Sharma et al. EJINMMI Research (2016) 6:81
DOI 10.1186/5s13550-016-0234-3 EJ N M M | Resea rCh

ORIGINAL RESEARCH Open Access

Evaluation of '®F-fluorothymidine positron ® e
emission tomography (['°F]FLT-PET/CT)
methodology in assessing early response to
chemotherapy in patients with gastro-
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Abstract

Background: 3-Deoxy-3-['®FIfluorothymidine (['®FIFLT) PET has limited utility in abdominal imaging due to high
physiological hepatic uptake of a tracer. We evaluated ['®F]FLT-PET/CT combined with a temporal-intensity
information-based voxel-clustering approach termed kinetic spatial filtering (KSF) to improve tumour visualisation
in patients with locally advanced and metastatic gastro-oesophageal cancer and as a marker of early response to
chemotherapy.

Dynamic ['®F]FLT-PET/CT data were collected before and 3 weeks post first cycle of chemotherapy. Changes in
tumour ['®FIFLT-PET/CT variables were determined. Response was determined on contrast-enhanced CT after three
cycles of therapy using RECIST 1.1.

Results: Ten patients were included. Following application of the KSF, visual distinction of all oesophageal and/or
gastric tumours was observed in ['®F]FLT-PET images. Among the nine patients available for response evaluation
(RECIST 1.1), three patients had responded (partial response) and six patients were non-responders (stable disease).
There was a significant association between Ki-67 and all baseline ['®FIFLT-PET parameters. Area under the curve
(AUQ) from 0 to 1 min was associated with treatment response.

Conclusions: The results of this study indicate that application of the KSF allowed accurate visualisation of both
primary and metastatic lesions following imaging with the proliferation marker, ["8FIFLT-PET/CT. However,
["8FIFLT-PET uptake parameters did not correlate with response. Instead, we observe significant changes in
tracer delivery following chemotherapy suggesting that further ['®FIFLT-PET/CT studies in this tumour type
should be undertaken with caution.
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Background

Chemotherapy is the mainstay of therapy for patients
both with locally advanced and metastatic gastro-
oesophageal cancers (GOCs) [1, 2]. In patients with
locally advanced disease, the aim of neoadjuvant chemo-
therapy is to downstage the tumour to enable complete
surgical resection, whilst in the metastatic setting, the
overall goal is palliation. In both clinical scenarios,
accurate and sensitive evaluation of tumour response is
critical as combination chemotherapy is not without
significant side-effects. Therefore, there is a need for
early assessment of tumour response to minimise patient
exposure to potentially toxic treatment regimens, espe-
cially in those patients unlikely to benefit.

The MUNICON 1 trial conducted in patients with
tumours of the oesophagogastric junction illustrated that
early metabolic response assessment with ['8F]fluoro-
deoxyglucose ([*®F]FDG-PET) guides therapy allocation
following 2 weeks of therapy [3]. However, 8 F]FDG-
PET may not clearly distinguish complete response and
residual disease or between residual disease and post--
treatment inflammation. Moreover, [\®F]JFDG-PET has
variable sensitivity in assessing gastric cancer [4, 5].
There is a need therefore to develop more specific
tracers for both predicting and monitoring efficacy of
chemotherapy.

3’—Deoxy-3'—[ISF]ﬂuorothymidine ([*®F]FLT) is a surro-
gate marker of proliferation, with uptake reflecting the
activity of thymidine kinase (TK-1), the key enzyme in
the salvage pathway for thymidine monophosphate
production; its expression correlating with the S phase
of the cell cycle [6]. Although it has been reported that
["*F]JFLT-PET has higher sensitivity than [**F]FDG in
detection of gastric cancer, in general, the level of uptake
in tumours is lower with ['*F]FLT than ['*F]JFDG-PET
[7, 8]. The main limitation of [**F]FLT in imaging upper
abdominal tumours stems from high background activity
in the liver due to glucuronidation of [Y*F]FLT by
normal hepatocytes, making visualisation of gastric and
gastro-oesophageal junction tumours challenging [9, 10].
However, as [°F]FLT is a surrogate marker of DNA
synthesis, it is more specific for malignancy and less suscep-
tible to inflammatory changes compared with [**F]FDG.
Therefore, it may be a better imaging biomarker for both
prognostification and response evaluation in GOCs.

Recently, we devised a new temporal-intensity
information-based voxel-clustering approach—kinetic
spatial filter (KSF)—for removing normal, physiological
[18 F]JFLT uptake by the liver and to enable visualisation
of specific uptake (i.e., uptake due to phosphorylation)
in liver metastases [11]. Briefly, the KSF compares, on a
voxel by voxel basis, the time activity curves (TACs) of
the image with the TAC of predefined tissue classes. We
therefore conducted this pilot, exploratory study to

Page 2 of 9

assess whether ['®F]FLT-PET/CT in combination with
the KSF could be used to improve visualisation and
permit early prediction of clinical response following
one cycle of chemotherapy in patients with locally
advanced or metastatic GOC.

Methods

Patients

Ten patients with a histological diagnosis of locally
advanced or metastatic adenocarcinoma of stomach or
lower third of the oesophagus were recruited. Inclusion
criteria were: patients suitable for chemotherapy, ECOG
performance status <2 and at least one (primary or
metastatic) lesion >20 mm outside the liver, as assessed
by contrast CT chest and abdomen. All patients included
in the study had blood counts and liver and renal func-
tions acceptable for chemotherapy. The study was
approved by the local ethics committee. All patients gave
fully informed consent according to the Declaration of
Helsinki guidelines. The administration of radioactivity
for the PET scans was approved by the Administration
of Radioactive Substances Advisory Committee, UK.

Imaging protocol

[*®F]FLT was manufactured according to standard proto-
cols. All patients were scanned on a Siemens Biograph
64-slice PET/CT scanner. Baseline ['*FJFLT-PET/CT
was performed within a week prior to start of chemo-
therapy. Post-treatment PET/CT was performed within
3 weeks after the start of the first cycle of chemotherapy.
In all cases, the primary tumour, regional lymph nodes
and liver were imaged in a single thoracic/abdominal
bed position. Patient positioning was followed by a CT
scan (300 mA, 120 kVp, 1.35 pitch, 0.8 s/rotation) for
both attenuation correction and co-registration with
PET images, to allow good anatomical visualisation and
localisation of ["*F]FLT activity. ['*F]FLT, mean (+SD)
208.2 £ 10.4 MBq, was injected as a bolus intravenously,
and a dynamic, list mode emission scan in the 3D mode,
lasting 66 min, was undertaken [12, 13]. All patients had
baseline diagnostic contrast-enhanced chest and abdomen
CT performed within 1 month of study enrolment and
restaging CT scanning after three cycles of chemotherapy.
If available, baseline ["*F]JFDG-PET/CT were retrieved,
and standardised uptake value (SUV)ean and SUV ., of
primary tumour reported.

Image analysis

Raw PET data were corrected for scatter and attenuation
and reconstructed with an iterative algorithm consisting
of 8 iterations and 21 subsets. The data were binned into
time frames as follows: 1* 30 (background), 6* 10, 4* 20,
4* 30, 5* 120, 4* 180 and 4* 600 s. The KSF was applied
to the dynamic PET data. Decay-corrected images
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(unfiltered and filtered) were then viewed using the
Analyze® software (Analyze Version 11; Biomedical
Imaging Resource, USA) in order to assess the utility of
the KSF in improving visualisation of tumours. The
attenuation corrected PET images and CT data were
fused and analysed on a dedicated workstation (Hermes
diagnostics, Sweden) by a dual-trained radiologist/nuclear
medicine physician as well. The physician was blinded to
patient Ki-67, patient response and survival outcome at
the time of analysis. All SUV analyses were conducted
using PET uptake parameters generated on Hermes.

Gastro-oesophageal and metastatic lesions were
defined as target lesions by RECIST 1.1 on CT [14]. The
lesions on the [**F]FLT-PET/CT corresponding to those
on the CT showing an increased uptake and visualised
on both the unfiltered and the filtered images were con-
sidered as target lesions. The diameter of the target
lesions was measured using electronic callipers on the
PACS workstation. The same target lesions were used
for analyses on both the PET/CT and CT, before and
after treatment. In patients with multiple lesions, the
sum of the parameters of all the lesions was calculated
and change with treatment documented [15].

Consecutive regions of interest (ROIs) were manually
defined around the tumours on the summed images,
employing the patient’s diagnostic CT scan and the
filtered images. The ROI encompassed the whole
tumour for SUV analysis. The [**F]FLT radioactivity
concentration within the ROIs was then normalised for
injected radioactivity and body weight (grams) to obtain
the mean and maximum SUV at 60 min (SUV60,,can
and SUV60,,.,) on baseline and post-treatment
["*F]JFLT-PET/CT (unfiltered) studies. The percentage
change in SUV in both SUV .., and SUV,,,, was then
calculated for each target lesion visible on baseline imaging
as (SUVpost — SUVpre)/SUVpre. The SUV peqn time activity
curve was used to calculate the area under the curve
(AUC) (kg min mL™") from 0 to 1 min, reflecting tracer
delivery to the tumour, as intimated in canine studies [16].
The SUVratio, 60:1 (SUV phean 60 min/SUV ,ean 1 min) was
calculated as an indicator of tracer retention within the
tumour. All target lesions were included in the final
analysis.

Immunohistochemistry

To evaluate the relationship between PET parameters
and direct measurement of proliferation, paraffin-
embedded tumour samples obtained from diagnostic
specimens within 1 month preceding the PET scan were
sectioned and immunostained with an anti-Ki-67 anti-
body (clone K-2) (Leica Biosystems, Wetzlar, Germany).
The number of total and Ki-67-positive cells were manu-
ally counted in eight randomly selected fields of view
using a BX51 Olympus microscope (Olympus Optical,
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Tokyo, Japan) at x400 magnification and with the aid of
Sigma Scan Pro 5 (Aspire Software International, Leesburg,
VA). The Ki-67 proliferation index was calculated as the
ratio of the number of Ki-67-positive cells to the total
number of cells.

Statistical analysis

Wilcoxon rank test was used to assess for differences
between PET parameters and Ki-67 with clinical out-
comes. The percentage change in SUV in both SUV ¢,
SUVnax SUVratio, 60:1 and AUC were plotted against
clinical outcomes. A paired ¢ test was used to assess the
difference in these parameters over time. As the sample
size was small for analysis purposes, complete and
partial responses were grouped together as response,
and stable disease and progressive disease was classed as
non-response. Moreover, where patients had more than
one target lesion, the median change in SUV ., and
SUV .« of all lesions was reported. Survival figures were
calculated from date of diagnosis to date of death or date
of last follow-up. A p<0.05 was considered significant.
Statistical analysis was done using SPSS statistical pack-
age version 22 (SPSS Inc., Chicago, IL, USA).

Results

Patients

Ten patients, all of whom were male, were included
(median age 65 years, range 54—76 years). Patient char-
acteristics are summarised in Table 1. Four patients
received chemotherapy prior to surgical resection, and
six received palliative therapy (combination therapy with
epirubicin and capecitabine, with either cisplatin or
oxaliplatin). Four patients underwent oesophagectomy
post three cycles of chemotherapy. No patient received
radiotherapy during the study period. One patient was
lost to follow-up and did not have formal RECIST assess-
ment. The median time between baseline [**FJFLT-PET/CT
and subsequent PET scan was 24.5 days (range 7—-35).

Imaging characteristics of ['®FIFLT uptake at baseline

On visual analysis, only six of the ten primary tumours
were clearly visible on the unfiltered images. Following
the application of KSF, image visualisation was improved
in all the tumours as represented in Fig. 1a, b, and ¢
such that all primary GOC were visualised on the
filtered [*F]FLT-PET/CT images, enabling accurate
assessment of the tumour. ROIs were drawn on the fil-
tered images, with reference to baseline CT scans. Since
KSF is associated with removal of delivery components
within the data, we observed a mean (+SD) reduction in
SUV ean in untreated primary tumours of 12.4 % (+35.4)
whilst the background signal in the liver was reduced to
~0. One patient had FLT avid lymph nodes, and one
patient had evidence of liver metastases not seen on



Table 1 Characteristics of patients enrolled in study

Pt No  Age (years)  Site Stageb Chemotherapy®  Overall RECIST  SUVeg ave  SUVeo, max ~ Percentage Percentage Change  Baseline FDG  Baseline FDG  Ki-67 (%)
responsed (preRx) (preRx) Change SUVep ave  SUVe0, max SUVe0, ave SUVe0,max

1 63 GEJ T4NTM1 EOX PR 592 945 —-35.16 —54.49 - - 43

2 54 Distal T3NO ECX, surgery - 46 452 —25.65 =575 5.93 438 -

3 68 Distal T3NOM1 EOX SD 532 747 -2.26 495 6.76 563 87

4 76 GHJ T3NTM1 ECX PR 497 7.25 6.44 566 2145 19.96 29

5 71 GEJ T3NOMO  EOX SD 6.08 9.96 11.51 11.14 1491 14.06 23

6 64 GEJ TANTM1 EOX SD 55 8.85 -30.73 —47.57 10.44 9.03 -

7 65 Gastric T3NTMO EOX, Surgery PR 414 7.62 —15.22 —-16.93 - - -

7¢ 3.65 887 1.92 29.76

8 60 Distal T3NTMO  ECX, surgery SD 7.7 13.36 —29.61 —33.08 - - -

9 54 Gastric ~ T3NTMO ~ EOX/STO3 SD 3.66 593 —24.86 —2546 - - 51

10 69 Distal T3NOMO  ECX, surgery SD 4.79 93 -18.99 -24.09 13.88 12.24 67.5

?GEJ gastro-oesophageal junction, distal distal oesophagus

bStage according to TNM criteria, CT and EUS used

“EOX epirubicin, oxaliplatin and capecitabine, ECX epirubicin, cisplatin and capecitabine, STO3 study - ECX +/- bevacizumab
9RECIST criteria: PR partial response, SD stable disease, PD progressive disease
®Lymph node >20 mm, included as a target lesion in final analysis

18:9 (9107) Yoipasay [WNNFT 0 12 ewieys

6 0 7 abed
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B FLT PET

Fig. 1 Coronal section of pre-treatment of a patient with oesophageal cancer (arrows) illustrating the diagnostic CT (a) and the unfiltered fused
PET images (b). Following application of the KSF, visualisation of the oesophageal cancer (arrows) was markedly improved (c)

C Filtered

staging non-contrast CT imaging but demonstrated on
baseline [**F]JFDG-PET/CT and filtered [**F]FLT-PET/CT.
The application of the KSF reduced background normal
liver activity leading to improved visualisation of liver
metastases in this case (Fig. 2b, ¢, e, and f).

All primary tumours and lymph nodes were included
in analysis. The liver metastases were not included in
analysis as these were not visible on the patient’s baseline
non-contrast CT imaging for RECIST 1.1 measurement.
The mean unfiltered SUVggmax (£SD), SUVeomean (£SD)
for the primary tumours on the baseline scan were 842
(+2.31) and 5.06 (+1.16).

As [*®F]FLT is a biomarker of cellular proliferation, we
investigated the relationship between Ki-67, a histologic
marker of proliferation with the PET variables SUV ;ean
and SUV,,,. Histology was available for six patients,
three samples were inadequate for Ki-67 examination
and 1 tissue block was unavailable. A significant associ-
ation was observed between Ki-67 and SUV ., (Z -2.01,

p=0.04) and SUV can (Z -2.02, p=0.04) at baseline.
No association was observed between Ki-67 and
response to chemotherapy.

Comparison between ['®F]FDG and ['®FIFLT
Pre-therapy ['*F]JFDG-PET/CT was performed for the six
patients with oesophageal cancer, as part of clinical
routine management. All primary tumours were visible
both on baseline ["*FJFDG-PET/CT and ['*F]JFLT-PET/CT.
The SUVgomax Of ['*F]FLT of the primary tumours
was lower than that of ['**F]FDG (8.4 + 2.3 vs. 12.2 + 5.8;
p=0.18) as was SUVg0, mean (5.07+1.2 vs. 10.8 £5.8;
p =0.07). One patient had three liver metastases seen on
[*®F]FDG-PET/CT. These were all detected as areas of
relative photopaenia on ['*F]FLT-PET images. Following
application of the KSE background liver uptake was
reduced and metastases were better visualised (Fig. 2a—f).
There was no association observed between baseline
[**F]FDG tumour SUV,,,, and Ki-67 (p = 0.07).

A FDG PET B FLT PET

C FLT PET with KSF

D FDG PET E FLT PET F FLT PET with KSF

Fig. 2 Transverse sections from a patient with gastroesophageal junction tumour with liver metastasis. On ['®FIFDG-PET imaging, both the
primary (a) and liver lesions (d) are visible. Whilst the primary oesophageal lesion is visible on the unfiltered ["®FIFLT-PET imaging (b), visualisation
is improved following application of the KSF (c). Liver metastases appear as an area of relative photopaenia (e) on ['®FIFLT-PET imaging. Following
application of the KSF, there is marked reduction of the background hepatic signal allowing for improved visualisation of hepatic metastases (f). Both
lesions are also seen on baseline ['®FIFDG-PET imaging (d)
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Effect of treatment on PET variables

According to RECIST 1.1, six patients had stable disease
(SD), three patients had partial response (PR) following
three cycles of chemotherapy, and one patient was lost
to follow-up. There was a median overall reduction in
["®F]JFLT-PET/CT SUVe, mean (-14.7+16.4%) and
SUVsg0, max (-14.2 £259 %) following the first cycle of
chemotherapy. No significant changes were observed in
either ['**F]JFLT-PET/CT SUV40, mean (Fig. 3a) or SUV,
max (Fig. 3b) following one cycle of chemotherapy. Of
the six patients with [**FJFDG-PET/CTs, there was
no association noted between response and baseline
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In terms of ['**F]JFLT-PET/CT AUCy_; min there was a
8.3% (+47.4%) reduction following one cycle of treat-
ment, and a significant association was observed
between percentage change in AUC(_; i, following one
cycle of therapy and response (p = 0.047) (Fig. 3c), such
that patients responding to chemotherapy had a greater
reduction in AUCy_; i, suggesting a significant reduc-
tion in tracer delivery. A reduction of 12.5% (+31.9%) in
SUVratio, 60:1 was observed in the data set; however, no
significant association was observed with response
(Fig. 3d). The median progression-free survival was
24.6 months (95% CI 18.2-31.1), and overall survival

SUV uptake. had not been reached. Due to small numbers, no
<
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Fig. 3 Box plots showing association between change in ['*FIFLT-PET SUVeo, mean (@) and ["®FIFLT-PET SUV40, max (b) following one cycle of
chemotherapy, and ["®FIFLT-PET AUCy_1 min (©), and ["®FIFLT-PET SUV 60 min: 1 min (d) and response to chemotherapy after three cycles of
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statistical analyses between PET parameters and sur-
vival were conducted.

Discussion

The primary aim of this pilot study was to investigate
the utility of the KSF when applied to ["*F]JFLT-PET/CT
to improve visualisation of GOC. As a secondary
endpoint, we explored the use of ["*F]FLT-PET/CT as an
early biomarker of clinical response compared to
RECIST 1.1 following three cycles of chemotherapy. We
have shown that application of the spatial filter does
improve visualisation of both primary tumours and liver
metastases, allowing more accurate localisation and
therefore more accurate assessment of PET response.

The KSF has been investigated by our group in visua-
lising pancreatic cancer, and liver metastases from differ-
ent primary tumour sites, and we have consistently
demonstrated the applicability of this technique [17, 18].
As illustrated in Figs. 1 and 2, implementation of the
KSF removed physiological background activity allowing
improved lesion detection. Only six of the ten primary
tumours were visible above background on the unfil-
tered data. The application of the filter delineated all
primary tumours and allowed improved detection of the
liver metastases in one patient. This is of particular
importance in the neoadjuvant setting where accurate
staging determines which patients will undergo surgery.
['®F]FLT imaging is useful particularly in the differenti-
ation between tumour and inflammation, a major con-
cern given the majority of oesophageal cancers will
develop on a background of Barrett’s oesophagus [19].
Moreover, in gastric cancer, there is limited utility of
["*F]FDG-PET. However, despite the interest in
["|FJFLT-PET imaging, its utility has been limited by
high physiologic uptake within the liver. Application of
the KSF opens the clinical arena of ['*F]FLT-PET
imaging in upper gastrointestinal tumours by improving
tumour visualisation with the hope of improving patient
outcome by improved detection and differentiation of
both primary lesions and metastases.

As a translational endpoint, we described the associ-
ation between Ki-67 and [*®F]FLT imaging parameters, a
finding well described in other tumour types [20]. How-
ever, there have only been three studies in GOC tumours
none of which demonstrate a relationship between
["®F]FLT uptake and Ki-67 [7, 8, 21]. Differing results
may be attributed to the small sample size of the pub-
lished studies, and tumour heterogeneity, particularly as
both in this study and others, correlation between SUV
uptake at the actual site of the biopsy was not
conducted. We anticipated a significant association be-
tween Ki-67 and [**F]FLT uptake given that [F]FLT is
a marker of proliferation, being a substrate for the cell
cycle regulated enzyme TK-1, an enzyme which is
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up-regulated in proliferating cells. In a reaction mediated
by TK-1, [*®F]FLT is phosphorylated to [**F]FLT-mono-
phosphate which is not incorporated into the DNA but
remains trapped within the cytosol where it accumu-
lates, thereby acting as a marker of proliferation [22].

Early evaluation of treatment response to chemother-
apy with ["®F]FLT-PET has been evaluated in a number
of tumour types, where ['*F]JFLT-PET response as early
as 1 week following chemotherapy has been shown to
predict treatment outcome [23, 24]. Even though there
have been a number of studies comparing the sensitivity
and specificity of both [**F]FLT-PET and [**F]FDG-PET
in detecting oesophageal cancer, there has only been one
study in this disease type investigating ['*F]JFLT-PET as
an early response biomarker following induction chemo-
therapy with oxaliplatin and S-1 prior to radiotherapy
and resection [10]. The authors report a significant
reduction in [*®F]FLT uptake in patients responding to
chemotherapy compared to non-responders following
two cycles of chemotherapy [10]. However, only nine
patients were evaluable, only one of which did not
respond to therapy and these results need further valid-
ation. Two further studies illustrate dramatic reduction
in [*®F]FLT uptake in tumours 4 weeks following radio-
therapy, consistent with clinical response [25, 26]. In the
study by Yue and colleagues, the authors also conclude
that [®F]JFLT-PET may be useful in differentiating
between residual tumour and inflammation, post-
radiotherapy, a key consideration in terms of determin-
ing the efficacy of chemoradiotherapy. In our study, all
oesophageal lesions were visible by [**F]-FDG-PET. This
is not an unexpected finding since all the primary tu-
mours were adenocarcinoma and it is known that this
histological subtype has high [**F]-FDG uptake [27].

Given the variable sensitivity of FDG in imaging
gastric cancer, [*®F]FLT-PET has been investigated in a
number of studies, again predominantly comparing the
efficacy of [**F]JFLT-PET and [**F]FDG-PET [8, 9, 28, 29].
The largest study is that by Wang and colleagues who
enrolled 64 patients with advanced gastric cancer to
compare the sensitivity and specificity of [**F]FLT-PET
and ['*F]FDG-PET in predicting both response to chemo-
therapy and survival. The authors conclude that whilst
[**F]FDG-PET uptake predicted both response and
survival, ['*F]FLT-PET showed little utility, particularly
with regard to assessment of liver metastases, where
background hepatic uptake precluded any assessment of
treatment response. Ott and colleagues investigated
["®F]FLT-PET as a response marker to neoadjuvant
chemotherapy in patients with gastric cancer (n =45) and
reported a significant association between SUV ey
following one cycle of chemotherapy (2 weeks after
the initiation of therapy) and prognosis, but not treat-
ment response [7].
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Whilst the SUVs obtained in our study in both
oesophageal and gastric cancers were consistent with
those published, we did not observe any significant
association between ['*F]FLT SUV and response to treat-
ment, despite the improvement in tumour visualisation
with the application of the KSF. Because early changes
in perfusion have been shown to associate with therapy
response in oesophageal and gastric cancer, we assessed
potential [**F]FLT delivery variables embodied within
AUCq_1 min [30]. The utility of AUCy_; s has not been
validated in humans; however, its application has been
validated in a canine tumour model [14]. We therefore,
chose to apply this PET parameter to our dataset.
[*®F]FLT SUV has been shown to be highly correlated to
vascular fraction and perfusion/permeability soon after
tracer injection [16]. Differences in ["*F]FLT delivery, as
indicated by AUCy_; min, Was coincident with treatment
response such that patients responding to therapy had a
reduction in AUCy_; ni,. This can be interpreted as a
reduction in the delivery of [*®F]FLT to the tumour
following chemotherapy in responding patients analo-
gous to CT perfusion studies in the same group of
patients [30]. A perfusion deficit in responding tumours
[30] will likely confound measurements of ["*F]FLT re-
tention. Taken together, therefore, the results of this
pilot study would suggest that future studies of
['|FJFLT-PET in this patient population may be of lim-
ited value.

The main limitation of this pilot study is the small
sample, and mixed tumour type, both in terms of
tumour staging and primary sites. Furthermore, patients
received continuous capecitabine which has been shown
in breast cancer to cause ['®F]FLT “flare” resulting from
translocation of equilibrative nucleoside transporter 1
(ENT1) to the cellular membrane and consequently an
increase in ['®F]JFLT uptake [31, 32]. This “flare
response” was observed 24—48 h post-capecitabine ther-
apy. However, it is clear from the dynamic analyses that
there is no flare in the post-treatment scans. Another
issue is in the analysis where in the one patient with
more than one target lesion, the average of SUV was
taken across both target lesions. This methodology does
not take into account therefore, heterogeneity between
the primary and metastatic deposit. Despite these limita-
tions, the main strength of this study is that by conduct-
ing dynamic ['®F]JFLT scanning in this patient
population, we have been able to evaluate and demon-
strate treatment-related delivery changes.

Conclusions

We have shown that application of a KSF allows accur-
ate visualisation of both primary and metastatic gastro-
oesophageal cancer following imaging with the prolifera-
tion marker, ['*F]JFLT-PET/CT. However, ['*F]FLT-PET
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uptake parameters did not correlate with response. In-
stead, we observe significant changes in tracer delivery
following chemotherapy suggesting that further
[**F]FLT-PET/CT studies in this tumour type should be
undertaken with caution.
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