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Abstract

Background: Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as
fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and
neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been
shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data
indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS.
However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global
tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the
quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of
ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo
using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in
developing new therapies and stratifying patients to therapies that are affected by tumor ROS.

Methods: We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-
((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based
assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate
as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined
in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard
biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we
performed microPET blocking experiments using nonradioactive KS1 as a blocker.

Results: KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations
between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels)
versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific
activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the
uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating
specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to
generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically
bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution
studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios.
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Conclusion: This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS
in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo.
Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular
diseases affected by ROS.

Keywords: Positron emission tomography (PET), Prostate cancer, Head and neck squamous cancer, Ascorbate,
Biodistribution

Background
Excessive production of reactive oxygen species (ROS)
and/or reactive nitrogen species (RNS) through either
endogenous or exogenous insults results in oxidative
stress [1]. Oxidative stress has been implicated in many
disorders such as cancer and neurodegenerative and car-
diovascular diseases [2–4]. Several recent findings have
demonstrated the role of ROS and induced oxidative
stress in cancer initiation, promotion, and progression
[1, 5, 6]. ROS as second messengers modulate several
transcription factors and signal transduction molecules
such as heat shock-inducing factor and nuclear factors
in cancer [7, 8]. ROS and RNS actively participate in
regulating cell adhesion, redox-mediated amplification of
immune response, and programmed cell death [9].
ROS-mediated oxidative stress induces apoptosis both in
tumor and healthy cells [10]. ROS plays a critical role in
maintaining cellular homeostasis and physiological
redox potential, and their activity is believed to be
concentration-dependent [11, 12]. However, other con-
tradicting evidence points to the protective effect of
ROS on tumors, including evidence that blocking ROS
decreases the efficacy of antitumor drugs ranging from
common chemotherapies to newer targeted agents.
Thus, it is critical to develop translational tools to
monitor real-time ROS to better understand their role
in oncogenesis as well as to monitor global tumor ROS
pre- and post-therapy to inform potential stratification
strategies for personalized therapeutic optimization.
However, measuring cellular concentrations of ROS is
challenging due to their short half-life and high reactivity
profile [13]. Multiple analytical approaches, including
electron spin resonance (ESR), electron paramagnetic res-
onance (EPR), enzymatic probes, chemiluminescence, and
fluorescence, have been used to detect ROS/RNS [14–18].
However, all these techniques have inherent issues, inclu-
ding poor sensitivity, regional specificity, and selectivity
[19–21]. Hence, there is an unmet need for sensitive,
reliable, and quantifiable methods of measuring in
vivo ROS levels for both research and clinical use.
PET is a noninvasive, fully quantitative, and highly
sensitive imaging modality that can detect biomarkers in
vivo [22].

PET imaging uniquely offers quantitative potential at
picomolar concentrations that do not perturb biologic sys-
tems, making it an ideal translational modality to monitor
real-time ROS in cancer patients. The dihydroethidium
(DHE, a red fluorescent dye) family of probes [23] has
been tested as potential PET imaging agents to track ROS
for neurological studies [24–27]. Other groups have
reported on the use of non-DHE-based PET tracers to
track ROS for several biomedical uses [13, 28–31]. Despite
the ongoing imaging research in developing novel ROS
probes, the underlying in vivo mechanisms of ROS alter-
ations in cancer progression, especially with antioxidants
like ascorbate, still remain largely unknown [15, 20, 32,
33]. Therefore, a novel probe that is PET compatible and
binds to ROS with high specificity and ideally with existing
clinical safety records could provide a solid platform to
image ROS alterations in a tumor tissue. Ascorbate (vita-
min C or ascorbic acid) is a water-soluble antioxidant with
a long-standing favorable safety profile [34]. Recently, Car-
roll et al. have demonstrated sodium ion (Na+)-dependent
transport mechanisms of ascorbic acid [35, 36] in mice
brain using [11C]-ascorbic acid and corroborated oxidative
sensitivity of ascorbic acid in vivo [37]. The radiolabeling
methods employed were slightly cumbersome and with
poor reaction yields. Furthermore, the short life (20min)
of the [11C] PET isotope limits its translational scope.
Thus, the development of a clinically relevant PET radio-
tracer that can be used in cancer is yet to be developed.
In this study, we have successfully synthesized

and characterized a novel ascorbate derivative,
(E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzy-
l)oxy)-4-hydroxyfuran-2(5H)-one (KS1), based on the
structure-activity relationship (SAR) of a reported ascorbic
acid derivative [38]. KS1 was screened for in vitro ROS
binding in cancer cell lines and compared with ascorbate
binding. Based on initial in vitro ROS specificity, we
produced 18F-KS1 and evaluated serum stability, in vitro
ROS selectivity, and specificity in head and neck
squamous cell carcinoma (HNSCC) and prostate can-
cer (PCa) cell lines. Furthermore, we investigated the
tumor imaging properties of 18F-KS1 using microPET
imaging and biodistribution studies in mice implanted
with PCa.
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Methods
Synthesis
Gazivoda et al. reported that multiple di-aryl-substituted
L-ascorbic acid analogs exhibited cytotoxicity against
malignant tumor cell lines, including cervical, breast,
pancreatic, prostate, and colon carcinoma [38]. The
most potent among them, Z-2,3-di-O-benzyl-6-chlo-
ro-4,5-didehydro-L-ascorbic acid, was our design lead
for (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)-
benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1) production
scheme. The synthetic scheme (Fig. 1) was derived based
on previous reports with slight modifications [38–44].
Briefly, 51, 61-dihydroxyl groups of L-ascorbic acid (1)
were protected by acetone/acetyl chloride to obtain a ketal
intermediate, 2. The ketal intermediate 2 was then reacted
with 41-bromobenzyl-substituted ethoxy alkanes, followed
by acid deprotection to give 21-benzyloxy, 51, 61-dihy-
droxyl alkyl-substituted ascorbic acid, 3. Dehydration
and selective 31-debenzylation of the isolated product
from the previous step 3 resulted in KS1. The cor-
responding F-18 radiochemistry precursor unit KS-OTs
was prepared using the ethoxy tosyl-substituted alkanes
with intermediate 2, followed by deprotection and
dehydration steps.

In vitro testing of KS1
A panel of SCC-61 and rSCC-61 cell lines derived from
patients with HNSCC, a genetically matched model of
radiation resistance developed by Furdui’s group, was
employed [45–49]. The molecular and cellular proper-
ties of this model have been well characterized using
systems-level analyses and complementary assays.
SCC-61 and rSCC-61 cells show differences in (a) re-
sponse to radiation (SCC61 D0=1.3, rSCC-61 D0=2.0),
(b) response to the EGFR targeted inhibitor erlotinib
(SCC61 IC50 > 50 μM; rSCC-61 IC50 4.5 μM); (c) cellu-
lar phenotype (SCC61 is mesenchymal while rSCC61
is epithelial), and importantly (d) ROS levels (SCC-61 has
higher intracellular ROS than rSCC-61) [45, 47]. MitoSOX
is a mitochondrion-targeted dihydroethidium-based de-
rivative that primarily detects ROS, especially superoxide
anion radical, produced within mitochondria [47, 50]. In

addition to testing KS1 with the MitoSOX assay, we com-
pared our results with no ligand controls and ascorbate as
a reference standard. The two cell lines were treated with
KS1 and ascorbate (10.0 μM) and incubated for an hour.
MitoSOX (1.0 μM) in phenol red-free DMEM/F12 media
was added and incubated for an additional 10min. The
cells were then washed with PBS and imaged in the same
media. Ligand specificity is commonly determined by
pre-treating the cells with high concentrations of blockers.
Superoxide dismutase (SOD), an enzyme that selectively
suppresses accumulation of ROS-superoxide peroxide
anions, was added as a blocker (1.0 mM) 60 min before
the treatment of KS1 [51]. Fluorescence was sub-
sequently measured, and its intensity was quantified in
f.u (fluorescence units).

Radiochemical synthesis of 18F-KS1
With both the precursor tosylates and nonradioactive
F-19 reference standard in hand, the radiochemical syn-
thesis of 18F-KS1 was optimized on the TRASIS AIO
radiochemistry module (Fig. 3) [52], following the typical
18F-F¯-based nucleophilic substitution reaction from the
corresponding ascorbate tosylate [53]. Briefly, 18F-F¯ pro-
duced from our GE PETtrace cyclotron was azeotropically
dried and reacted with corresponding tosylate precursor
in DMF at 110 °C for 15min. Semi-preparative HPLC sep-
aration and solid phase C18 sepPak purification and elu-
tion with 10% absolute ethanol in saline resulted in
18F-KS1 [53–55]. The isolated radioactive product was
used for quality control analyses, in vitro cell uptake, and
animal studies. The chemical and radiochemical purity
and specific activity of the collected radioactive aliquots
were determined by HPLC injection on a QC C18 reverse
phase column. All radiochemical yields were determined
by HPLC collection of 18F-KS1, unless stated otherwise.
The ex vivo serum stability of 18F-KS1 was analyzed in hu-
man serum samples, following previously published
methods [56–58]. Briefly, radiotracer was added to the hu-
man serum sample and incubated at 37 °C. Radioactive
serum mixture was injected into the QC-HPLC sys-
tem at 5 min, 30 min, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h
post-radiotracer synthesis.

Fig. 1 Synthetic scheme for production of KS1
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Cell uptake studies
ROS efficacy of 18F-KS1 was evaluated in HNSCC
SCC-61 and rSCC-61cells following published protocols
by our group [56, 59, 60]. Fresh solutions of KS1 and
SOD (10 μM) were added as ROS blockers to the seeded
SCC-61 cells 60 min before radiotracer addition (n = 6
per blocker). Additionally, SCC-61 cells were blocked
with ascorbate (10 μM) for 60 min before radiotracer
addition (n = 3). All cells were then treated with 18F-KS1
(0.074 GBq/well) and incubated for 60 min (n = 6) at 37 °
C. All cells (both with and without blockers) were
washed three times and lysed with lysate buffer solution
(1.0M NaOH solution). Lysate samples from each well
were collected for gamma counting. Similarly, in another
experiment, human PCa-PC3 cells were cultured under
normoxic (~ 21% O2) or hypoxic (1% O2) conditions for
48 h. Thereafter, similar to HNSCC cells (detailed
above), all assay steps including blocker treatment,
radiotracer addition, incubations, washings, and lysis
were carried out under normoxic or hypoxic conditions.
All hypoxia experiments were performed in a hypoxia
chamber (Biospherix X3 Xvivo system). Plates without
radioactivity were used as controls. Additional aliquots
were taken from each well to measure protein concen-
tration. The counts per minute values of each well were
normalized to the amount of radioactivity added to each
well and were expressed as percent uptake relative to
the control condition. The data were expressed as %ID/
mg of protein present in each well.

In vivo evaluations of 18F-KS1
Athymic nude mice (Taconic Farms) were housed in a
pathogen-free facility of the Animal Research Program
at Wake Forest School of Medicine under a 12:12-h
light/dark cycle and fed ad libitum. All animal experi-
ments were conducted under IACUC approved proto-
cols in compliance with the guidelines for the care and
use of research animals established by Wake Forest
Medical School Animal Studies Committee. PC3 cells
(1 × 105 cells suspended in 10 μL Matrigel) were im-
planted in the left flank of nude mice (25–30 g) as de-
scribed previously [61–63]. Mice bearing subcutaneous
human PCa-PC3 tumors [61–63] were separated into two
groups for baseline and blockade studies (n = 3/group)
and underwent microPET imaging under ~ 1% isoflurane-
oxygen anesthesia. Mice were intravenously injected with
~ 3.7 ± 0.30 GBq of 18F-KS1 and 45min later were
scanned for 20min using a TriFoil microPET scanner.
KS1 (15mg/kg) was used as a blocking agent and was
injected 45min before the radiotracer injection. Standard
biodistribution studies were conducted in mice bearing
PCa tumors to confirm in vivo binding of 18F-KS1. Mice
were intravenously injected with 18F-KS1 (~ 3.7 GBq) and
euthanized after 30 min and 60 min of tracer injections

(3 mice/time point). Samples of tumor, blood, brain,
heart, lung, liver, spleen, pancreas, kidney, muscle, and
bone were harvested, weighed, and gamma counted
with a standard dilution of the injectate [25, 53, 64].
The percentage of the injected dose per gram of tissue
(%ID/g) was calculated.

Results
Synthesis
The desired products KS1-OTs and KS1 were synthesized
with 38% and 24% chemical yields, respectively (Fig. 1). All
intermediates and final compounds were completely
characterized using 1H NMR and mass spectroscopy.
The precursor molecule, (E)-2-(4-(((5-(2-chloroethyli-
dene)-4-hydroxy-2-oxo-2,5-dihydrofuran-3-yl)oxy)methyl)-
phenoxy)ethyl 4-methylbenzenesulfonate, KS1-OTs was
obtained as a white solid, 38% yield and with 1H NMR
(400MHz, CDCl3): δ 10.15 (s, 1H), 7.82 (d, 2H, J = 8.4Hz),
7.38–7.33 (d, 2H, J = 8.4Hz), 7.27–7.22 (d, 2H, J = 7.8Hz),
6.79–6.77 (d, 2H, J = 7.8Hz), 5.46 (t, 1H, J = 8.4Hz), 5.12 (s,
2H), 4.39–4.36 (m, 2H), 4.29 (d, 2H, J = 8.4Hz), 4.18–4.16
(m, 2H), and 2.46 (s, 3H); MS: 481.96 [M+H]+. The non-
radioactive standard, (E)-5-(2-chloroethylidene)-3-(4-
(2-fluoroethoxy)benzyloxy)-4-hydroxyfuran-2(5H)-one, KS1
was isolated as a light brown solid, 24% yield and 1H NMR
(300MHz, CDCl3): δ 10.12 (s, 1H), 7.32–7.31 (d, 2H, J =
2.8Hz), 6.89–6.88 (d, 2H, J = 2.8Hz), 5.50–5.46 (t, 1H,
J = 7.1Hz), 5.19 (s, 2H), 4.86–4.83 (m, 1H), 4.70–4.65
(m, 1H), 4.39–4.37(d, 2H, J = 10.4Hz), 4.28–4.27 (m, 1H),
and 4.19–4.16 (m, 1H); MS: 329.05 [M+H]+.

In vitro ROS assay
KS1 and ascorbate showed a similar amount of fluores-
cence (Fig. 2). Both KS1 and ascorbate demonstrated
higher fluorescence in the higher ROS-expressing SCC-61
cells compared to the lower ROS expressing-rSCC-61cells.
Good correlations were found between increasing concen-
trations of KS1 (and ascorbate) from 1.0 μM to 100 μM
and increased fluorescence. KS1 exhibited ~ 2.2-fold
higher differential selectivity between the high- and
low-ROS cell lines compared to ascorbate (Fig. 2). In
order to further establish the specificity of KS1 for ROS,
the same MitoSOX assay was performed by pre-treating
the SCC-61 cells with SOD (1.0mM), an ROS blocker, for
60min. Fluorescent uptake decreased by ~ 50% demon-
strating KS1 specificity.

Radiolabeling of KS1
Given the promising preliminary binding and specificity of
KS1 (compared to ascorbate), KS1 was radiolabeled with
18F¯ to obtain 18F-KS1 (Fig. 3). Radiochemical synthesis,
including [18F]F¯ transfer, reaction, HPLC purification, and
radiotracer formulation, was completed within 65min
(Additional file 1: Figure S1). Injection of 18F-KS1 showed
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a single radioactive peak with minimal UV absorbance,
indicating good specific activity. The radioactive peaks
were further authenticated by performing a co-injection
with their corresponding nonradioactive standard KS1,
which displayed similar retention times. 18F-KS1 was
synthesized with high radiochemical purity (> 94%)
and high specific activity ~ 100 ± 10 GBq/μmol (decay
corrected to end of synthesis; EOS). 18F-KS1 was produced
in 15% decay-corrected radiochemical yield (n > 10). The
ex vivo serum stability of 18F-KS1 was studied in a
human serum sample at 5 min, 30 min, 1 h, 1.5 h, 2 h,
2.5 h, and 3 h post-radiotracer synthesis. 18F-KS1 was
~ 90% intact in the serum after 120 min of tracer syn-
thesis (Additional file 1: Figure S2). This demonstrated
minimal radiolysis through defluorination and/or oxi-
dation of the radiotracers by relative lack of new radio-
chemical peaks [65, 66] at different retention times (Rt)
compared to the original product peak [67, 68].

Cell uptake studies of 18F-KS1
In vitro efficacy of 18F-KS1 was studied in various cancer
cell lines, with different ROS levels. Among the two
matched HNSCC cell lines tested, SCC-61 cells have
higher intracellular ROS and protein oxidation compared
to rSCC-61 [45, 47]. Radioactive uptake in SCC-61 cells
was ~ 1.5-fold higher compared to rSCC-61 uptake

(Fig. 4a). Importantly, the uptake was successfully blocked
by SOD (~ 60%) and by nonradioactive KS1 (~ 40%).
Additionally, treatment with the ROS inducer, doxo-
rubicin, increased the 18F-KS1 uptake by ~ 30%. Ascorbate
as a blocker lowered the baseline uptake by ~ 48%
(%ID/mg protein at baseline 26.81 ± 3.12 vs. with as-
corbate = 12.812 ± 1.23). To further test the specificity
of 18F-KS1 for ROS, radioactive uptake in PCa cells was
tested under hypoxic conditions, as several studies have
shown that hypoxic conditions promote ROS generation
and oxidative stress [69–71]. A reported hypoxia model of
PCa cells [72, 73] was tested in which the uptake of
18F-KS1 was evaluated in PC3 cells cultured under hy-
poxic conditions versus normoxic conditions. Radioactive
uptake of 18F-KS1 in PC3 under hypoxic conditions was
~ twofold higher than the normoxic conditions (Fig. 4b),
further indicating the ability of 18F-KS1 to measure ROS.
Importantly, this uptake was specific and due to ROS
because it was blocked by SOD (~ 48%) and nonradio-
active KS1 (~ 61%). Furthermore, doxorubicin increased
the radioactive uptake by ~ 15%, thus reconfirming ROS
specificity. Thus, through these in vitro cell uptake data in
different cancer cell lines and manipulations of ROS levels
in vitro, we demonstrate excellent binding and specificity
of 18F-KS1 towards ROS levels in tumor cells.

MicroPET imaging studies
To evaluate the first in vivo imaging characteristics of
18F-KS1 in a tumor model, microPET imaging studies
were performed. Using basic region of interest (ROI)
analysis on the microPET scans, 18F-KS1 demonstrated
(a) high tumor uptake and (b) successful blocking of up-
take with nonradioactive KS1 pre-treatment (~ threefold
lower than baseline), signifying retained high selectivity
and specificity of 18F-KS1 in vivo (Fig. 5a).

In vivo biodistribution
Results of standard biodistribution studies in mice
implanted with PCa tumors (n = 3/time point) were
obtained (Fig. 5b). From 30 to 60 min post-injection,
18F-KS1 displayed ~ 1.7-fold increased tumor uptake:
%ID/g of 4.23 ± 0.531 (30 min) to 6.81 ± 0.33 (60 min).
Bone uptake was lowered from %ID/g of 1.741 ± 0.71
(30 min) to 1.381 ± 0.561 (60 min), suggesting no signifi-
cant metabolic defluorination in vivo [53]. Additionally,
there was > 50% increase in the tumor to muscle (target
to nontarget) ratio from 30min (4.31) to 60min (8.84)
(Fig. 5b inset). Thus, both microPET and biodistribution
studies demonstrate high target binding, specificity, and
stability of 18F-KS1.

Discussion
The scientific premise of this study is that PET imaging of
oxidative stress using a novel ascorbate-based radiotracer

Fig. 2 Fluorescence MitoSOX assay of KS1 in two differentially
ROS-expressing HNSCC cell lines (SCC-61 and rSCC-61). MitoSOX
was the control, and ascorbate was the standard. The data was
expressed as measured fluorescence units, with **p ≤ 0.05 and
***p ≤ 0.005 considered statistically significant (n = 6)

Fig. 3 Synthetic scheme of 18F-KS1 production
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will relay critical personalized biochemical information to
help design new therapies, individualize existing thera-
peutic regiments, and better enable clinicians to
monitor patient’s therapeutic response in selective
applications. Furthermore, the development of our novel
translational PET radiotracer may bridge the gap in our
understanding of ROS role in tumor progression and
therapeutic resistance.
Ascorbate appears to reduce the semistable chroma-

noxyl radicals through protecting hydrophobic regions
of cells, thus generating metabolically active form of
lipid antioxidants [74–76]. Emerging pre-clinical and
clinical studies led to studies of intravenous ascorbate as
a cancer chemotherapeutic agent, as an adjunct to
chemotherapy and to ameliorate chemotherapy-induced
side effects [77, 78]. Although clinical trials have tested
the effects of increasing nutritional supplements of
ascorbate in patients with prostate, breast, colorectal,

and pancreatic cancer [79], the field has been limited in
the ability to detect the downstream products of oxi-
dation manifested as lipid peroxidation and on peri-
pheral products [80–83]. Furthermore, it is unclear as to
how ascorbate works with seemingly paradoxical effects
in cancer cells; it binds to ROS [84], and it generates
ROS at different concentrations [74, 77]. In addition to
strategies that aim to decrease ROS, common anticancer
chemotherapeutics such as doxorubicin generate ROS
for tumor cell death [51, 84–86]. Therefore, the abil-
ity to measure ROS levels using ascorbate in tumor
cells can significantly advance such therapeutic stra-
tegies by enabling (1) personalized regimens based on
how oxidative stress contributes to an individual’s
disease and (2) ability to monitor real-time effects of
any intervention.
The two objectives of our work in this study were to (a)

synthesize and characterize a novel ascorbate-based analog

a b

Fig. 4 Cell uptake of 18F-KS1 at baseline, promoter, and blockade conditions (n = 6) after 60 min in vitro in (a) SCC-61 and rSCC-61 and (b) in PC3
cell line under normoxic and hypoxic conditions after 60 min. The data were expressed as % injected dose (ID)/mg of protein present in each
well, with **p≤ 0.05 considered statistically significant. Plates without ligands are controls

Fig. 5 a Representative microPET images of 18F-KS1 in PC3-bearing mice (n = 3): (I) baseline (II) blocking with KS1 in axial and coronal views, with
arrow mark highlighting the tumor. b Standard biodistribution of 18F-KS1 in PC3-bearing mice with values in %ID/g, p values ≤ 0.05 considered
statistically significant (n = 3), with tumor to muscle ratio highlighted inset

Solingapuram Sai et al. EJNMMI Research            (2019) 9:43 Page 6 of 10



and (b) elucidate its initial in vitro and in vivo ROS/RNS
selectivity with ascorbate as the reference standard. We
designed our structure-activity relationships (SAR) based on
the key skeleton of a reported ascorbate derivative [38]. From
the lead structure (a potent ascorbate derivative), we retained
the 31-enol group for possible ROS reactivities and in-
corporated substituents at 61 position amenable for
[18F] radiochemistry. We have synthesized and charac-
terized (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)-
benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1), as our
ascorbate derivative to be studied further for use in
ROS detection. We considered the possibility of keto-
enol tautomerism in our structure; however, it did
not seem to affect the biological activity of the com-
pounds. We measured the in vitro potency of KS1 towards
ROS using MitoSOX binding and blocker studies at lower
concentrations and compared its activity with ascorbate as
the reference standard. Initial preliminary in vitro ROS
MitoSOX fluorescence assays demonstrated (a) similar
mode of action to that of ascorbate (at lower concen-
trations) and (b) high ROS binding potency and specificity
(demonstrated by SOD blocking) of KS1. SOD blocking
specificity suggests that KS1 could be a superoxide pero-
xide targeting agent [25].
While our initial screening data with MitoSOX is pro-

mising, we are currently working on determining our
compound’s in vitro efficacy using additional ROS assays
[87, 88], with and without commonly used ROS and RNS
promoters and blockers [89–95]. The in vitro ROS po-
tency of KS1 was favorable to pursue the next step of PET
radiochemistry. We chose a [18F]-radiolabeling strategy
because of its translational potential with a longer half-life
(109.78min), compared to [11C] with a 20-min half-life.
18F-KS1 was produced in the TRASIS AIO module,
following the standard [18F]F¯-based nucleophilic substitu-
tion in high-quality standards (S.A = 100 ± 10GBq/μmol,
radiochemical purity = 95% at EOS). 18F-KS1 showed
~ 90% serum stability ex vivo and hence suitable for
further in vitro and in vivo investigations. We chose
to evaluate the in vitro efficacy of 18F-KS1 in two
matched cell lines (SCC-61 and rSCC-61) of HNSCC
with different ROS levels as well as PCa cell line (PC3)
hypoxia model that modulates ROS levels based on
oxygen availability. 18F-KS1 demonstrated > 2.5-fold ROS
selectivity and specificity (in baseline and blocking studies
using ROS blockers and promoters). Significant blockade
of the baseline uptake with ascorbate implies that 18F-KS1
might behave like ascorbate. This suggests that 18F-KS1
binding properties including cell trapping and ROS inter-
actions might be similar to ascorbate’s [96, 97]. To build
on the in vitro data, we performed small-animal micro-
PET imaging and biodistribution studies of 18F-KS1 in
mice bearing PCa-PC3 tumors. We initially confirmed
18F-KS1’s tumor binding properties in vivo in mice bearing

PC3 tumors and found specific binding both at 30min
and 60min post-injection. While 18F-KS1 uptake was still
high in blood, kidneys, and liver even after 60min
post-injection, this did not directly affect tumor imaging
characteristics of 18F-KS1. However, the specificity can be
further improved by imaging at later time points, such as
90 and 120min post-radiotracer injection, especially after
further blood pool clearance. To further validate the
specificity of 18F-KS1 in vivo, we performed a blocking
microPET study, where a set of PC3 tumor-bearing mice
(n = 3) were pre-injected with nonradioactive KS1, before
the radiotracer injection. Radioactive uptake was signifi-
cantly lower (~ threefold) than at baseline, demonstrating
the specificity of 18F-KS1. Furthermore, we found no
immediate adverse reactions of the mice at 15mg/kg of
unlabeled KS1, which is > 100-fold more than the
expected radiolabeled dose.
Our initial study with 18F-KS1 provides promising

data and thus justifies our continuing studies looking at
(i) other tumor models in both sexes, (ii) imaging at
multiple time points to improve imaging contrast, and
(iii) in vivo tracer stability by performing comprehensive
metabolite analyses.

Conclusions
ROS plays a significant role in all stages of cancer
growth, including initiation, progression, restaging,
and death. 18F-KS1, a ROS selective PET ligand, was
synthesized and radiolabeled with high radiochemical
purity and specific activity. It successfully demon-
strated a reliable automated synthesis, a good ex vivo
stability, a ROS-specific in vitro profile, and a pro-
mising specific tumor uptake in vivo. Biodistribution
and microPET imaging studies exhibited good stabi-
lity, specificity, and tumor uptake in PCa-bearing
mice. Thus, we demonstrated initial biological evalua-
tions of a novel PET radiotracer, based on a natural
antioxidant with potential to measure ROS levels in a
solid tumor in vivo. Based on the data presented
here, we hypothesize that our ascorbate-based PET
ligand strategy will expand the ascorbate scaffold to
measure in vivo oxidative stress in cancer and neuro-
degenerative and cardiovascular diseases. We are therefore
pursuing additional studies including mechanistic
ROS blocking assays, complete metabolite analyses,
and PET imaging studies in other mice models with
high oxidative stress.

Additional file

Additional file 1: Figure S1. (A) Representative semiprep HPLC
chromatogram with upper UV and lower radio γ trace of 18F-KS1
using C18 Phenomenex Luna HPLC column (250 X 10 mm, 10 μA)
with 30% acetonitrile in 0.1 M aqueous ammonium formate buffer
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(pH 6.5) at a flow rate of 5.0 mL/min and UV @ 254 nm.; (B) QC analytical
spectrum of 18F-KS1 single injection using a C18 Phenomenex Prodigy
HPLC column (250 X 4.6 mm, 5 μA) with 45% acetonitrile in 0.1 M aqueous
ammonium formate buffer (pH 6.5) at a flow rate of 1.0 mL/min and UV @
254 nm. UV-mass (top) and radioactive peak (bottom window) were
highlighted with arrow marks for the corresponding 18F-KS1 product.
Figure S2. Ex vivo stability of 18F-KS1 in human serum sample; radiochemical
purity analyzed until 240min after production (DOCX 210 kb)
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