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Contrast-enhanced small-animal PET/CT in cancer
research: strong improvement of diagnostic
accuracy without significant alteration of
quantitative accuracy and NEMA NU 4-2008
image quality parameters
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Abstract

Background: The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed
tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the
attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of
quantitative values in contrast-enhanced small-animal PET/CT (£PET/CT) as compared to unenhanced small animal
PET/CT (uePET/CT).

Methods: Firstly, a NEMA NU 4-2008 phantom (filled with '®F-FDG or '®F-FDG plus contrast media) and a
homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to
evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative
values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were
performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the
intravenous injection of a long-lasting contrast agent mixed with '®F-FDG and the intraperitoneal injection of
contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment
compared the diagnostic performance and quantitative values of gPET/CT versus ,ePET/CT by sacrificing the
animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast
media.
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P = 0.004).

NU 4-2008 1Q parameters.

Results: There was minimal impact on 1Q parameters (%SD, ¢ and spillover ratios in air and water) when the NEMA
NU 4-2008 phantom was filled with '8F-FDG plus contrast media. In the homemade phantom, measured activity
was similar to true activity (—0.02%) and overestimated by 10.30% when vials were surrounded by water or by an
iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good
correlation between small-animal (SA)-PET and ex vivo quantification (" = 087, P < 0.0001). The second animal
experiment showed a good correlation between PET/CT and PET/CT quantitative values (* = 0.99, P < 0.0001).
Receiver operating characteristic analysis demonstrated better diagnostic accuracy of ¢PET/CT versus ePET/CT
(senior researcher, area under the curve (AUC) 0.96 versus 0.77, P = 0.004; junior researcher, AUC 0.78 versus 0.58,

Conclusions: The use of iodinated contrast media for small-animal PET imaging significantly improves tumor
delineation and diagnostic performance, without significant alteration of SA-PET quantitative accuracy and NEMA

Keywords: Small-animal PET/CT, Contrast media, NEMA NU 4-2008, Tumor-bearing rodents, Quantification

Background

Small-animal positon emission tomography (SA-PET)
imaging is a powerful tool in performing preclinical
studies in tumor-bearing rodents and is being increas-
ingly used to evaluate metabolic response to treatment,
particularly within the framework of new drug develop-
ment [1,2]. Animal models include abdominal tumors
that arise in transgenic animals or tumors that arise after
engraftment of exogenous malignant cells.

In abdominal tumor models, a moderate-to-high physio-
logical uptake in the gut is observed with many tracers,
including [ISF]ﬂuorodeoxyglucose (*8F-FDG) and [*®F]
fluorothymidine (**F-FLT), which may hamper tumor de-
tection. Moreover, anatomical landmarks are lacking on
PET images alone. In this setting, correlative computed
tomography (CT) acquisition is useful to improve the
localization of tracer uptake and provides faster and more
accurate attenuation correction than attenuation correc-
tion obtained with external gamma sources [3]. However,
an unenhanced CT scan does not allow delineation of
tumors from the surrounding organs as both have similar
CT attenuation characteristics [4,5]. This drawback is par-
ticularly an issue in nude mice and nude rats, which lack
abdominal fat. The use of iodinated contrast agents solves
this problem. Iodinated agents that are typically used in
the clinical setting cannot be used for intravenous injec-
tions in rodents because microCT devices are not fast
enough to image animals before the contrast media is
cleared from the blood. Therefore, dedicated iodinated
contrast agents have been developed for preclinical re-
search. Two long-lasting intravascular contrast media
agents, eXIA 160XL (Binitio Biomedical, Inc., Ottawa,
Canada) and Fenestra VC (Advanced Research Technolo-
gies Inc., Saint-Laurent, Quebec, Canada) [6-9], are com-
mercially available. eXIA 160XL is a single-phase contrast
agent that provides peak contrast enhancement in the
spleen, liver, and vessels within the first hour after

injection, while Fenestra VC is a dual-phase contrast agent
that provides blood-pool enhancement for more than 2 h
after intravenous injection followed by liver enhancement.
Also available is Fenestra LC (Advanced Research Tech-
nologies Inc.), a contrast agent offering liver and spleen en-
hancement for durations reported to be as long as 7 days
in mice. In addition, the clinically used iodinated agents
can be injected by the intraperitoneal route to improve de-
lineation of abdominal tumors [10].

To our knowledge, studies comparing the diagnostic per-
formance of unenhanced SA-PET/CT versus contrast-
enhanced SA-PET/CT with protocols including one or
more of the contrast agents described above are lacking.
Moreover, clinical PET/CT studies have shown that con-
trast agents may result in overestimation of standardized
uptake values on images corrected for attenuation with at-
tenuation maps derived from CT [11-15].

The aim of this study was to perform a comprehensive
evaluation of the diagnostic performance and the accur-
acy of SA-PET quantitative values in contrast-enhanced
versus unenhanced SA-PET/CT by phantom and animal
studies in abdominal tumor-bearing rats and mice. For
that purpose, we used the NEMA NU 4-2008 image
quality phantom, which provides a standardized assess-
ment of the overall image quality and accuracy of at-
tenuation and scatter corrections [16]; we also used
homemade phantoms mimicking tumors surrounded by
contrast media. In addition, we scanned a large cohort
of animals with various contrast media protocols to
evaluate both the diagnostic and quantitative accuracies
of contrast-enhanced SA-PET/CT (cgPET/CT) versus
unenhanced SA-PET/CT (ygPET/CT).

Methods

SA-PET/CT data acquisition and reconstruction parameters
SA-PET/CT examinations were performed on an Inveon
SA-PET/CT (Siemens Medical Solutions, Knoxville, TN,
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USA). First, SA-CT images were acquired in approxi-
mately 10 min using 80 keV and 500 pA. Then PET
acquisitions were performed using energy and coinci-
dence timing windows of 350 to 650 keV and 3.4 ns, re-
spectively. Emission scan duration was 20 min for
phantom acquisitions, as recommended by the NEMA
NU 4-2008 standards, and 15 min for animal scans.
When the animal was imaged more than once, the dur-
ation of the subsequent acquisition was increased to ac-
count for *°F decay.

Reconstructions were performed using a three-
dimensional maximum a posteriori (MAP) reconstruction
with a 128 x 128 transaxial image matrix size. Three-
dimensional ordered subset expectation maximization
(OSEM-3D)/MAP was used with 2 OSEM-3D iterations
and 18 MAP iterations with the [} parameter set to 0.2.
For NEMA NU 4 phantom studies, reconstructions were
performed (a) with attenuation and scatter corrections, (b)
with attenuation correction but without scatter correction,
and (c¢) with neither attenuation nor scatter correction.
For animal studies, data were corrected for attenuation
and scatter events.

Phantom studies

Phantom studies were carried out with the NEMA NU
4-2008 image quality phantom. This phantom has the
following features: a main fillable cylindrical chamber of
30-mm diameter and 30-mm length; a solid part with
five fillable rods drilled through (at 7 mm from the cen-
ter) with diameters of 1, 2, 3, 4, and 5 mm, respectively,
and 20 mm in length; and a part with two cold cylin-
drical chambers 15 mm in length and 8 mm in diameter
(one filled with non-radioactive water and the other with
air). A more detailed description can be found elsewhere
[17]. The image quality phantom was filled either with
an '®F-FDG solution (diluted with pure water) or with
an '®F-FDG solution containing iohexol at a concentra-
tion of 100 mg iodine (I)/mL, representing the highest
concentration from our preclinical protocols.

Radioactivity at the beginning of the emission scan
was 3.7 MBq + 5%. The NEMA NU 4-2008 phantom
was scanned twice for each situation.

Moreover, a homemade phantom was used to evaluate
the impact of high Hounsfield densities on the accuracy
of quantitative values for a pertinent-sized target. This
phantom was designed to mimic tumors surrounded by
water or intraperitoneal contrast media: small tubes
(volume 2 mL, diameter 10 mm) were filled with an **F-
FDG-containing solution and placed at the center of a
20-mL syringe (diameter 18 mm) filled either with water
or with a solution of iohexol (100 mg I/mL) inserted
into a 60-mL syringe (diameter 27 mm). Syringes were
consecutively scanned four times, with "*F-FDG concen-
trations ranging from 0.38 to 0.87 MBq/mL.
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For each acquisition with contrast media, the phantom
and vials were gently shaken immediately before the
start of the CT scan in order to keep the iodine solution
homogeneous. Preliminary studies (data not shown)
have demonstrated that no sedimentation of iodine con-
trast media occurred within 45 min following the prep-
aration of a phantom containing contrast material. Thus,
it was not necessary to shake the phantom a second time
after the CT had been performed, since overall, the ac-
quisition time for a phantom SA-PET/CT acquisition
was not more than 35 min.

Animal experiments

The regional ethics committee approved the experi-
ments. A total of 16 mice and 6 rats were used. Four-
week-old nude mice and nude rats were intraperitoneally
injected with human ovarian cancer cell lines (SKOV-3
and OVR cell lines, purchased from American Type Cul-
ture Collection). Animals were kept under pathogen-free
conditions and fed and watered ad [libitum except on
the day of SA-PET examination when a 6-h fasting period
was maintained prior to the tracer injection.

Animals were injected with '®F-FDG in the tail vein
under general anesthesia. Mean administered activity was
10 MBq for mice and 40 MBq for rats. Before, during, and
after the '®F-FDG injections, animals were kept under an
infrared light to minimize brown fat visualization. For
general anesthesia, heated inhaled isoflurane was adminis-
tered with an anesthesia device dedicated to small animals
(Minerve, France). Mice were imaged in groups of four
using a customized bed scanner. Technologic issues
related to multiple mice imaging have been previously
reported [18,19] and have been recently discussed in detail
and are beyond the scope of this article [20].

Figure 1 summarizes the animal experiments that were
performed. In the first experiment, designed to study the
impact of various contrast media protocols on the accur-
acy of quantitative values as compared to ex vivo count-
ing, 11 animals were sacrificed immediately after the
PET acquisition. In the second experiment, aimed at
comparing the diagnostic performance and quantitative
values of cgPET/CT and ygPET/CT acquisitions, 11 ani-
mals were sacrificed after the tracer uptake period to
stop tracer uptake that may have occurred in between
the two series of SA-PET/CT examinations.

Ex vivo counting

In the first experiment, immediately after the PET exam-
ination, tumors and organs were harvested. Tissue sam-
ples were weighed with a precision scale (+0.01 mg).
Tumor radioactivity was counted for 2 min in a cylinder-
well counter (Cobra II, Packard, GMI, Inc., MN, USA)
and corrected for instrument efficiency and decay. Counts
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Grats
16 mice

rats: 3 organs, 10 tumors
mice: 3 organs, 27 tumors

100 mg I/mL) were 1 mL in mice and 3 mL in rats.

Experiment 1 Experiment 2
3rats 3rats
8 mice 8 mice
Aim: accuracy of Aim: accuracy of
quantitative values quantitative values of
of PET/ICT compared to cePET/CT compared to
ex vivo counting wePETICT
Imaging sequences Imaging sequences
1eCT scan cePETICT scan e wePETICT scan PETICT scan
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Figure 1 Flow chart of animal experiments. Number of animals used in each experiment, timeline for tracer and iodinated contrast media
injections, and number of tumors and organs used for quantification are displayed. Volumes injected for IV contrast media (eXIA 160XL, Fenestra
V(C, or Fenestra LC) ranged from 0.10 to 0.15 mL in mice and were 0.80 mL in rats, and those for IP injections (iohexol at a concentration of

rats: 6 organs, 15 tumors
mice: 16 organs, 18 tumors

per minute were converted to becquerel and normalized
for sample weight, assuming a density of 1 g/mL.

Calibration and cross calibration

The SA-PET/CT system was calibrated according to the
manufacturer's guidelines, by imaging a *®Ge cylinder
phantom. A cross calibration among the SA-PET/CT
system, the dose calibrator, and the gamma counter was
performed. A 10 MBq "®F-FDG solution (as assessed by
the dose calibrator) was used to fill a vial with an exact
known volume, which resulted in a solution with an
exactly known concentration. This solution was used to
fill a cylinder phantom that was scanned for 20 min on
the SA-PET/CT scanner. Three samples of this solution
(0.5 mL) were also drawn up with a calibrated pipette to
be counted in the gamma counter. A large volume of
interest (VOI) was used to determine the mean activity
concentration as assessed by the SA-PET/CT scanner.
Cross-calibration factors were then derived and used to
synchronize counts/measurements for the three pieces
of equipment.

Data analysis

Phantom studies

The following NEMA NU 4-2008 parameters were
determined for each configuration and each reconstruc-
tion: (1) image noise was defined by the percentage
standard deviation (%SD,i¢) in a VOI (22.5-mm diam-
eter, 10-mm length) drawn over the center of the uni-
form region, and (2) spillover ratios in water (SORy

and in air (SORy;,) were determined by the ratio of the
mean activity concentration in the VOIs defined in each
cold region (water and air, 4-mm diameter, encompass-
ing the central 7.5 mm in length in the axial direction)
divided by the mean activity concentration of the uni-
form area. Data were processed with AMIDE [21]. For
acquisitions involving the homemade phantoms filled
with either an 'F-FDG solution or a mixture of 'SF-
EDG plus iohexol, cylindrical VOI (7.5-mm diameter,
10-mm length) was drawn, and the ratios between true
activity and measured activity were recorded.

Animal studies

In the first experiment, to evaluate the accuracy of
quantitative values extracted from gPET/CT, 3D VOIs
were drawn over the tumors, thanks to an isocontour
with a threshold set so that the VOI matched the appar-
ent tumor volume on the CT component of PET/CT
images. Even when a discordance occurred between
PET metabolic volume and CT volume, the VOI was
drawn according to CT images so that PET/CT images
could be compared to ex vivo counting for which the
entire tumor was harvested, irrespective of the presence
of non-viable areas.

In the second experiment, the impact of the use of
contrast media on tumor detection and accuracy of
quantitative data was assessed. The cgPET/CT and
vePET/CT data were randomly interpreted 4 weeks
apart by a senior researcher with 4 years of experience
in SA-PET/CT and 7 years of experience in SA-PET and
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a junior researcher. Observers, who were blinded to the
animals' status (i.e., presence or absence of tumors
within the abdomen), rated each abdominal focus using
a 5-point scale (1, definitely benign; 2, probably benign;
3, indeterminate; 4, probably malignant; 5, definitely ma-
lignant). Each rating was compared to the results of the
necropsy. Diagnostic performance of cgPET/CT and
vePET/CT was compared by means of receiver operat-
ing characteristic analysis [22]. Then, PET quantitative
values for ygPET/CT and cgPET/CT were compared.
For that purpose, the two sets of images were displayed
side by side, and 3D VOI was determined by means of
an isocontour, which was set so that (a) the VOI
matched the apparent tumor volume on PET images
and (b) the tumor volume was equal on both sets of
PET data.

Statistical analysis

The relationship between the radioactivity in animal
tumors as determined by SA-PET/CT and by gamma
counter was estimated using linear regression analysis. In
addition to regression analysis, Bland-Altman plots were
produced [23]. The same type of analysis was used to com-
pare quantitative values extracted from ypPET/CT and
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cePET/CT. Areas under the receiver operating characteris-
tic curve for cgPET/CT versus ygPET/CT were compared
according to the methodology of DeLong et al. [22].

Results

Impact of contrast media on image quality and accuracy
of quantitative values

Phantom studies

%SDynir is a measure of signal to noise ratio and is in
part affected by scatter and attenuation correction per-
formance, while SOR,;, and SOR,,, are measures of
scatter correction performance. As shown in Figure 2,
changes for %SDy,; and SOR values when data were
reconstructed with attenuation correction or with both
scatter and attenuation corrections were slightly differ-
ent for the water-filled and the iodine-filled NEMA
phantoms. For uncorrected data, %SD,;, SOR,, and
SOR,ater Were almost similar for all acquisitions
(approximately equal to 3.4, 0.2, and 0, respectively). For
data fully corrected for attenuation and scatter events,
%SDynir and SORy;, tended to be higher for the iodine-
filled phantom (on average, 2.845 and 0.052, respect-
ively) as compared to the water-filled phantom (on
average, 1.995 and 0.013, respectively).

1: "¥F-FDG solution
2:walter
i: iodine solution

inserted into a second syringe (diameter 27 mm).

Figure 2 Impact of high densities induced by iodine-based contrast media. On NEMA NU 4 image quality phantom measurements (a) and
SA-PET/CT quantitative values (b). (@) Representative coronal slices of the NEMA NU 4 image quality phantom at the level of the water- and
airfilled cylinders are shown (left panel). Percentage standard deviation (%SD,,) and spillover ratios in water (SOR,,s) and in air (SOR,;) are
shown in the right panel for the phantom filled with an "®F-FDG solution (blue) or a mixture of '®F-FDG and iodinated contrast media at a final
concentration of 100 mg I/mL (red). PET data were reconstructed with both attenuation and scatter corrections, with only attenuation correction
and with neither attenuation nor scatter correction. (b) Ratios of measured and true activity for '"8E_FDG sources surrounded by water or by a
combination of water and iodine layers (four consecutive measurements were performed; bars denote mean + %SD). Transverse sections through
the homemade phantom are shown, illustrating the different parts of the phantom: small tubes (diameter 10 mm) filled with an "8 FDG-
containing solution and placed at the center of a syringe (diameter 18 mm) filled either with water or with a solution of iohexol (100 mg I/mL)
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Additional phantom acquisitions were performed to
evaluate the impact of high densities on the accuracy of
quantitative values for a pertinent-sized target. For that
purpose, a homemade phantom mimicking an abdom-
inal tumor surrounded either by contrast media or by
water was used (Figure 2). When vials were surrounded
by water, measured activity was almost equal to true
activity (-0.02%). When vials were surrounded by an
iodine solution at a concentration similar to that intra-
peritoneally injected into rodents (100 mg I/mL), a mean
overestimation of 10.30% was identified.

Animal studies

Figure 1 summarizes the imaging protocols used in mice
and rats bearing abdominal tumors. The first experiment
was designed to evaluate the accuracy of cgPET/CT
quantitative values with various contrast enhancements,
taking ex vivo counting as the gold standard. A large co-
hort of animals was imaged with various contrast media
protocols including intraperitoneal injection of iohexol
and intravenous injection of a long-lasting contrast
media. Overall, in 43 lesions, a good correlation was found
between quantitative values extracted from SA-PET data
and ex vivo counting, with an 7 value of 0.87 (P < 0.0001).
Bland-Altman analysis showed a mean ratio between
ex vivo counting and SA-PET data of 0.99 (95% confi-
dence interval (CI) 0.69 to 1.31) (Figure 3). Analyzing rat
lesions (n = 13) and mouse lesions (n = 30) separately,
Bland-Altman analysis showed that mean ratios between
ex vivo counting and SA-PET data were 0.98 (95% CI 0.76
to 1.20) and 1.0 (95% CI 0.67 to 1.35), respectively. Ana-
lyzing lesions in animals that had received a long-lasting
intravascular contrast media injection (Fenestra VC or
eXia 160 XL, n = 13) and those in animals that had
received the liver-selective contrast agent (Fenestra LC,
n = 30) separately, Bland-Altman analysis showed that
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mean ratios between ex vivo counting and SA-PET data
were 1.03 (95% CI 0.96 to 1.11) and 1.02 (95% CI 0.94 to
1.10), respectively.

The second experiment evaluated the impact of intra-
peritoneal iodinated contrast agent on quantitative values
by comparing quantitative values before and after injec-
tion of intraperitoneal contrast media. Overall, 55 lesions
were analyzed, and an excellent correlation was found be-
tween quantitative values extracted from ypPET/CT and
those extracted from cgPET/CT, with an 7* value greater
than 0.9 (P < 0.0001). Bland-Altman analysis showed a
mean ratio between ¢gPET/CT and ygPET/CT quantita-
tive values of 1.02 (95% CI 0.92 to 1.10) (Figure 4). When
analyzing rat lesions (n = 21) and mouse lesions (n = 34)
separately, Bland-Altman analysis showed that the mean
ratios between cgPET/CT and ygPET/CT quantitative
values were 0.98 (95% CI 0.87 to 1.09) and 1.01 (95% CI
0.92 to 1.10), respectively.

Impact of contrast media on tumor localization and
diagnostic performance

Figures 5 and 6 illustrate how the intravenous injection
of a mixture of '®F-FDG and iodinated contrast agent
combined with intraperitoneal iohexol injection immedi-
ately before the start of the SA-PET/CT acquisition
improved visual delineation of the intraperitoneal tumor
from the surrounding organs in rats and mice. In our
experience, this was of particular value in the evaluation
of tumors with a heterogeneous tracer uptake that could
easily be mistaken for physiological uptake. In addition,
this technique facilitates and improves the visual evalu-
ation of the intra-abdominal organs. The kidneys were
well visualized because of the urinary elimination of the
intravenous iodinated contrast agent and because of an
early peritoneal absorption after intraperitoneal injec-
tion, leading to the presence of contrast media in the
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Figure 3 Accuracy of contrast-enhanced SA-PET/CT quantitative values. Linear regression (a) and Bland-Altman analysis (b) of SA-PET/CT
quantitative values (mean VOI value) as compared to ex vivo counting. Nude mice and nude rats bearing abdominal tumors received contrast
enhancement via intraperitoneal injection of iohexol (100 mg I/mL) and intravenous injection of long-lasting intravenous contrast media (eXIA
160XL or Fenestra VC) or hepatocyte-selective contrast media (Fenestra LQ).
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Figure 4 Impact of high densities induced by iodine-based contrast media on SA-PET/CT quantitative values: animal scans. Linear
regression (a) and Bland-Altman analysis (b) of SA-PET/CT quantitative values in unenhanced PET/CT (yePET/CT) as compared to contrast-
enhanced PET/CT (£PET/CT). Abdominal tumor-bearing nude mice and nude rats were sacrificed after the 18F-FDG uptake period, scanned

without contrast media, and subsequently scanned after intraperitoneal injection of iohexol (3 mL, 100 mg I/mL).

renal collecting systems and bladder. Therefore, the
bladder was very well defined both on its inner side by
the intravesical accumulation of contrast media elimi-
nated in the urine and on its outer side by the remaining
intraperitoneal iodinated agent, allowing for excellent
delineation of the bladder wall. The injection of long-
lasting contrast agents was also useful in providing add-
itional anatomical landmarks through liver and spleen
enhancement. In addition, the contrast-enhanced CT
images showed small volume tumoral deposits in one rat
and one mouse that were not visualized on the PET
images, as shown in Figure 7.

Receiver operating characteristic (ROC) analyses were
performed to objectively compare the results of ygPET/

CT and cgPET/CT data interpretation according to a 5-
point scale (Figure 8). A total of 69 "®F-FDG foci were
indentified during the review process. Based on the
results of the necropsy, 51 abdominal foci corresponded
to tumors, while 18 of them were located in animals or
regions of the abdomen that were free of disease. For
the senior observer, the area under the receiver operat-
ing characteristic curve was 0.77 (95% CI 0.65 to 0.86)
for ygPET/CT and 0.96 (95% CI 0.89 to 0.99) for cgPET/
CT (P = 0.004). For the junior observer, the area under
the receiver operating characteristic curve was 0.58 (95%
CI 0.45 to 0.70) for ygPET/CT and 0.78 (95% CI 0.66 to
0.87) for cgPET/CT (P = 0.004). When selecting the
third level of the scale as the diagnostic threshold,

Figure 5 Impact of intraperitoneal and intravenous contrast media enhancement on tumor localization on SA-CT images: rats.

Representative coronal slices for unenhanced CT (a) and contrast-enhanced SA-PET/CT (b and c) of a rat with multiple abdominal lesions. The
animal first underwent SA-CT acquisition, was subsequently injected with a mixture of '8F-FDG and Fenestra VC, and received an intraperitoneal
injection of iohexol immediately before the SA-PET/CT acquisition began. Tumors are well defined in the contrast-enhanced CT slice (yellow
arrows). Also visible are the liver and the spleen (red arrow). Note that due to rapid absorption through the peritoneum, contrast media is
excreted in the bladder.
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Figure 6 Impact of intraperitoneal and intravenous contrast media enhancement on tumor localization on SA-CT images: mice.
Representative coronal slices for unenhanced CT (a), contrast-enhanced SA-PET/CT (b and ¢), and necropsy photograph of a mouse with multiple
abdominal lesions and hemorrhagic ascites (d). The animal first underwent SA-CT acquisition, was subsequently injected with a mixture of
"8F-FDG and Fenestra VC, and received an intraperitoneal injection of iohexol immediately before the SA-PET/CT acquisition began. Tumors are
well defined on the contrast-enhanced CT slice (yellow arrows), including a necrotic lesion located near the bladder harboring a low 8EFDG
uptake and a central photopenic area on an SA-PET slice. Also visible is a tumor at the site of tumor cell injection.

sensitivity and specificity for the senior observer were
respectively 65% (95% CI 40 to 78) and 83% (95% CI 59
to 96) for ygPET/CT, and 78% (95% CI 63 to 88) and
94% (95% CI 73 to 100) for cgPET/CT. Sensitivity and
specificity for the junior observer with the same level of
scale were respectively 34% (95% CI 21 to 41) and 67%
(95% CI 41 to 87) for ygPET/CT, and 71% (95% CI 57 to
83) and 72% (95% CI 47 to 90) for cgPET/CT.

Discussion

We performed a comprehensive evaluation of the diag-
nostic performance and accuracy of SA-PET quantitative
values, comparing cgPET/CT with ygPET/CT in phan-
tom and animal studies including rats and mice with a
wide range of abdominal tumors. The use of iodinated
contrast media improved tumor delineation on CT
images, thus providing better diagnostic accuracy, but it

Figure 7 Example of carcinomatosis lesions depicted by contrast-enhanced CT and overlooked by PET. Representative coronal slices for
"8F-FDG SA-PET/CT (a) and contrast-enhanced CT (b) of a mouse with multiple abdominal lesions. Small carcinomatosis lesions (insets, yellow
arrows) involving the abdominal wall are visible on CT but are not 8E-FDG avid.
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induced a moderate overestimation of SA-PET quantita-
tive data and a slight alteration of NEMA NU 4-2008
image quality parameters.

Impact of contrast media on NEMA NU 4-2008 image
quality parameters and accuracy of quantitative values
Phantom acquisitions involving contrast media were per-
formed at an iodine concentration of 100 mg I/mL, as
this concentration results in CT densities much higher
than those obtained with long-lasting contrast agents
and is thus more likely to alter the attenuation map
derived from segmented CT images. NEMA NU 4-2008
image quality phantom data showed that changes in
%SD i and SORs when attenuation or attenuation plus
scatter corrections were applied were slightly different
when the NEMA NU 4-2008 image quality phantom
was filled either with **F-FDG or with "*F-FDG and con-
trast media. This finding, which was confirmed by im-
aging the NEMA NU 4-2008 image quality phantom
twice for each situation, demonstrates that the use of
contrast material minimally affected the accuracy of at-
tenuation and scatter corrections. Noticeably, despite
slight changes due to the use of iodinated contrast
media, observed %SD,,;r and SORs were in the range of
those reported by other labs running the Inveon system
[17,24] and can be compared to NEMA NU 4-2008
evaluation of other modern SA-PET systems that have
been recently described in details by Goertzen et al. [25].
The homemade phantom acquisitions demonstrated that,
on average, a 10.3% overestimation could be expected

when imaging a '"®F-FDG source that mimics a pertinent-
sized tumor surrounded by contrast media, whereas mea-
sured activity was almost equal to true activity when the
source was surrounded by water. This finding was con-
firmed by animal experiments comparing cgPET/CT and
uePET/CT quantitative data, for which Bland-Altman
analysis showed that the overestimation in a large cohort
of 55 abdominal lesions never exceeded 10%. Further-
more, our results are in the range of those observed with
clinical PET/CT systems where a 20 + 1.8% overesti-
mation was reported when filling a NEMA phantom with
a contrast concentration usually used in clinical settings
(3% solution of Gastrografin' Bristol-Myers Squibb,
Princeton, NJ, USA; 370 mg I/mL) [26]. Regarding clinical
studies, oral contrast media have been shown to induce an
average error of 4.4 + 2.8% (max CT value of 520 HU)
[27] and stasis of intravenous contrast media in the sub-
clavian vein has been reported to increase maximum stan-
dardized uptake value (SUVmax) by 27.1% [14]. Of note
are the similar ratios between PET quantitative data and
ex vivo counting that we observed for the different types
of intravenous contrast media. This shows that the over-
estimation is driven by the intraperitoneal fluid (100 mg I/
mL) and that intravenous contrast media can be used
without concern on quantitative accuracy.

Impact of contrast media on diagnostic accuracy

As shown in Figures 5 and 6, intraperitoneal injection of
an iodinated contrast agent dramatically improved delin-
eation of an intraperitoneal tumor from the surrounding
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organs and detection of carcinomatosis involving the
abdominal wall or the diaphragm. It is noteworthy that
in one mouse and one rat, contrast media also enabled
detection of small-volume carcinomatosis on CT that
would have been overlooked by PET-only images, as
shown in Figure 7. However, this finding was rare and
did not discriminate between the presence or absence of
carcinomatosis in both animals, as **F-FDG-positive car-
cinomatosis was also present. The intravenous injection
of long-lasting contrast agents was also useful in provid-
ing additional anatomical landmarks, thanks to liver and
spleen enhancement. This better delineation of tumors
was particularly useful in the case of lesions harboring
heterogeneous tracer uptake, as shown in Figure 6 in a
mouse with a necrotic tumor near the bladder. A new
insight from this study is that the fast absorption through
the peritoneum leads to the presence of contrast media in
the renal collecting systems and in the bladder at higher
densities than in the remaining intraperitoneal contrast
media, allowing for a clear visualization of the bladder
wall. This finding offers new opportunities for imaging
bladder cancer models.

An objective assessment of cgPET/CT versus ygPET/
CT images was performed by means of receiver operat-
ing characteristic analysis, which showed that cgPET/CT
performs better than ygPET/CT for lesion detection
within the abdomen, although in some cases, lesions
were correctly identified on ygPET/CT images (Figure 8).
It is noteworthy that the comparison between cgPET/
CT and ygPET/CT images was made in the group of
animals that received only intraperitoneal contrast
media; because animals had to be killed after the tracer
uptake period to stop the uptake that could have oc-
curred between the two SA-PET examinations, intraven-
ous injection of long-lasting contrast medium was not
feasible. Given that liver and spleen enhancement pro-
vided by these intravenous contrast media results in use-
ful additional anatomical landmarks, one can assume
that the difference in the area under the curve for re-
ceiver operating characteristic analysis would have been
even more important if both intraperitoneal and intra-
venous contrast media had been used.

Should we use only intraperitoneal contrast media or

both intraperitoneal and intravenous contrast media?

As shown by receiver operating characteristic analysis,
intraperitoneal contrast enhancement with clinical con-
trast media (iohexol), easily available at low cost, signifi-
cantly improved diagnostic accuracy and could therefore
be used alone. The additional application of long-lasting
contrast agents provides further valuable anatomical
landmarks but involves a larger volume for intravenous
injections and supplemental costs. The choice between
intraperitoneal contrast media or a dual-contrast media
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protocol including intraperitoneal and intravenous con-
trast agents will be a compromise among cost, potential
difficulties for intravenous injection, morbidity, and image
quality. Regarding morbidity, to the best of our knowledge,
no study has reported side effects due to an intravenous
bolus with long-lasting contrast agents in mice or rats.

Implications when using gPET/CT for therapy-monitoring
purposes

SA-PET and SA-PET/CT are being used increasingly in
cancer research, with a major interest in the ability to
monitor repeatedly and non-invasively the effect of chemo-
therapy or molecularly targeted therapies. As opposed to
clinical PET images that can be interpreted both visually
and semi-quantitatively, SA-PET images, when used for
therapy monitoring, are interpreted only by means of
changes in semi-quantitative values like SUVs or percent-
age injected dose per gram of tissue (%ID/g). The overesti-
mation of quantitative values due to contrast media, which
never exceeded 10% in our study, could be a source of
inter-animal variability, previously demonstrated to be 15%
on average in mice-bearing tumors imaged twice on the
same day, after injection and reinjection of **F-FDG [28],
E_FLT [29], or **F-labeled RGD [30]. Another implication
of the use of contrast media is the possible interaction be-
tween intraperitoneal contrast media and chemotherapy,
molecularly targeted therapies, or vehicle administered
intraperitoneally the day of the PET examination. Although
the peritoneum is known to allow fast absorption of fluids,
further studies are required to investigate the delay
required to reach full absorption of intraperitoneal contrast
media, as well as potential renal toxicity of repeated intra-
peritoneal injections, having in mind that some antineo-
plastic treatments induce kidney damage. The morbidity
that could arise from long-lasting agents and that relates to
viscosity, volume, and iodine content will also be the topic
of a future work.

Conclusion

This study demonstrates, using a NEMA NU 4-2008
image quality phantom and a homemade phantom, as
well as a large cohort of abdominal tumor-bearing mice
and rats, that the use of iodinated contrast media for
SA-PET imaging significantly improves abdominal tumor
delineation and diagnostic performance at the expense of
a limited impact on accuracy of quantitative values and
image quality parameters.
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