdala 
did not exhibit any correlation with the age of onset.

Table 2  (continued)
Type ID Name Width

49 Joint entropy 64

50 MCC 64

51 Maximum probability 32

52 Sum average 32

53 Sum entropy 64

54 Sum squares 64

NGTDM 55 Busyness 64

56 Coarseness 64

57 Complexity 128

58 Contrast 8

59 Strength 64

GLRLM 60 Gray level non uniformity 64

61 Gray level non unifromity normalized 64

62 Gray level variance 64

63 High gray level run emphasis 32

64 Long run emphasis 64

65 Long run high gray level emphasis 64

66 Long run low gray level emphasis 32

67 Low gray level run emphasis 64

68 Run entropy 64

69 Run length non uniformity 64

70 Run length non uniformity normalized 64

71 Run percentage 64

72 Run variance 64

73 Short run emphasis 64

74 Short run high gray level emphasis 64

75 Short run low gray level emphasis 32

First order 76 10 Percentile 1

77 90 Percentile 1

78 Energy 1

79 Entropy 1

80 Entropy 1

81 Kurtosis 1

82 Mean absolute deviation 1

83 Mean 1

84 Median 1

85 Robust mean absolute deviation 1

86 Root mean squared 1

87 Skewness 1

88 Total energy 1

89 Uniformity 64

90 Variance 1

91 Maximum 1

92 Minimum 1

93 Range 1

The last column reports the optimal bin width used for the estimate of each 
parameter
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Correlation of textural features and AD age of onset
Despite the absence of a direct correlation of average [ 18
F]florbetaben PET uptake and age of onset of AD, a care-
ful analysis of the 83 Hammers regions allows identifying 
heterogeneous structures and aggregates. This observa-
tion was at the basis of a quantitative characterization of 
these structures by means of textural features. We report 
the optimal bin width used for the estimation of the 93 
textural parameters in each of the 83 Hammers regions 
in Table 2.

The textural parameters considered in this study are 
intimately correlated within each brain region, due to 
the fact that they are calculated on the basis of a finite 
set of six textural matrices. We performed a principal 
components analysis of the textural features in each brain 
region. We report the number of independent principal 
components accounting for 90% of the total variance in 
each region in Table 3.

We found that four principal components exhibit 
a strong correlation with the age of onset of AD in the 
temporal lobe (Fig. 4a, b) and in the frontal lobe (Fig. 5a, 
b), respectively. The component f0 in the left lateral part 
of the anterior temporal lobe accounts for 43.7% of the 
total variance and exhibits a significant correlation with 
the age of onset of AD (r = − 0.55, p = 1.3× 10−4 ). The 
background estimated using control subject data does 

not exhibit any significant correlation. Similarly, the com-
ponent f0 in the right anterior orbital gyrus of the frontal 
lobe accounts for 47.2% of the total variance and exhibits 
a significant correlation with the age of onset of AD (r = 
− 0.52, p = 3.7× 10−4 ). The component f0 in the right 
lateral orbital gyrus of the frontal lobe accounts for 50.8% 
of the total variance and exhibits a significant correlation 
with the age of onset of AD (r = − 0.51, r = 4.3× 10−4 ). 
The component f1 in the left anterior part of the supe-
rior temporal gyrus accounts for 21.0% of the total vari-
ance and exhibits a significant correlation with the age of 
onset of AD (r = − 0.49, r = 8.4 × 10−4 ). We report the 
main features contributing to the linear expansion of the 
four principal components in Table 4. They are identified 
as the ones with coefficients 

∣

∣cj
∣

∣ > 0.9×max |ci|.

Difference between EOAD and LOAD
The correlation of the four principal components iden-
tified above and the age of onset of AD can be used 
to clarify the threshold age A , at which the group of 
EOAD and LOAD patients is significantly different. In 
order to provide a graphical representation of this con-
cept, we show the candle plot of the value of the sig-
nificant components for AD and control subjects with 
a threshold age A = 65 years in Fig.  6. We observe 

Fig. 2  Aβ plaques in the right lateral orbital gyrus of the frontal lobe, observed with [ 18F]florbetaben PET. The right lateral orbital gyrus of the frontal 
lobe: maximal projection [ 18F]florbetaben PET images of EOAD (upper row) and LOAD (lower row) patients. The SUV does not exhibit any significant 
difference between the two classes of patients
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that the value of the textural parameters in EOAD 
patients differs of approximately 20% between EOAD, 
LOAD and background uptake estimated from control 
subjects.

For a more quantitative estimation of the level of sig-
nificance, we report in Figs. 4c, d and 5c, d the P-value 
of the Student’s t-test applied to the distribution of the 
four principal components in the left lateral part of 
the anterior temporal lobe, the right anterior orbital 
gyrus of the frontal lobe, the right lateral orbital gyrus 
of the frontal lobe and the left anterior part of the 
superior temporal gyrus corresponding to EOAD and 
LOAD patients defined with an age of onset threshold 
A . Parameter ranges can be identified for those prin-
cipal components, in which a 95% confidence level 

significance is reached, corresponding to the age range 
for which P < 0.05/Nr

ind . In particular, the four identi-
fied principal components exhibit a significant differ-
ence between the EOAD and LOAD groups, when the 
threshold age is set at 65 years.

Discussion
The findings presented above need to be discussed from 
the perspective of both medical physics and clinical sig-
nificance. The key advantage of the textural analysis 
approach used in this paper is the possibility to identify 
a clear signature of EOAD patients. We studied the Aβ 
deposition measured with [ 18F]florbetaben PET in 83 
Hammers brain regions, and despite the absence of a 

Fig. 3  Average SUV in the temporal lobe and the frontal lobe observed with [ 18F]florbetaben PET. The average SUV of [ 18F]florbetaben uptake does 
not exhibit any correlation with the age of onset of AD. A linear regression with 95% confidence bands is shown on the plots for better visualization 
of the correlations
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significant correlation of any first-order statistical charac-
teristics of the SUV distribution and age of onset of AD, 
we found four independent principal components in the 
left lateral part of the anterior temporal lobe, the right 
anterior orbital gyrus of the frontal lobe, the right lateral 
orbital gyrus of the frontal lobe and the left anterior part 
of the superior temporal gyrus exhibiting a significant 
correlation with the age of onset of AD.

The features generating the principal components 
reflect the degree of association between different vox-
els in the same brain region [32]. By way of example, 
the GLDM describes the gray-level dependencies in an 
image. A higher value of the textural features extracted 
from GLDM implies a larger number of areas with dif-
ferent sizes and different values. In other words, a larger 
value of a textural feature extracted from GLDM corre-
sponds to a heterogeneous and irregular spatial distri-
bution, with a series of complex correlation structures 
between the voxels. The textural analysis proposed in this 
paper suggests in particular that the Aβ deposition in the 
left lateral part of the anterior temporal lobe, the right 
anterior orbital gyrus of the frontal lobe, the right lat-
eral orbital gyrus of the frontal lobe and the left anterior 
part of the superior temporal gyrus follows a significantly 
more complex pattern in correspondence to an early age 
of onset of AD.

The use of the textural features for the verification of 
the presence of intrinsic structures and patterns finds 
agreement in other studies [22]. In particular, textural 
features extracted from GLDM were relevant to cognitive 
scale values and correlated with the insurgence of AD 
and MCI, suggesting that 2-[18F]FDG brain PET imag-
ing not only can be used for classification diagnosis but 
also contain information related to the pathological pro-
cess [39–42]. Abnormalities of the pattern of Aβ depo-
sition were also observed in connection to AD. Textural 
features extracted from the GLRLM in the fused [ 18F]
florbetaben PET/MRI images were also used recently to 
understand cognitive and behavioral issues in patients 
with AD [22]. Textural features of MRI images were also 
used for the identification of structural and morphologi-
cal alterations occurring in the hippocampus and in the 
corpus callosum of AD and MCI subjects, as well as of 
patients with autism spectrum and hyperactivity disor-
der [20, 21, 43–45]. A limitation of previous studies, as 
noticed also in [22], is the absence of an age-dependent 
classification. Our study is thus showing that such pre-
classification is not only needed, but also reveals a fun-
damental difference between patients with an early and a 
late diagnosis of AD. The analysis of Aβ deposition data 
represents also a unique point of innovation of this paper 
with respect to previous findings.

Table 3  Brain regions and number of principal components

Region ID N
r

ind

Frontal lobe

Middle frontal gyrus 28, 29 6, 5

Precentral gyrus 50, 51 6, 7

Straight gyrus 52, 53 6, 6

Anterior orbital gyrus 54, 55 7, 6

Inferior frontal gyrus 56, 57 6, 7

Superior frontal gyrus 58, 59 6, 7

Medial orbital gyrus 68, 69 8, 4

Lateral orbital gyrus 70, 71 6, 5

Posterior orbital gyrus 72, 73 6, 6

Subgenual frontal cortex 76, 77 7, 7

Subcallosal area 78, 79 8, 8

Pre-subgenual frontal cortex 80, 81 6, 7

Temporal lobe

Hippocampus 2, 1 8, 7

Amygdala 4, 3 7, 8

Anterior temporal lobe medial part 6, 5 7, 7

Anterior temporal lobe lateral part 8, 7 6, 5

Parahippocampal and ambient gyri 10, 9 7, 8

Superior temporal gyrus posterior part 12, 11 5, 7

Middle and interior temporal gyrus 14, 13 6, 6

Fusiform gyrus 16, 15 6, 8

Posterior temporal lobe 30, 31 5, 7

Superior temporal gyrus anterior part 82, 83 7, 8

Parietal lobe

Parietal gyrus 60, 61 7, 7

Superior parietal gyrus 62, 63 6, 8

Inferolateral remainder of parietal lobe 32, 33 6, 5

Occipital lobe

Lateral remainder of occipital lobe 22, 23 6, 6

Lingua gyrus 64, 65 7, 6

Cuneus 66, 67 8, 8

Central structure

Caudate nucleus 34, 35 8, 8

Nucleus accumbens 36, 37 8, 8

Putamen 38, 39 6, 8

Thalamus 40, 41 7, 7

Pallidum 42, 43 7, 6

Substantia nigra 74, 75 8, 7

Corpus Callosum 44 6

Insula and cingulate gyri

Insula 20, 21 5, 6

Cingulate gyrus anterior part 24, 25 7, 9

Cingulate gyrus posterior part 26, 27 8, 7

Posterior fossa

Cerebellum 18, 17 4, 5

Brainstem 19 5

Ventricles

Lateral ventricle 46, 45 8, 8

Lateral ventricle temporal horn 48, 47 10, 5

Third ventricle 49 9
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Our observation is consistent with most findings 
reported in the literature for the characterization of AD 
patients [19, 46–50]. More interestingly, our findings 
stress the evidence of differences between EOAD and 
LOAD, thus indicating a possible intrinsic pathological 
ground. The statistical methods applied in this study in 
fact justify a difference of the distribution pattern of the 
Aβ deposition in the left lateral part of the anterior tem-
poral lobe, the right anterior orbital gyrus of the frontal 
lobe, the right lateral orbital gyrus of the frontal lobe and 
the left anterior part of the superior temporal gyrus. In 

this paper, we developed a prognostic model, schemati-
cally represented in Fig. 7, which is ready to be externally 
validated on independent datasets and independent clini-
cal trials [51]. However, more gender-differentiated data 
would be needed to understand whether epidemiological 
factors play a role in this analysis. Moreover, larger sta-
tistics may enhance the significance of the brain regions 
that, although exhibiting an age-dependent behavior, do 
not disentangle EOAD and LOAD patients.

In a recently published study, we reported that the 
increased Aβ deposition alone cannot explain the clinical 

Fig. 4  Correlation of the significant principal components and age of onset of AD in the temporal lobe. Principal components exhibiting significant 
correlation with the age of onset of AD 

(

|r| > 0.5; P < 0.05/Nr

ind

)

 . A linear regression with 95% confidence bands is shown on the plots for better 
visualization of the correlations. The features extracted from AD patients in the left lateral part of the anterior temporal lobe (a) and in the left 
anterior part of the superior temporal gyrus (b) exhibit a significant difference with respect to the background estimated from control subjects, as 
confirmed also by the Student’s t-test on the distributions of the two patient categories with respect to a threshold age A (c, d)
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Fig. 5  Correlation of the significant principal components and age of onset of AD in the frontal lobe. Principal components exhibiting significant 
correlation with the age of onset of AD 

(

|r| > 0.5; P < 0.05/Nr

ind

)

 . A linear regression with 95% confidence bands is shown on the plots for better 
visualization of the correlations. The features extracted from AD patients in the right lateral orbital gyrus of the frontal lobe (a) and in the right 
anterior orbital gyrus of the frontal lobe (b) exhibit a significant difference with respect to the background estimated from control subjects, as 
confirmed also by the Student’s t-test on the distributions of the two patient categories with respect to a threshold age A (c, d).

Table 4  Selected principal components and most significant textural features

Principal component Region Textural features

f0 Left lateral part of the anterior temporal lobe (8) 1, 2, 3, 5, 6, 8, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 
49, 53, 54, 57, 58, 60, 61, 63, 64, 69, 70, 71, 79, 92

f0 Right anterior orbital gyrus of the frontal lobe (55) 1, 5, 6, 12, 16, 29, 30, 34, 49, 53, 54, 56, 60, 61, 79, 80, 83, 88, 92

f0 Right lateral orbital gyrus of the frontal lobe (71) 2, 3, 5, 6, 8, 32, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 
53, 54, 60, 61, 62, 64, 68, 69, 70, 71, 79, 83, 92, 93

f1 Left anterior part of the superior temporal gyrus (82) 7, 9, 11, 31, 47, 52, 63, 65, 67, 76, 78,  84, 85, 86, 89, 91
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differences between EOAD and LOAD patients [17]. The 
results presented here are not in contradiction with pre-
vious findings. While in [17] we made the observations 
only based on the SUV, here we extended the analysis to 
the recognition and possible interpretation of patterns. 
Different metabolic patterns between EOAD and LOAD 
were identified in the left parietal lobe and in inferior 
brain regions by using 2-[18F]FDG PET [52, 53], con-
tributing to the hypothesis that the regional vulnerabil-
ity of associative areas of the brain represents a possible 

signature of EOAD. Moreover, extrapyramidal symptoms 
and frontal dysfunction are more common in EOAD than 
in LOAD patients [53], therefore supporting our obser-
vations in the left lateral part of the anterior temporal 
lobe, the right anterior orbital gyrus of the frontal lobe, 
the right lateral orbital gyrus of the frontal lobe and the 
left anterior part of the superior temporal gyrus. The 
role of Aβ in this scenario, however, is still unclear. Our 
findings enhanced the potential association of a highly 

Fig. 6  Candle plot in the temporal lobe and the frontal lobe for LOAD, EOAD, and background estimated from control subjects. Candle plots of the 
distribution of the significant principal components for LOAD, EOAD, and background from control subjects. The age of onset of AD is classified 
according to the threshold age A = 65. The average value of the parameters for EOAD patients exhibits difference with respect to LOAD and 
background estimated from control subjects, in support to the assumption that the identified principal components describe intrinsic early-onset 
features of the spatial distribution of the Aβ deposition in [ 18F]florbetaben PET
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fragmented Aβ distribution with the age of onset of AD. 
This observation allows a large number of possible expla-
nations. For example, as already suggested in [17], the 
increased textural disorder observed in the Aβ deposi-
tion and glucose metabolism may be in fact related to the 
inability to reduce highly toxic soluble Aβ oligomers into 
relatively less toxic insoluble plaques.

Conclusions
We have found that four principal components exhibit a 
significant correlation at a 95% confidence level with the 
age of onset in the left lateral part of the anterior tem-
poral lobe, the right anterior orbital gyrus of the frontal 
lobe, the right lateral orbital gyrus of the frontal lobe 
and the left anterior part of the superior temporal gyrus. 
Data are consistent with the hypothesis that AD patients 
with age of onset at the age younger than 65 years exhibit 
significant difference with respect to patients with later 
onset at 95% confidence level in the spatial patterns of the 
Aβ deposition in the left lateral part of the anterior tem-
poral lobe, the right anterior orbital gyrus of the frontal 
lobe, the right lateral orbital gyrus of the frontal lobe and 
the left anterior part of the superior temporal gyrus.

Our findings support the textural analysis approach to 
the investigation of the AD pathology, intending to define 
novel biomarkers for a faster clinical diagnosis of EOAD. 
The textural parameters identified in this paper are the 
basis of further experiments in order to investigate the 

biological and functional interpretation of the mecha-
nism on the basis of this typical EOAD signature.
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