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Hepatobiliary scintigraphy may improve
radioembolization treatment planning in
HCC patients
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Abstract

Background: Routine work-up for transarterial radioembolization, based on clinical and laboratory parameters,
sometimes fails, resulting in severe hepatotoxicity in up to 5% of patients. Quantitative assessment of the
pretreatment liver function and its segmental distribution, using hepatobiliary scintigraphy may improve patient
selection and treatment planning. A case series will be presented to illustrate the potential of this technique.
Hepatocellular carcinoma patients with cirrhosis (Child-Pugh A and B) underwent hepatobiliary scintigraphy pre- and
3 months post-radioembolization as part of a prospective study protocol, which was prematurely terminated because
of limited accrual. Included patients were analysed together with their clinical, laboratory and treatment data.

Results: Pretreatment-corrected 99mTc-mebrofenin liver uptake rates were marginal (1.8–3.0%/min/m2), despite
acceptable clinical and laboratory parameters. Posttreatment liver functions seriously declined (corrected 99mTc-
mebrofenin liver uptake rates: 0.6–2.4%/min/m2), resulting in lethal radioembolization-induced liver disease in
two out of three patients.

Conclusions: Hepatobiliary scintigraphy may be of added value during work-up for radioembolization, to estimate liver
function reserve and its segmental distribution, especially in patients with underlying cirrhosis, for whom analysis of
clinical and laboratory parameters may not be sufficient.
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Background
Transarterial radioembolization (RE) is an emerging
treatment option for patients with hepatocellular carcin-
oma (HCC). Comparative studies have shown that RE
outperforms transarterial chemoembolization (TACE)
with regard to overall survival and time to progression,
with a similar toxicity profile [1, 2]. Similar results were
reported in a recent randomised controlled trial in
patients with HCC Barcelona Clinic Liver Cancer stage
A/B (the Premiere trial; NCT00956930 [3]). Treatment
planning, however, is a balancing act between optimal
efficacy and acceptable toxicity.

Lodging of radioactive microspheres in the functional
liver parenchyma may result in radiation damage, con-
sistent with sinusoidal obstruction syndrome at histo-
pathology [4]. The extent of the radiation damage
depends on the percentage of the functional liver within
the treated volume, the tumour-to-non-tumour ratio
(TNR) and the regenerative capacity of the remaining
functional liver parenchyma.
The functional liver remnant after RE is hard to pre-

dict, due to the heterogeneity of the radiation-absorbed
dose distribution, but may be crucial to prevent (severe)
radioembolization-induced liver disease (REILD), espe-
cially in patients with a marginal liver function, as seen
in cirrhosis or after chemotherapy.
Assessment of eligibility for RE is usually based on

a combination of clinical, laboratory and imaging pa-
rameters, with special attention to performance score,
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bilirubin, albumin, portal vein thrombosis and ascites.
Nonetheless, this evaluation can sometimes not predict
serious toxicity after RE, with incidences of lethal REILD
up to 5% in large series [5]. There is definitively room
for improvement.
Hepatobiliary scintigraphy with technetium-99m

(99mTc)-mebrofenin is a dynamic quantitative liver func-
tion test; for example able to assess severity of fibrosis in
hepatitis C-positive patients [6]. Furthermore, it can ad-
equately predict the risk of postoperative liver failure,
outperforming the Child-Pugh score and CT volumetry
[7–9]. De Graaf et al. reported that a liver remnant
function cut-off value of 2.69%/min/m2 (=body surface
area corrected 99mTc-mebrofenin hepatic uptake rate =
cMUR) can accurately identify patients at risk for post-
operative liver failure, regardless of the presence of
underlying liver disease [7]. Moreover, an uptake below
2.2%/min/m2 was reported to be associated with a 50%
risk of lethal postoperative liver failure [8].
We hypothesised that quantitative assessment of

remnant liver function using hepatobiliary scintigraphy
can improve patient selection, complementary to routine
assessment. In this case series, three cases with pre- and
posttreatment hepatobiliary scintigraphies will be pre-
sented to illustrate the potential of this technique.

Methods
Patient selection
We reviewed the data of patients, who were initially
included in a multicenter randomised controlled trial
in 2012 comparing TACE and RE in patients with
unresectable HCC (the TRACE study; NCT01381211
[10]). Unfortunately, this trial was prematurely termi-
nated due to the lack of inclusions. Ultimately, in our
hospital, three patients were included before the study
closure. The medical ethics committee of our institu-
tion waived the need for informed consent for review
of the imaging data.

Treatment
Before treatment, all patients underwent screening with
dynamic contrast-enhanced magnetic resonance imaging
(MRI), bone scintigraphy and angiography. Subsequently,
a surrogate particle, 99mTc-macroaggregated albumin
(99mTc-MAA) (TechneScan LyoMaa, Mallinckrodt Med-
ical, Petten, The Netherlands) was intra-arterially injected,
directly followed by a 99mTc-MAA planar scintigraphy and
single-photon emission computed tomography (SPECT)/
CT. The 99mTc-MAA SPECT/CT was used to calculate
the lung shunt fraction (LSF) and to detect other extrahe-
patic deposition.
RE was performed using yttrium-90 (90Y)-labelled

glass microspheres (Theraspheres®, BTG International,
London, England) according to international guidelines

[11]. On the same day, a 90Y-positron emission tomog-
raphy (PET)/CT (mCT, Siemens Healthcare, Erlangen,
Germany) was performed to assess the activity distribu-
tion. Our acquisition protocol was published earlier [12].

Hepatobiliary scintigraphy
Additional to the standard work-up, patients underwent
a 99mTc-mebrofenin hepatobiliary scintigraphy prior to
and 3 months after RE. Our acquisition protocol is
triphasic, similar to the protocol previously described by
de Graaf et al. [13]. A dual-head gamma camera (Symbia
16T, Siemens Healthcare, Erlangen, Germany) is posi-
tioned over the patient, including the heart and liver in
the field of view. After intravenous administration of
200 MBq 99mTc-mebrofenin (Bridatec, GE Healthcare),
36 dynamic anterior and posterior planar images are ac-
quired over 10 min at 10 s per frame, using a low-energy
high-resolution collimator (matrix 128 × 128; energy
window 130–150 keV). Subsequently, a fast SPECT/CT
is performed (matrix 128 × 128; 64 projections in total at
8 s/projection). A low dose CT is acquired for attenu-
ation correction and anatomical reference. Thereafter, a
second series of planar scintigraphic images is performed
to evaluate biliary secretion (matrix 128 × 128; 30 frames
at 60 s/frame).

Image analyses
Analysis of the hepatobiliary scintigraphies was not
performed until after treatment (in 2016).
The hepatobiliary scintigraphy data were processed

using in-house developed software (Volumetool [14]),
similar to the method described by de Graaf et al. [13].
A geometric mean dataset was calculated from the
anterior and posterior planar projections of the first
dynamic series (Gmean = √(anterior × posterior)). Regions
of interest (ROI’s) were drawn on the planar Gmean data-
set around the total image, cardiac blood pool and whole
liver to calculate the 99mTc-mebrofenin liver uptake rate
(expressed in %/min), as previously described by Ekman
et al. [15]. This value was divided by the body surface
area (BSA) to correct for inter-patient variability in
metabolic needs (cMUR, expressed as %/min/m2). Liver
and heart ROI's were placed so as to avoid spillover from
one to the other. Subsequently, the whole liver was
manually delineated on the SPECT/CT images, as well
as the treated and non-treated volumes after correlation
with posttreatment 90Y-PET/CT, enabling assessment of
both the volumes and contribution to the liver function.
The latter was done by dividing the sum of counts in the
ROI of the treated volume by the total liver counts,
representing the contribution of the treated volume to
the total cMUR (as calculated on the Gmean dataset).
The contribution of the non-treated volume was identi-
cally assessed. Activity in the hilar and extrahepatic bile
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ducts was excluded from the ROI’s to avoid falsely in-
creased regional activity due to biliary excretion.
The tumour-absorbed dose and non-tumorous liver-

absorbed dose of the treated liver parenchyma were
calculated using ROVER software (ABX-CRO Advanced
Pharmaceutical Services, Dresden, Germany). For each
patient, a volume of interest (VOI) was drawn on the
90Y-PET/CT in the tumours and in the non-tumorous
treated liver tissue. To prevent erroneous overlap, the
pretreatment CT was used as a reference. The mean
activity in becquerel in the VOI was computed. Subse-
quently, a correction factor was applied to correct for
the low number of positrons per becquerel. The cor-
rected activity at the time of 90Y-PET acquisition was
recalculated to the corrected activity at time of treat-
ment by adjustment for the radioactive decay. Subse-
quently, the healthy liver absorbed doses were calculated
as follows: Healthy liver absorbed dose (Gy) = ((50 Gy *
Kg/GBq) x (corrected activity in GBq)) / (VOI volume
(mL) * 1.06 g/mL/1000).

Results
Case 1
A 74-year-old male with a history of liver cirrhosis due to
alcohol abuse was diagnosed with a mass in the right liver
lobe at ultrasonography. A subsequent liver CT revealed a
multifocal, hypervascular mass in segments 5 and 8 of the
liver with contrast washout, consistent with HCC. The lar-
gest tumour measured 3.7 cm (tumour involvement 1%).

Cirrhosis, splenomegaly and gastro-esophageal varices
were also present, but no ascites or portal vein throm-
bosis. The day of treatment, he was graded as Child-Pugh
grade A6/ALBI score grade 1 (Table 1).
The LSF was 9%. He underwent a right lobar treat-

ment (3,1 GBq, target dose 80 Gy). Posttreatment 90Y-
PET/CT showed adequate targeting of the lesion in seg-
ments 5 (306 Gy) and 8 (376 Gy). The average absorbed
dose of the non-tumorous liver parenchyma was 33 Gy.
Twelve days after treatment, he visited the outpatient

clinic with complaints of increasing abdominal girth and
weight. He was treated with a low sodium diet and di-
uretics. Six weeks thereafter, he was readmitted because
of decompensated cirrhosis with worsening encephalop-
athy. At 3-month follow-up, laboratory tests showed
grade 2 bilirubin (2.4 mg/dL), grade 3 albumin (20 g/L),
grade 1 ALP, AST and ALT toxicity and an elevated
ammonia serum value (60 μmol/L). Concurrent liver CT
showed ascites in all quadrants, shrinkage of the liver
and partial necrosis of the HCC’s (partial response of
the smaller tumours and stable disease of the largest
tumour).
Evaluation of the hepatobiliary scintigraphies showed a

whole liver function decline from 3.0 to 2.4%/min/m2

(Table 2). The function of the treated right hemiliver
declined from 2.3 to 1.6%/min/m2, without evident
hypertrophy of the left hemiliver (0.8 vs 0.7%/min/m2).
He died 4 months after RE due to hepatic failure,

probably caused by REILD.

Table 1 Liver biochemistry tests during follow up

Case Time to RE
(days)

Bilirubin
(mg/dL)

Albumin
(g/L)

AST
(U/L)

ALT
(U/L)

ALP
(U/L)

INR Ascites AFP
(μg/L)

1 −1 0.9 31 72 60 252 1.24a no 750

+12 1.2 30 75 51 326 – minimal –

+35 1.1 27 107 59 290 3.49a – –

+65 1.1 24 60 47 286 5.79a diffuse –

+86 2.4 20 62 36 347 1.36a – –

2 −1 1.9 27 76 60 115 1.38 minimal 140

+14 4.3 25 96 58 138 – moderate –

+18 6.7 22 72 84 67 1.8 diffuse –

+33 5.6 25 69 45 100 0.9 diffuse –

+61 8.2 23 69 170 126 1.7 massive –

+95 11.1 23 250 212 153 – massive 36

3 0 1.6 25 61 46 122 1.18 minimal 270

+14 2.5 28 80 50 143 1.16 moderate 210

+30 2.3 22 58 32 126 1.20 moderate –

+71 2.2 23 63 37 144 1.20 moderate –

+160 2.9 23 67 32 156 1.20 massive 5200

AFP alpha-fetoprotein, ALP alkaline phosphatase, ALT alanine aminotransferase, AST aspartate aminotransferase, INR international normalized ratio
a = under treatment with coumarin derivates
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Case 2
A homeless 57-year-old male with a history of cirrhosis
due to alcohol abuse was diagnosed with a multifocal
HCC. MRI liver revealed four hypervascular lesions in
segments 1 (1.0 cm), 5 (4.4 cm) and 8 (3.2 and 0.8 cm),
consistent with HCC (tumour involvement 1%). Coexisting

liver cirrhosis, portal hypertension and a moderate amount
of ascites was also present, but no portal vein thrombus. At
diagnosis, he had decompensated cirrhosis, which was
recompensated 5 months later at treatment. He had a
Child-Pugh grade B8 at treatment (ALBI grade 3) (Table 1).
The LSF was 4%.

Table 2 Hepatobiliary scintigraphy measurements at baseline and 3-month follow-up

Baseline 3-month follow-up

Case Liver (total) Liver (treated) Liver (non-treated) Liver (total) Liver (treated) Liver (non-treated)

1 Volume 2481 1845 636 1919 1357 562

% 100 74 26 100 71 29

cMUR 3.0 2.3 0.7 2.4 1.6 0.8

% 100 77 23 100 67 33

2 Volume 1396 1178 285 1111 855 256

% 100 84 16 100 77 23

cMUR 1.8 1.6 0.2 0.6 0.4 0.2

% 100 87 13 100 77 23

3 Volume 1288 881 407 1218 713 505

% 100 68 32 100 59 41

cMUR 2.2 1.5 0.7 1.8 0.8 1.0

% 100 70 30 100 43 57

Volume (in mL); cMUR = BSA corrected 99mTc-mebrofenin uptake rate (in %/min/m2)

Fig. 1 Pre- and posttreatment images of case 2. On the arterial phase of the pretreatment MRI, a hypervascular lesion in segment 8 is depicted
on a background of liver cirrhosis, consistent with a HCC (a). Pretreatment hepatobiliary scintigraphy shows a visually fairly homogenous 99mTc-
mebrofenin uptake with a defect in segment 8, corresponding to the HCC (b). Posttreatment 90Y-PET/CT shows good targeting of the HCC
(227 Gy), but also a significant 90Y deposition in segment 7 (91 Gy) (c). At treatment angiography, the endhole catheter tip was positioned at the
bifurcation of the anterior and posterior right hepatic artery. The overdosage of the posterior sector is therefore most likely due to preferential
flow (d). Posttreatment MRI and hepatobiliary scintigraphy show ascites and shrinkage of the cirrhotic liver with increased arterial enhancement
of the treated lobe and decreased 99mTc-mebrofenin uptake (e, f)

Braat et al. EJNMMI Research  (2017) 7:2 Page 4 of 8



He underwent a right lobar treatment (2.5 GBq, target
dose 100 Gy). The posttreatment 90Y-PET/CT showed
reasonable targeting, but also a relatively large amount
of activity in the tumour-free segments 6 and 7 with an
average absorbed dose of 91 Gy (Fig. 1). The absorbed
dose for the tumours in segments 1, 5 and 8 was 226, 63
and 227 Gy, respectively. The absorbed dose of the smal-
lest tumour (0.8 cm) could not reliably be measured.
Fourteen days after treatment, he was readmitted with

increasing ascites and peripheral oedema, consistent
with decompensated cirrhosis. Two days later, he devel-
oped a spontaneous bacterial peritonitis, successfully
managed with albumin suppletion and antibiotics.
At 3-month follow-up, his liver function had further

declined to Child Pugh grade C11, with a grade 3 biliru-
bin toxicity (Table 1). Follow-up MRI at that time
showed a partial response of all four lesions, consistent
with the decrease in AFP levels. However, also massive
ascites and shrinkage of the liver were noted.
At 3-month follow-up, his liver function had declined

to 0.6%/min/m2 (1.8%/min/m2 at baseline). The pre-RE
liver function was mainly located in the right hemiliver
(1.6%/min/m2). After RE, this declined to 0.4%/min/m2,
without compensatory function increase of the left
hemiliver (stable at 0.2%/min/m2).
He died 4 months after RE treatment due to definite

REILD (Fig. 2).

Case 3
A 74-year-old male with a history of hepatitis B and
cirrhosis (Child Pugh grade C11/ALBI grade 3) was
diagnosed with multifocal HCC, which was initially left
untreated because of decompensated cirrhosis. After
6 months, he was admitted because of severe haemor-
rhage of one lesion. He was treated with bland coiling of
the arterial supply to this lesion. Another 12 months
later, his cirrhosis had recompensated (Child Pugh grade
B8/ALBI grade 2) and he opted for RE. At that time, his
MRI revealed a large HCC located in segment 7/8
(6.6 cm), in segment 4 (6.3 cm) and two smaller lesions

in segment 6 (tumour involvement 19%). No portal vein
thrombus was present. The LSF was 11%.
He underwent a right lobar treatment (2 GBq; target

dose 120 Gy). The posttreatment 90Y-PET/CT showed ad-
equate targeting of lesions in segment 6 (243 and 422 Gy)
and segment 7/8 (309 Gy). The average absorbed dose of
the non-tumorous parenchyma was 32 Gy. Subsequent
treatment of segment 4 was cancelled, because of uncor-
rectable extrahepatic deposition and a LSF of 25% on
99mTc-MAA SPECT/CT 1 month later.
Follow-up MRI at 3 and 6 months showed a partial

response of the lesions in segments 6 and 7/8, but pro-
gressive growth of the lesion in segment 4. At 3-month
follow-up, the function of the treated liver volume had
declined to 0.8%/min/m2 (1.5%/min/m2 at baseline),
whereas the non-treated volume showed a minimal
functional improvement from 0.7 to 1.0%/min/m2

(Fig. 3), resulting in a decline of the total liver function
from 2.2 to 1.8%/min/m2.
He died 1 year after RE due to tumour progression

(not due to REILD).

Discussion
In this case series, we presented three cases with a dis-
mal outcome after lobar 90Y glass microspheres RE treat-
ment. The rapid clinical deterioration in the first two
patients was due to REILD. In all three patients, pre-
treatment clinical, laboratory and imaging parameters
were within acceptable limits for safe treatment, but did
not predict the severe toxicity encountered, even though
all cases involved lobar treatments only.
Patients amendable for RE commonly have a compro-

mised liver function due to cirrhosis or other underlying
liver disease (e.g. prior chemotherapy). Most large
published series applied limited exclusion criteria re-
garding the liver function, often confined to a total bili-
rubin of <2 or <3 mg/dL [2, 16]. Consequently, 18–44%
of patients, who underwent RE for HCC, had a Child-
Pugh B cirrhosis and in up to 2% even a Child-Pugh C
cirrhosis [2, 16]. In patients who undergo segmental or

Fig. 2 Pre- and posttreatment T2-weighted images of case 2. On the pretreatment image (a), a nodular surface of the liver is seen, consistent with
cirrhosis. A small amount of ascites is present. Three months after treatment (b), the liver has atrophied impressively and the amount of ascites
has substantially increased, consistent with REILD
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lobar treatment only, this is generally accepted. However,
contrary to hepatectomy candidates, pretreatment quan-
titative segmental assessment of the liver function is
often lacking [17]. In other words, is the liver function
of the non-treated lobe sufficient to compensate for
radiation damage in the treated part of the liver?
Adequate assessment of the overall liver function is

difficult due to the diversity of its functions (e.g. detoxi-
fication, synthesis). Several clinical scoring systems
(incorporating some of these functions) exist to estimate
overall survival and eligibility for hepatectomy in pa-
tients with cirrhosis [18]. Of these, the Child-Pugh score
is best-known. However, considerable heterogeneity ex-
ists within the Child-Pugh categories, resulting in an
unreliable prediction of liver failure after hepatectomy
[19, 20]. The recently introduced ALBI scoring system
might be more successful in these predictions [19]. The
ALBI score has shown to be a successful predictor of
survival after RE, though its correlation with hepato-
toxicity is not known [21].
Contrary to the clinical scoring systems, hepatobiliary

scintigraphy with SPECT/CT allows for quantification of
a non-uniform distribution of the liver function, as often
seen in cirrhosis [13]. The visualisation and quantification
of possible regional differences in liver function can be
crucial in large liver resections or segmental liver-directed
treatments, as illustrated by our cases. In all cases, a

right lobar treatment was performed to spare the non-
tumorous liver parenchyma. Unfortunately, most of the
functional liver tissue was located in the treated right
hemiliver (70–87%), resulting in considerable liver func-
tion decline, both clinically and at hepatobiliary scintig-
raphy. Prior knowledge of these segmental differences
probably would have led to a change in treatment strategy
or renouncement [17, 22].
De Graaf et al. suggested a cMUR cut-off value of

2.69%/min/m2, after analysis of hepatobiliary scintigra-
phies of 55 patients before and after major hepatectomy
[7]. Nine of their patients developed postoperative liver
failure (8/9 with compromised livers), which was lethal
in 8/9 cases. The cut-off value of 2.69%/min/m2 rightly
identified all but one patient with postoperative liver
failure. In contrary, CT volumetry based cut-off values
failed to identify two cases and in case of BSA corrected
volumes even three cases. Furthermore, for hepatobiliary
scintigraphy, one cut-off value sufficed for both compro-
mised and normal livers, whereas cut-off values for CT
volumetry varied.
The cut-off value of 2.69%/min/m2 implies a serious

risk of liver failure in the presented cases, of whom two
developed fatal REILD. Interestingly, the data in Table 2
show no compensatory hypertrophy of the non-treated
lobes in the first two cases, indicative of a severely
compromised liver regeneration. However, in the third

Fig. 3 Pre- and posttreatment hepatobiliary scintigraphy images of case 3. The pretreatment Gmean planar image (a) shows that 99mTc-
mebrofenin is mainly taken up in the right hemiliver. Centrally, in the liver (segment 4), no uptake is seen, due to the presence of a large HCC (c).
After treatment (Gmean planar (b), SPECT (d)), a decrease in total liver uptake is seen, primarily due to a decrease in uptake in the right hemiliver.
The left hemiliver has hypertrophied slightly (b: red line, contouring the functional liver). On the SPECT images (c, d), the uptake in the left
hemiliver is similar to the pretreatment image. The defect in the uptake in segment 4 remains, consistent with untreated segment 4 lesion (d)
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case, the non-treated lobe had hypertrophied (25%
volume increase) with a liver function increase of 43%
from 0.7 to 1.0%/min/m2. The regeneration capacity in
this case may explain the longer survival, as hypertrophy
is known to continue up to 12 months after RE [23].
According to the device instruction manual for glass

microspheres [24], a target dose of 120 Gy (range 80–
150 Gy) is suggested for the treated liver volume, in
principle ignoring the presence of underlying liver dis-
ease, TNR and liver volume (total volume and % treated
volume). Yet, a definite relationship exists between the
absorbed dose in the non-tumorous parenchyma (Dntp)
and hepatotoxicity [25, 26]. Chiesa et al. [25] identified a
tolerance dose of 75 Gy for 15% RE-related hepatotox-
icity (=TD15 whole liver) in 43 HCC patients with a Child-
Pugh A cirrhosis after lobar RE with glass microspheres
(based on the 99mTc-MAA SPECT data). In contrary,
83% of their Child-Pugh B7 patients had RE-related liver
failure at a mean liver dose <60 Gy [27]. All Child-Pugh
A patients (6/43) with hepatotoxicity had a mean liver
dose >60 Gy and at least 58% of the liver volume treated.
Our findings are consistent with these results.
Logically, also a positive relationship exists between

tumour dose (Dtumour) and tumour response [25, 26, 28].
Garin et al. [29] suggested a 99mTc-MAA SPECT/CT
based tumour response threshold dose (TTD) of 205 Gy
for HCC treatment with glass microspheres, using mea-
surements similar to ours (2 cc VOI in tumour and non-
tumorous tissue). This TTD is consistent with the find-
ings of Chiesa et al. (217 Gy) [25]. However, larger le-
sions require a higher Dtumour; i.e. >1000 Gy for lesions
>10 cc to achieve 50% tumour control probability [25].
In our patients, three out of four lesions >10 cc were
treated with >217 Gy (case 1: 306 Gy/case 2: 63 and
227 Gy/case 3: 309 Gy). Yet, all lesions showed partial
response, except the lesion in case 1. Nonetheless, target
dose and volume planning in case of larger and/or
necrotic lesions is more difficult. In these cases, extra
caution has to be taken with regard to treatment intensi-
fication or retreatments to prevent serious hepatotoxicity,
especially in the presence of cirrhosis. Hepatobiliary
scintigraphy may help in this patient selection.
This case series is obviously limited by patient number,

caused by preliminary closure of the TRACE study in
our hospital. However, it is the first case series on
liver-directed RE that shows the potential benefit of
imaging-based quantification of liver function and its
segmental distribution, complementary to systemic
assessment of overall liver function. Patients with a
marginal pretreatment liver function, as suspected after
routine evaluation, may be further screened by hepato-
biliary scintigraphy for improved treatment planning.
Definition and validation of thresholds for safe treatment
should be based on clinical data. Large studies should

answer questions with regard to the minimal acceptable
remaining liver function and the numeric relation
between the absorbed dose to the functional liver paren-
chyma and the decline in liver function posttreatment.

Conclusions
Based on this case series, hepatobiliary scintigraphy
seems to be complementary to current patient selection
based on clinical, laboratory and imaging parameters
alone. Although thresholds for safe treatment should be
determined and validated in large patient series, the po-
tential of hepatobiliary scintigraphy to quantify segmen-
tal liver function, in contrast to overall liver function,
seems imperative for RE treatment planning.
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