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Abstract

Background: Attenuation correction (AC) of PET data is usually performed using a second imaging for the
generation of attenuation maps. In certain situations however—when CT- or MR-derived attenuation maps are
corrupted or CT acquisition solely for the purpose of AC shall be avoided—it would be of value to have the
possibility of obtaining attenuation maps only based on PET information. The purpose of this study was to thus
develop, implement, and evaluate a deep learning-based method for whole body [18F]FDG-PET AC which is
independent of other imaging modalities for acquiring the attenuation map.

Methods: The proposed method is investigated on whole body [18F]FDG-PET data using a Generative Adversarial
Networks (GAN) deep learning framework. It is trained to generate pseudo CT images (CTGAN) based on paired
training data of non-attenuation corrected PET data (PETNAC) and corresponding CT data. Generated pseudo CTs are
then used for subsequent PET AC. One hundred data sets of whole body PETNAC and corresponding CT were used
for training. Twenty-five PET/CT examinations were used as test data sets (not included in training). On these test
data sets, AC of PET was performed using the acquired CT as well as CTGAN resulting in the corresponding PET data
sets PETAC and PETGAN. CTGAN and PETGAN were evaluated qualitatively by visual inspection and by visual analysis of
color-coded difference maps. Quantitative analysis was performed by comparison of organ and lesion SUVs
between PETAC and PETGAN.

Results: Qualitative analysis revealed no major SUV deviations on PETGAN for most anatomic regions; visually
detectable deviations were mainly observed along the diaphragm and the lung border. Quantitative analysis
revealed mean percent deviations of SUVs on PETGAN of − 0.8 ± 8.6% over all organs (range [− 30.7%, + 27.1%]).
Mean lesion SUVs showed a mean deviation of 0.9 ± 9.2% (range [− 19.6%, + 29.2%]).

Conclusion: Independent AC of whole body [18F]FDG-PET is feasible using the proposed deep learning approach
yielding satisfactory PET quantification accuracy. Further clinical validation is necessary prior to implementation in
clinical routine applications.
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Background
The introduction of combined PET/CT has not only re-
sulted in increased diagnostic accuracy and simplified
clinical work flows but importantly also led to a signifi-
cant reduction in PET examination times using CT-
based attenuation correction (AC) [1, 2]. In contrast to
standalone PET scanners, which rely on time-consuming
transmission scans for estimation tissue attenuation co-
efficients, rapidly acquired CT data can be used for this
purpose in combined PET/CT [2]. Numerous studies
have established and confirmed the quantitative accuracy
of CT-based PET AC compared to the reference stand-
ard of transmission scan-based PET AC [3–5]. With the
introduction of integrated PET/MR scanners, MR-based
PET AC has been established as a further viable alterna-
tive providing satisfactory PET quantification accuracy
[6]. To this end, a number of methods have been pro-
posed including segmentation-based PET AC [6], atlas-
based PET AC [7], and recently deep learning-based
PET AC [8, 9], in all cases using anatomic MR informa-
tion for estimation of tissue attenuation coefficients.
In certain situations, however, CT- or MR-based PET AC

can be hampered by disturbing factors such as misregistra-
tion between PET and anatomic imaging (e.g., caused by pa-
tient displacement) and modality-specific artifacts including
motion or metal artifacts [10–12]. In addition, specifically
with respect to MR-based PET AC, MR image post process-
ing for the purpose of PET AC may fail or generate second-
ary artifacts [11]. In these situations, artifacts occur on
reconstructed PET images that can lead to inaccurate PET
quantification and may even disturb clinical interpretation of
image data. Furthermore, in certain diagnostic situations or
research settings, it is conceivable that PET examinations are
acquired without the necessity of additional CT imaging, e.g.,
when performing repetitive PET scans for dosimetry or
when examining volunteers or children; in these cases, radi-
ation exposure could be reduced by omitting CT scans.
In these situations—when CT- or MR-based AC is corrupted

by artifacts or additional CT can be avoided—independent PET
AC which does not require any other imaging modality for ac-
quisition of the AC map and is thus only based on PET data
would be a viable alternative. A number of methods have been
proposed in this context. On the reconstruction side, the use of
time-of-flight information has been shown to enable combined
reconstruction and attenuation correction of PET data [13].
Due to the limited resolution and susceptibility for artifacts of
the resulting attenuation maps, however, this approach has
mainly be used for brain data or for improvement of CT- or
MR-based AC rather than independent PET AC. Recently,
deep learning-based estimation of attenuation maps from non-
attenuation corrected PET (PETNAC) data has been proposed
and demonstrated on brain PET data [14–16]. These methods
use paired training data of PETNAC and corresponding CT im-
ages to train a deep learning model to generate pseudo CTs

from PETNAC that are used for subsequent PET AC. For brain
PET data, these methods have been shown to provide satisfac-
tory quantitative results. Independent PET AC on whole body
data, however, is significantly more challenging mainly due to
considerably higher anatomical variability. Furthermore, artifacts
of acquired AC maps occur much more frequently on whole
body data.
The purpose of this study was thus to develop, imple-

ment, and evaluate a method for independent PET AC on
whole body [18F]FDG-PET using a deep learning approach
based on Generative Adversarial Networks (GANs).

Methods
Data
A total number of 125 whole body [18F]FDG-PET/CT
scans acquired in 2018 and 2019 were retrospectively in-
cluded in this study. Patient consent was waived by the
institutional review board due to the retrospective and
anonymized nature of data analysis. The 100 chrono-
logically first PET/CT data sets were used as training
data sets. The most recent 25 data sets with available
PET sinogram raw data were used as test data sets. Pa-
tient information is summarized in Table 1.
All data sets were acquired on a state-of-the-art clin-

ical PET/CT scanner (Biograph mCT, Siemens Healthi-
neers, Knoxville, Tennessee). Patients were positioned in
prone position with arms elevated. In order to minimize
involuntary motion, patients were embedded in a vac-
uum mattress. PET acquisition was performed 60min
after i.v.-injection of a body weight-adapted dose of
317.3 ± 8.6MBq [18F]FDG.
In addition, a CT scan was acquired from the skull base

to mid-thigh level for the purpose of attenuation correc-
tion. CT contrast agent was intravenously administered in
all cases except for patients with contraindications.
All PET data sets were reconstructed using the follow-

ing parameters: matrix size 400 × 400, 21 subsets and 2
iterations using a 2-mm Gaussian filter.

Generation of pseudo CTs for independent AC
For the purpose of subsequent PET AC, a deep learning al-
gorithm based on Generative Adversarial Networks (GANs)
was implemented and trained to generate synthetic pseudo
CT data (CTGAN) from non-attenuation-corrected PET
data (PETNAC). In a second step, the generated synthetic
CTGAN images were used for PET AC (Fig. 1).
The basic architecture of the deep learning GAN

framework was previously described in [14, 17]. It con-
sists of two networks, a Generator network G and a Dis-
criminator network D, trained simultaneously together
in competition with each other. The Generator consists
of four cascaded U-Net architectures trained in an end-
to-end manner [18]. The Generator translates the input
of 2D slices of PETNAC (yNAC) to corresponding 2D
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slices of a synthetic CT image ( x̂CT ) which is progres-
sively refined via the cascaded encoder-decoder pairs of
the U-Net architectures. On the other side, the Discrim-
inator network functions as a binary classifier. It at-
tempts to classify its inputs, the generated CT image (
x̂CT ), and the corresponding ground-truth CT (xCT), as
fake and real images, respectively. Both the Generator
and Discriminator are trained in an adversarial manner
end-to-end with the Generator attempting to improve
the quality of the generated CTs in order to fool the Dis-
criminator into making a wrong classification decision,
whereas the Discriminator attempting to improve its
classification performance. This adversarial training pro-
cedure is represented by the following min-max
optimization task over the adversarial loss function:

min
G

max
D

Ladv ¼ E logD xCT ; yNACð Þ½ �
þ E log 1−D x̂CT ; yNACð Þð Þ½ �

To further enhance the quality of the resultant CT
scans, additional non-adversarial loss functions are used
to guide the Generator network to capture both the high

and low-frequency components of the ground-truth CT
scans. More specifically, the perceptual loss [19] and
style-content losses [20] are used for training. The net-
work was trained on a single Nvidia 1080ti GPU for ap-
proximately 80 h, while the inference time for each input
PETNAC was found to be approximately 100 ms.

PET AC
PET data of the 25 test data sets were reconstructed twice
each using the vendor-provided software: once using the cor-
responding acquired CT and once using the generated
pseudo CT (CTGAN) resulting in two PET data sets per pa-
tient (PETAC and PETGAN, respectively). In order to account
for attenuation from scanner hardware and positioning de-
vices and allow for a valid comparison, the background of
CT was copied to CTGAN prior to PET reconstruction.

Data analysis
Qualitative analysis
CTGAN and PETGAN images of the test set were visually
evaluated and compared to acquired CT and PETAC re-
spectively by a nuclear medicine physician (H.D.) and a

Table 1 Patient characteristics (FUO, fever of unknown origin; HNSCC, head and neck squamous cell cancer; CUP, cancer of
unknown primary site; CRC, colorectal cancer)

Training cohort (n = 100) Test cohort (n = 25)

Age
[years]

62.5 ± 14 64 ± 13.3

Gender Female 40, male 60 Female 12, male 13

Weight
[kg]

75.1 ± 17.6 73.7 ± 16

Height
[m]

1.7 ± 0.14 1.7 ± 0.12

Diagnosis Lung cancer (27), melanoma (22), lymphoma (19),
FUO (8), HNSCC (6), CUP (5), CRC (4), other (9)

Lung cancer (6), lymphoma (4), melanoma (3), CRC (3), CUP (2), esophageal
cancer (2), cervical cancer (2), FUO (1), pancreatic cancer (1), ovarian cancer (1)

Fig. 1 Process of independent whole body PET AC. Paired training data of non-attenuation corrected PET (PETNAC) and corresponding acquired
CT are used to train a deep neural network to generate pseudo CT (CTGAN) from PETNAC. This pseudo CT can then be used for PET attenuation-
correction resulting in an attenuation corrected PET data set (PETAC)

Armanious et al. EJNMMI Research           (2020) 10:53 Page 3 of 9



radiologist (S.G.) in consensus. Visually detectable differ-
ences between CTGAN and acquired CT as well as PET-

GAN and PETAC were recorded. In addition, voxel-wise
difference maps (100∙(PETGAN − PETAC)/PETAC) be-
tween PETGAN and PETAC were visually examined.
The occurrence and localization of areas of patho-

logical focal [18F]FDG uptake related to primary tumors,
metastases of inflammatory foci, was recorded on PET-

GAN and PETAC on the 20 test data sets.

Quantitative analysis
For quantitative evaluation, circular regions of interest (ROIs)
were placed on PET images of the test set in the following
anatomic structures using the Medical Imaging Interaction
Toolkit version 2018.04 (MITK, German Cancer Research
Center, Heidelberg, Germany): the left lung, right lung, me-
diastinal blood pool, liver, spleen, urinary bladder, 8th thor-
acic vertebral body (Th8), and 3rd lumbar vertebral body
(L3). In addition, 50% isocontour volumes of interest (VOIs)
were placed in areas of pathological focal PET uptake. All
ROIs were defined on PETAC and subsequently copied to
PETGAN; 50% isocontours were adjusted after ROI transfer.
Mean Standardized Uptake Values (SUVs) were extracted

from ROIs placed in the respective anatomic regions. Mean
and maximum SUVs were extracted from VOIs in areas of
pathological focal PET uptake. Deviations of SUVs in PET-

GAN compared to PETAC were quantified as difference (PET-

GAN− PETAC), absolute difference (|PETGAN− PETAC|),
percent difference (100∙ PETGAN−PETAC

PETAC
), and absolute percent

difference (100∙ jPETGAN−PETACj
PETAC

).

In addition, in order to quantify differences in CT
numbers between CT and CTGAN, organ ROIs were also
transferred to CT and CTGAN data sets, and mean
Hounsfield units (HU) were extracted per ROI.

Statistical analysis
Numeric data are presented as mean ± standard devi-
ation. SUV deviations of PETGAN compared to PETAC

on the test set are graphically summarized as box plots
showing the mean (circle), median (line), interquartile
range (IQR, box), ± 1.5∙IQR (whiskers), and outliers
(dots). Bland Altman analyses were performed compar-
ing SUVs of areas of pathologic focal [18F]FDG uptake
in PETAC and PETGAN on the test set as well as CT
numbers between CT and CTGAN. Limits of agreement
were calculated as the interval between ± 2 standard
deviation.

Results
Qualitative analysis
In general, CTGAN data showed a similar contrast and
anatomy when visually compared to acquired CT data in

all patients. The following artifacts were, however, de-
tectable in all CTGAN data sets (Fig. 2):
- Blurring and step formation in z-direction on coronal

and sagittal reconstruction of CTGAN due to 2D nature
of image translation from PETNAC to CTGAN. This was
mostly evident along the spine as intervertebral disc
space was not clearly identifiable.
- Irregular depiction of anatomic details such as the

ribs, bowel configuration, and vessel structure.
- Deviating distribution air-filled intestine in CTGAN

compared to acquired CT.
A comparison of CT and CTGAN of the remaining 24

test data sets is given in Supplement 1.
Visual comparison of PETAC and PETGAN revealed con-

ceivable differences of varying degree especially along the
lung borders at the diaphragm, the mediastinum, and the
chest wall as well as in areas of air-filled intestine. In 3/25
data sets, significant differences were observed along the
diaphragm with so-called banana artifacts in PETAC that
were not present in PETGAN (Fig. 3). In 16/25 data sets,
minor differences were observed along the lung borders of
the diaphragm, the mediastinum, and the chest wall with
sharper contours in PETAC compared to PETGAN. In 13/
25 data sets, minor differences in PET intensity distribu-
tion between PETAC and PETGAN were observed in areas
of air-filled intestine.
Visual analysis of relative SUV deviation maps between

PETGAN and PETAC revealed only minor SUV deviations
of ± 5% in most anatomic areas. More pronounced rela-
tive deviations of varying degree were observed in 19/25
patients along the lung borders and in 13/25 patients in
regions of air-filled intestine (Fig. 3) conforming the ob-
servations of visual comparison between PETAC and
PETGAN described above.
In the three data sets with so-called banana artifacts,

relative overestimation of SUV was observed on PETAC

along the diaphragm pointing to different respiratory
states between PET (free breathing) and acquired CT (in
these cases inspiration instead of desired expiration). In
all three cases, these artifacts were not present in PET-
GAN. Furthermore, in these patients, difference maps re-
vealed relative overestimation of SUVs in the abdominal
region on PETGAN compared to PETAC; again, this could
be attributed to different respiratory states between PET
(in expiration) and acquired CT (in inspiration) resulting
in relatively reduced abdominal circumference on ac-
quired CT images and thus underestimation of SUVs on
PETAC.
Forty-one areas of pathologic focal [18F]FDG uptake

were equally detected on PETAC and PETGAN in 15 pa-
tients in the following anatomic regions: the lung (9),
mediastinal lymph nodes (8), bone (7), liver (5), abdom-
inal lymph nodes (3), cervical lymph nodes (3), and
other (6).
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Quantitative analysis
Bland Altman analysis revealed a mean difference (±
standard deviation) in CT numbers between CT and
CTGAN was − 1.5 ± 47.3 HU with limits of agreement
between − 94.2 and 91.2 HU (Fig. 4). No systematic devi-
ation of HU was observed for low or high density
tissues.
The mean deviation and mean percent deviation of

SUVs over all anatomic structures and all data sets
amounted to − 0.01 ± 0.4 and − 0.8 ± 8.6%, respectively.
The highest mean SUV deviation was observed in the
bladder (− 0.1 ± 1.1); the highest mean percent deviation

was observed in the lungs (left lung − 5.6 ± 7.2%; right
lung − 3 ± 11.7%). With respect to single data sets, percent
SUV deviations ranged between − 30.7 (lumbar vertebra)
and 27.1% (right lung). Results are summarized in Fig. 5.
Mean SUVmean/SUVmax deviation and mean percent

SUVmean/SUVmax deviation of areas of pathologic
focal [18F]FDG uptake amounted to 0.15 ± 0.8/0.13 ±
1.15 and 0.9 ± 9.2%/0.5 ± 9.2%, respectively. Devi-
ation and percent deviations of SUVmean/SUVmax in
individual data sets ranged between − 1.2/− 2.2 and
3.1/4.5 and between − 19.6%/− 18.6% and 29.2%/
29.3%, respectively.

Fig. 2 Representative data set showing non-attenuation-corrected [18F]FDG-PET (left), generated pseudo CT (middle), and acquired CT (right) in
axial (top), sagittal (middle), and coronal (bottom) orientation. CTGAN data—while capturing the coarse distribution of CT anatomy—showed
blurring and step formation in z-direction on coronal and sagittal reconstruction as well as irregular depiction of anatomical details

Armanious et al. EJNMMI Research           (2020) 10:53 Page 5 of 9



Bland Altman analysis revealed not systematic deviation
of mean or maximum SUVs of areas of pathologic focal
[18F]FDG uptake between PETAC and PETGAN (Fig. 6).

Discussion
In this study, we implemented and evaluated a method
for independent [18F]FDG-PET attenuation correction
(AC) using a deep learning approach with Generative
Adversarial Networks (GANs). We demonstrated the
feasibility of this approach and observed satisfactory
quantification results of PET SUVs in different anatomic
regions and in pathologic lesions.
The quantitative results of our study are comparable

to previous studies using deep learning methods for
MR-based body PET AC [9, 21]. In contrast to these

Fig. 3 Two example data sets of PET data reconstructed with the generated pseudo CT (PETGAN, left), reconstructed using the acquired CT (PETAC,
middle) and their voxel-wise percent difference map (Δ%-map, right). The top example shows typical results with no visually appreciable
differences between PETGAN and PETAC in most anatomic regions and with more pronounced deviations localized along the lung border (black
arrows) and in areas of air-filled bowel (black circle). The bottom example depicts a so-called banana artifact in PETAC due to acquisition of PET
and CT in different respiratory states resulting in relative overestimation of SUVs along the diaphragm and relative underesitmation of SUVs in the
abdomen (blue arrows). These artifacts were not present on PETGAN

Fig. 4 Bland Altman plot comparing mean Hounsfield units
between CT and CTGAN of all organ ROIs
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studies, we propose direct PET AC from non-
attenuation-corrected PET data. Using the proposed
method, we observed marked deviations of SUVs espe-
cially along the diaphragm and the lung border as well
as in areas of air-filled bowel. Deviation along the lung
and the diaphragm can be explained by different motion
states of varying degree between PET and acquired CT;
it can be assumed that independent PET attenuation
correction is more reliable in these areas as it is solely
based on PET data. Thus, the proposed approach ex-
cludes spatial displacement between PET data and the
generated pseudo CT. Observed SUV deviations in the
area of air-filled bowel segments can be explained by the
difficulty of identifying air on PET data combined with

the anatomical variability of the intestine leading to dis-
placement on acquired CT.
In case gated PET data are acquired resulting in multiple

PET images of different respiratory of cardiac states, PET-
derived pseudo CTs could be computed separately for each
of these states providing spatially aligned attenuation maps.
As an extension of the presented method, such a framework
could also be trained as a 4D model with 3 spatial dimension
and one (gated) temporal dimension.
The PET quantification errors observed using independ-

ent PET AC are in the range of previously reported vari-
ation of SUVs caused by different PET reconstruction
techniques [22] or observed using MR-based PET attenu-
ation correction [6]. Importantly, PET quantification errors

Fig. 5 Deviation (upper left), absolute deviation (upper right), percent deviation (lower left), and absolute percent deviation (lower right) of SUVs
in anatomic structures on PETGAN compared to PETAC. (BL, urinary bladder; BP, blood pool; LI, liver; LL, left lung; RL, right lung; SP, spleen; TV,
thoracic vertebra; LV, lumbar vertebra)

Fig. 6 Bland Altman plots comparing mean (left) and maximum (right) SUVs of PETAC and PETGAN of 41 focal areas of pathologic tracer uptake
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caused by MRI or CT artifacts have been reported as sub-
stantially higher [10, 23].
The presented method is limited to [18F]FDG-PET data as

no other tracers were used in the training data set. An exten-
sion to non-[18F]FDG-data can be performed by retraining
the GAN using respective paired training data sets. The re-
sults using non-[18F]FDG tracers can be expected to be in a
similar range as long as sufficient anatomic information is
present on PET data, which is to be expected for most clin-
ical PET tracers. When highly targeting tracers are used
however, results may potentially deteriorate.
Quantitative results of whole body independent PET

AC may be further improved by using a 3D approach in-
stead of slice-per-slice generation of pseudo CT as per-
formed in this present study. The use of 3D models can
be expected to provide more realistic pseudo-CT images
especially perpendicular to the main imaging plane,
which may result in more accurate estimation of attenu-
ation coefficients. However, 3D approaches come with
the limitation of substantially higher computational cost.
The proposed method can be applied as a back-up method

on clinical PET/CT or PET/MR scanners in order to enable
reliable PET AC also in cases of artifact-corrupted anatomic
MR or CT images. A further potential application is the use
in settings where only PET information is required, and radi-
ation exposure from CT is unnecessary, e.g., in repeated
scans, when examining volunteers or when examining chil-
dren with already available anatomic imaging. To this end
however, the proposed method requires further clinical valid-
ation also with respect to quantitative clinical scores such as
the PERCIST or the Deauville-Score.
Despite the relatively high number of 100 training data sets,

the variability of whole body PET/CT scans is likely not fully
captured by the training data set. The addition of further
cases, especially of abnormal anatomy and rare pathologies,
will be necessary in order to increase model robustness. The
validation of the proposed method in this study had a tech-
nical focus; thus, further clinical evaluation will be necessary.

Conclusion
Independent AC of whole body [18F]FDG-PET is feasible
using the proposed deep learning approach based on
GANs. The proposed method achieved satisfactory PET
quantification accuracy and does only depend on the ac-
quired non-attenuation corrected PET data as input.
Further clinical validation is necessary prior to imple-
mentation in clinical routine applications.
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