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Abstract

Background: Care providers use complementary information from multiple imaging modalities to identify and
characterize metastatic tumors in early stages and perform surveillance for cancer recurrence. These tasks require
volume quantification of tumor measurements using computed tomography (CT) or magnetic resonance imaging
(MRI) and functional characterization through positron emission tomography (PET) imaging. In vivo volume
quantification is conducted through image segmentation, which may require both anatomical and functional images
available for precise tumor boundary delineation. Although integrating multiple image modalities into the
segmentation process may improve the delineation accuracy and efficiency, due to variable visibility on image
modalities, complex shape of metastatic lesions, and diverse visual features in functional and anatomical images, a
precise and efficient segmentation of metastatic breast cancer remains a challenging goal even for advanced image
segmentation methods. In response to these challenges, we present here a computer-assisted volume quantification
method for PET/MRI dual modality images using PET-guided MRI co-segmentation. Our aims in this study were (1) to
determine anatomical tumor volumes automatically from MRI accurately and efficiently, (2) to evaluate and compare
the accuracy of the proposed method with different radiotracers (18F-ZHER2-Affibody and 18F-flourodeoxyglucose
(18F-FDG)), and (3) to confirm the proposed method’s determinations from PET/MRI scans in comparison with PET/CT
scans.

Methods: After the Institutional Administrative Panel on Laboratory Animal Care approval was obtained, 30 female
nude mice were used to construct a small-animal breast cancer model. All mice were injected with human breast
cancer cells and HER2-overexpressing MDA-MB-231HER2-Luc cells intravenously. Eight of them were selected for
imaging studies, and selected mice were imaged with MRI, CT, and 18F-FDG-PET at weeks 9 and 10 and then imaged
with 18F-ZHER2-Affibody-PET 2 days after the scheduled structural imaging (MRI and CT). After CT and MR images were
co-registered with corresponding PET images, all images were quantitatively analyzed by the proposed segmentation
technique.
Automatically determined anatomical tumor volumes were compared to radiologist-derived reference truths.
Observer agreements were presented through Bland-Altman and linear regression analyses. Segmentation
evaluations were conducted using true-positive (TP) and false-positive (FP) volume fractions of delineated tissue
samples, as complied with the state-of-the-art evaluation techniques for image segmentation. Moreover, the PET
images, obtained using different radiotracers, were examined and compared using the complex wavelet-based
structural similarity index (CWSSI). (continued on the next page)
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Results: PET/MR dual modality imaging using the 18F-ZHER2-Affibody imaging agent provided diagnostic image
quality in all mice with excellent tumor delineations by the proposed method. The 18F-FDG radiotracer did not show
accurate identification of the tumor regions. Structural similarity index (CWSSI) between PET images using 18F-FDG
and 18F-ZHER2-Affibody agents was found to be 0.7838. MR showed higher diagnostic image quality when compared
to CT because of its better soft tissue contrast. Significant correlations regarding the anatomical tumor volumes were
obtained between both PET-guided MRI co-segmentation and reference truth (R2 = 0.92, p < 0.001 for PET/MR, and
R2 = 0.84, p < 0.001, for PET/CT). TP and FP volume fractions using the automated co-segmentation method in
PET/MR and PET/CT were found to be (TP 97.3%, FP 9.8%) and (TP 92.3%, FP 17.2%), respectively.

Conclusions: The proposed PET-guided MR image co-segmentation algorithm provided an automated and efficient
way of assessing anatomical tumor volumes and their spatial extent. We showed that although the 18F-ZHER2-Affibody
radiotracer in PET imaging is often used for characterization of tumors rather than detection, sensitivity and specificity
of the localized radiotracer in the tumor region were informative enough; therefore, roughly determined tumor
regions from PET images guided the delineation process well in the anatomical image domain for extracting accurate
tumor volume information. Furthermore, the use of 18F-FDG radiotracer was not as successful as the 18F-ZHER2-
Affibody in guiding the delineation process due to false-positive uptake regions in the neighborhood of tumor
regions; hence, the accuracy of the fully automated segmentation method changed dramatically. Last, we qualitatively
showed that MRI yields superior identification of tumor boundaries when compared to conventional CT imaging.

Keywords: Image segmentation; Computer quantification; FDG-PET; MRI/PET; Breast cancer; Small-animal models;
Co-segmentation; Volume quantification; Random walk

Background
Early detection and characterization of breast cancer,
combined with an accurate estimation of tumor vol-
ume and shape, and metabolic information can help
predict the burden and the severity of the disease. For
this purpose, non-invasive anatomical imaging methods
such as magnetic resonance imaging (MRI) and com-
puted tomography (CT) are widely used in the clinics
to obtain high-resolution anatomical information about a
patient’s breast cancer status. Positron emission tomogra-
phy (PET), on the other hand, is often used in conjunction
with CT and more recently with MRI [1] to provide the
molecular process of cell/tissue activity information from
cancer sites via specific radiotracers [2]. Among all of
them, the most frequently used is the radio-labeled glu-
cose analog, 18F-fluorodeoxyglucose (18F-FDG). However,
18F-FDG lacks the specificity to identify the receptor sta-
tus over-expressed in breast cancer because it reflects the
metabolic activity of cells. Since glucose metabolism is
not specific for malignant processes, physiologic 18F-FDG
uptake occurs in normal tissues (brain, muscles, salivary
gland, myocardium, and urinary tract) and is also taken up
by various inflammatory and benign lesions, which could
potentially lead to false-positive or negative findings [3,4].
18F-ZHER2-Affibody, in contrast to FDG, is shown as a
promising radiotracer for the characterization of HER2-
positive breast cancer metastases because it character-
izes HER2-positive lesions with higher precision than
18F-FDG [3]. However, even when an appropriate radio-
tracer is chosen to monitor functional changes in cancer-

ous tissues, morphological measurement of tumor volume
with CT or MRI still remains a challenging task. Simi-
larly, quantitative measurements of radiotracer activity for
a region of interest (ROI) are prone to errors. For exam-
ple, the severity of disease can easily be underestimated
because of the errors due to inappropriate ROI definition
or inaccurate delineations. Also, the overlap or close jux-
taposition of the abnormal signal with the surrounding
normal structures and the background radiotracer activ-
ity are other source of errors affecting the quantification
process significantly [5].
Much of the relevant literature regarding the quantita-

tive analysis of metastatic breast cancer has relied onman-
ual methods for image analysis with qualitative and/or
semi-quantitative measurements due to the scarcity of
automated computer-assisted tools for different imaging
modalities [6-9]. However, manual approaches are highly
time-consuming; thus, they consequently reduce the effi-
ciency of research and have the lower reproducibility
rates. Because of these reasons, developing an efficient
computer-aided quantification tool that provides accu-
rate and reliable anatomical tumor volumes, its extent, as
well as metabolic activity estimations for HER2-positive
tumors is highly desirable.
In this study, we proposed a fully automated PET-guided

random walk image co-segmentation method for HER2-
positive tumor volume quantification. Our aim was to
design a reliable, reproducible, and efficient gross tumor
volume estimation tool that could be used in clinical
routine. Our proposed method first identified HER2-
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positive tumors automatically from PET images. Second,
it determined the extent of the detected tumor regions
from corresponding anatomical images (either CT or
MRI) using one-to-one voxel correspondence properties
of the fusion process (MRI/PET or PET/CT) followed by
segmentation of the tumor regions using both functional
and anatomical images automatically. In our approach,
after we estimated active gross tumor volumes accurately,
we compared the results with radiologist-derived anatom-
ical tumor volumes (i.e., reference standard). In summary,
our primary endpoints in this study were to identify
roughly the spatial position of HER2-positive tumors
automatically from PET images and extract the boundary
of the corresponding anatomical regions in high accuracy,
to compare the computer-assisted volume quantification
performances with PET/CT, with respect to the chosen
radiotracers, and to test the performance of the pro-
posed approach, with respect to the radiologist-derived
volumes.

Methods
All animal protocols were approved by the Institutional
Administrative Panel on Laboratory Animal Care [10].
Thirty female nude mice were used in laboratory exper-
iments. All mice were injected with human breast can-
cer cells (5.0 × 105, MDA-MB-231HER2-Luc) through
the tail vein. Twenty-six mice developed lesions in the
lungs, eight of them were selected to establish our imag-
ing studies due to detectable metastasis progression, and
four mice did not develop detectable tumors. Animals
were imaged with MRI, CT, and 18F-FDG-PET at weeks
9 and 10 and then imaged with 18F-ZHER2-Affibody-
PET 2 days after the scheduled structural imaging
(MRI and CT). PET, CT, and MRI images were quantita-
tively analyzed by the proposed method. Tumor volumes
from CT and MRI were obtained simultaneously and
tracked longitudinally at the end of the 10 weeks. The
results were compared to radiologist-derived reference
truths.

PET imaging technique
After the Affibody molecules were provided by a Cooper-
ative R&D Agreement partner (Affibody AB, Stockholm,
Sweden), they were labeled with 18F by the steps described
in [11]. All mice were imaged on the Advanced Technol-
ogy Animal Scanner (ATLAS, Bethesda, MD, USA) using
both 18F-FDG and 18F-ZHER2-Affibody radiotracers. Ani-
mals were imaged 2 days apart at weeks 9 and 10, scanned
in a prone position (5- to 10-min emission scans, two bed
positions) with a 100- to 700-keV energy window. The
transverse and axial field of views (FOVs) on the scan-
ner were set at 6.8 and 2 cm, respectively. On scanning
days, mice were fasted for approximately 4 h, and they
were allowed to acclimate to the 18F-FDG-PET imaging

facility environment for at least 1 h. After acclimation,
mice were anesthetized using isoflurane/O2, followed by
an injection of the radiotracer (7.4 MBq, 100 μL for
18F-FDG) through the tail vein. All animals were imaged
after a period of radiotracer uptake distribution (1 h)
[12]. 18F-ZHER2-Affibody (6.6 to 7.4 MBq, 100 μL) was
also imaged 1 h post-infection but 2 days later. Note that
the uptake was maximized 1 h after injection and pre-
served its maximized state for approximately 2 h when
18F-ZHER2-Affibody was used [13]. A calibration constant,
obtained from scanning 18F molecules, was used to cor-
rect reconstructed images, which have no attenuation
correction procedure.

MR and CT imaging technique
MR images for mice were acquired on a Philips Achieva
3T clinical MR scanner (Cleveland, OH, USA), with
a specifically designed receiver coil, typically used for
small animals (44-mm diameter × 70-mm long). The fast
field echo (FFE) parameters were as follows: repetition
time (TR) = 15.3 ms, echo time (TE) = 2.4 ms, flip
angle (FA) = 20◦, FOV = 36 mm × 24 mm, resolu-
tion = 0.19 mm × 0.25 mm, slice thickness = 0.562 mm,
number of slices = 32, and scan time = 7.65 min. In
order to fully appreciate tissue boundaries, respiratory-
triggered multi-slice T2-weighted MR images acquired
from a turbo spin echo sequence was used; the parame-
ters were as follows: TR = 4 breathing cycles ≈ 4, 400 ms,
TE = 65 ms, FA = 90◦, echo train length = 11, FOV =
36 mm × 24 mm, resolution = 0.19 mm × 0.19 mm,
slice thickness = 0.562 mm, number of slices = 32, and
scan time ≈ 14 min. We also imaged the mice with the
CT component of a NanoPET/CT scanner (Bioscan Inc.,
Washington, DC, USA) by setting the X-ray tube’s high
voltage at 55 keV (sampling time = 1, 100 ms, in-plane
resolution of pixels = 78 μm) to compare our proposed
methodology with different anatomical modalities.

Co-registration of multimodal images
PET, CT, andMRI images were acquired at different times,
on the same day, and on different scanners. Locally affine
globally smooth affine transformation with tri-linear
interpolation [14-16] was used to spatially co-register PET
images into anatomical correspondence (CT and MRI) in
order to have one-to-one voxel correspondence. Images
were also interpolated to provide the same number of
slices between functional and anatomical images. Valida-
tion of the registrations was further assessed via visual
inspection by three independent expert clinicians.

Automated PET-guided randomwalk image
co-segmentation
Our approach for delineating tumor boundaries in MRI is
similar to the co-segmentationmethod used by Bagci et al.
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[17], except for one criterion: the PET image was ‘roughly’
segmented first in our approach. These rough segmen-
tations were used as foreground seeds (clues) to identify
the location of the tumors. This (identification) process is
quite robust as we only selected the voxels with the highest
intensity values as ‘foreground seeds’ within the roughly
segmented regions. A simple 8-connected (in 2D) or 26-
connected (in 3D) neighborhood search was conducted
to identify background seeds by finding the closest vox-
els nearby the foreground seeds, pertaining to background
regions. We next propagated all background and fore-
ground seeds into the corresponding MR image to guide
and finalize the delineation process in the structural image
domain. This process can be named PET-guided random
walk image co-segmentation, due to the guidance of the
delineation by signatures from PET images. With this
algorithm, voxels having no label were assigned probabil-
ities based on the random walkers’ computed probability,
measuring the strength of the path initiated from labeled
signatures to reach the unlabeled voxels first. Note that
high and low uptake regions in PET image were used as
foreground and background signatures. The overall pro-
cess was performed in three dimensions, and it took only a
few seconds per lesion. The number of voxels enclosed by
the boundary of the pathological site was used to estimate
the volume of the cancerous tissues. We also conducted
the same segmentation experiments on CT images in
order to compare effectiveness of PET/MRI dual modality
images to PET/CT.
It is also important to emphasize that in [17,18], we

proposed a general co-segmentation framework based on
simultaneous random walk on a space formed by fus-
ing complementary information from PET and CT/MRI
images. By introducing certain ‘visibility’ parameters
(i.e., weights for PET and MRI or CT images), resul-
tant delineations can be made much more precise. In
this manuscript, we specifically set the visibility param-
eter of the PET images much lower than the visibility
parameter of the corresponding anatomical images so that
the resulting delineation was performed on the anatom-
ical images. The reason behind this was because the
tumor extent was observed better in MR images than PET
images.
When MRI and PET images of the same subject are

co-registered prior to the segmentation process, there is
one-to-one voxel correspondence between them. Once this
correspondence is established, the next step in our algo-
rithm is to detect a ROI from the PET images. Defining
a ROI can be fully automated or semi-automated. In this
work, we used seed-based identification of the significant
uptake regions. The significant uptake regions (i.e., fore-
ground) were found roughly through finding voxels with
the ‘maximum intensity’ value. Those voxels were consid-
ered as foreground cues (seeds). We provided identifica-

tion of foreground seeds by defining an encoder function
c(λ), equivalent to thresholding for PET images as:

c(λ) =
{
1, λ ∈ [SUVmax/N , SUVmax] ,
0, otherwise, (1)

where (N ≥ 1.5) ∈ R is a free parameter and SUV stands
for standardized uptake value. This process was followed
by background identification (i.e., background seeds).
For background seeds, at each voxel marked as a fore-

ground seed, we explore its neighborhood through a 26-
adjacency graph labeling algorithm in 3D (one may use
8-adjacency if the segmentation is desired in 2D) [19].
For all 26 directions starting from each foreground seed,
we find locations of the very first voxels with values less
than or equal to SUVmax/N . Next, we add additional back-
ground seeds into the voxels lying in the spline connecting
background seeds, determined in the previous step. A
schematic illustration of the seeding process is given in
Figure 1.
Once the seeding process is finalized, the location infor-

mation of the seeds are propagated into corresponding
MR images (Figure 1C). Globally optimal boundaries are
then obtained after processing random walk segmenta-
tion with automatically determined background and fore-
ground seeds. Further details of the proposed method is
given in the next section.

PET-guided randomwalkMR image co-segmentation
We represent an image as a graph such that nodes and
edges of the graph are defined by space elements of the
image (i.e., voxels), and edges of the graph are assigned
with cost values corresponding to voxel adjacency. Graph-
based segmentation methods partition the nodes into two
disjoint subsets representing the object and background.
Suppose G = (V ,E) is a weighted undirected graph with
vertices (nodes) v ∈ V and edges e ∈ E ⊆ V × V. Let an
edge spanning two vertices, vi and vj, be denoted eij, and
weight of an edge be defined as wij. As common to graph-
based approaches, edge weights are defined as a function,
which maps a change in image intensity to edge weights.
In particular, we use un-normalized Gaussian weighting
function to define edge weights as:

wMRI
ij = exp(−βMRI(IMRI

i − IMRI
j )2), (2)

where Ii indicates the intensity at voxel i and βMRI rep-
resents a weighting (i.e., visibility) factor. Conventionally,
the desired random walker probabilities have the same
solution as the combinatorial Drichlet problem [19,20]:

D[ x]= 1
2
(Ax)TC(Ax) = 1

2
xTLx = 1

2
∑
eij∈E

wMRI
ij (xi−xj)2,

(3)



Bagci et al. EJNMMI Research 2013, 3:49 Page 5 of 13
http://www.ejnmmires.com/content/3/1/49

Figure 1 The concepts of automatic detection of foreground and background seeds are sketched in (A to C). Foreground seeds are located
based on the encoder function (i.e., thresholding) given in (A to B). Foreground seeds are allocated in the high uptake areas, and their neighbors
are searched for background regions (B). Foreground and background seeds are propagated into MR correspondence (C). Random walk
delineation is conducted by the guidance of foreground and background seeds.

where x denotes the probability (potential) assumed at
each node [20]. While C is the diagonal matrix with the
weights of each edge along the diagonal,A is the incidence
matrix indicating combinatorial gradients, and it can be
defined as:

Aeijvk =
⎧⎨
⎩
1 if i = k
−1 if j = k
0 otherwise.

(4)

Furthermore, L in Equation 3 represents the combina-
torial Laplacian matrix and can be formulated as:

LMRI
ij =

⎧⎨
⎩
dMRI
i if i = j

−wMRI
ij if vMRI

i and vMRI
j are adjacent nodes

0 otherwise,
(5)

where vMRI is the node pertaining to the graph con-
structed on MRI and di is the degree of a vertex con-
sidering all edges eij incident on vi and is defined as:

di =
∑
eij∈E

wMRI(eij). (6)

In random walk image segmentation, note that some of
the nodes of the lattice are known (i.e., fixed, labeled), VM,
through the seeding process, and some are not known,
VU , such that VM ∪ VU = V and VM ∩ VU = ∅. The
segmentation problem in this case is basically to find the

labels of unseeded (not fixed) nodes. To solve this prob-
lem, it is sufficient to solve Equation 3 through determin-
ing the critical points of the system of equations, in other
words, differentiating D[ x] with respect to x and solv-
ing the system of linear equations with |VU | unknowns.
Solution of the system of equations yields a set of labels
for unseeded nodes if every connected component of the
graph contains a seed.
Since the solution of the system defined in Equation 3

is the combinatorial Dirichlet problem, random walk effi-
ciently and quickly determines the highest probabilities
for assigning labels to the pixels bymeasuring the ‘betwee-
ness’ through the initial pixel of the random walk (labeled
pixel) to the un-labeled pixel reached first by the random
walker. A resulting probability map was used to assign
foreground and background labels to the images. With
this step, boundary identification of the object of interest
was finalized.

Statistical analysis
A quantitative evaluation of the segmentation algorithm
was assessed using true-positive (TP) and false-positive
(FP) rates showing the amount of tissue truly/falsely
segmented by the proposed method. Linear regression
was used to obtain the individual slope for estimated vol-
umes, from each expert’s manual delineation. Detailed
correlation analysis of the two segmentation methods
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(manual and automated) was also conducted by Bland-
Altman analysis.

Results
Comparison of 18F-FDG-PET to 18F-ZHER2-Affibody-PET
imaging
Qualitative comparison
Figures 2 and 3 show representative results for qualitative
analysis of PET/CT images with 18F-FDG and 18F-ZHER2-
Affibody radiotracers, respectively. As can be seen from
Figure 2, 18F-FDG uptake was localized in the heart,
lung, and interscapular brown adipose tissues, and this
lead to difficulties for localizing pulmonary metastases.
Increased background activity made the evaluation of
small pulmonary nodules difficult in 18F-FDG-PET/CT
imaging, whereas pulmonary metastases were local-
ized sufficiently well when 18F-ZHER2-Affibody was
used.

Quantitative comparison
For quantitative analysis, we automatically and roughly
identified uptake regions from PET images using both
18F-FDG and 18F-ZHER2-Affibody, and the resulting
renderings are shown in Figure 4. Note that while
18F-FDG radiotracer did not show specific localiza-
tion of the pulmonary metastases regions (Figure 4A),
18F-ZHER2-Affibody radiotracer showed better identifica-
tion of the tumor regions through segmenting the corre-
sponding tissues in MR images (see Figure 4B,C).

Figure 2 18F-FDG-PET, CT, and fused (PET-CT) images of a
representative mouse. PET/CT (transaxial) sections of HER2-positive
lung metastasis of a representative mouse, 1 h post-18F-FDG injection
(collected 9 weeks after cell injection). First row: fused PET/CT, second
row: PET, and third row: CT.

Structural comparison
In addition, we conducted structure-based image sim-
ilarity measurements to quantify the similarity of PET
images using 18F-FDG and 18F-ZHER2-Affibody. As an
image similarity metric, we used the complex wavelet-
based structural similarity index (CWSSI) [21], where 1
and 0 CWSSI values indicated strong and weak structural
image similarities, respectively. The similarity between
those PET images was found to be 0.7838 (of CWSSI
value). This indicates that without having segmentation
experiments, one may show that there is a significant
structural difference between PET images with different
radiotracers. The differences are mainly due to the the
amount of FP uptake regions in 18F-FDG PET images as
demonstrated in the segmentation experiments. Readers
are referred to [3] for a detailed comparison of 18F-FDG
and 18F-ZHER2-Affibody on a pre-clinical basis, includ-
ing detection and characterization capabilities of each
radiotracer.

Comparison of PET/MR and PET/CT through expert
delineation
Qualitative comparison
PET/MR and PET/CT examinations were feasible in all
animals. As Figure 5 depicts qualitatively, MR showed
higher diagnostic image quality than CT (Figures 2 and 3)
due to its superior soft tissue contrast. CT had resolution
limitations when differentiating tissue types (normal vs.
abnormal). Fused PET/CT and PET/MRI showed correct
localization of tumor regions when 18F-ZHER2-Affibody
was used in PET imaging, but without PET uptake infor-
mation, it was almost impossible to differentiate abnor-
mal tissues from normal tissues in CT only (third rows
of Figures 2 and 3). On the other hand, MR indicated
the boundary of tumor regions to some extent without
using PET information. In order to quantitatively validate
this difference and to observe the limitations of the CT,
we compared the spatial extent of uptake regions from
PET and the anatomical correspondences of those regions
from MR or CT by manual delineations provided by two
expert clinicians (blinded to their drawings). Observers
were presented with fused PET/CT and PET/MRI, and
they randomly selected and delineated 30 lesions from all
image sets. Expert clinicians also independently localized
the true boundary of the lesions and then volumes and
boundaries of the segmented lesions were used to evaluate
observer agreement.

Quantitative comparison
Figure 6 shows linear regression analysis of volumes deter-
mined through manual segmentation by expert clinicians.
As indicated by the correlation coefficients (R2 = 0.84
in PET/CT and R2 = 0.92 in PET/MRI), observers iden-
tified quite similar volumes in PET/MR images, but not
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Figure 3 18F-ZHER2-Affibody-PET, CT, and fused (PET-CT) images of a representative mouse. PET/CT (transaxial) sections of HER2-positive
lung metastasis of a representative mouse, 1 h after 18F-ZHER2-Affibody injection (collected 9 weeks after cell injection). First row: fused PET/CT,
second row: PET, and third row: CT.

in PET/CT. These inter-observer agreement rates suggest
that MRI may be superior to CT for imaging breast cancer
with metastases to the lungs in small animals. Although
we emphasize the fact that MRI ‘may be’ superior to
CT for imaging breast cancer with lung metastases, it is
also important to note that this conclusion is valid only
when lesion boundaries and accurate volumes are essen-
tial. Further validation through biopsy could potentially

support this fact. Nevertheless, the proposed PET-guided
anatomy segmentation in MRI is applicable to CT images
as verified by the comparison experiments.

Qualitative and quantitative evaluation of the proposed
co-segmentation method
We evaluated the presented delineation technique both
qualitatively and quantitatively. Figure 7 demonstrates

Figure 4 18F-FDG and 18F-ZHER2-Affibody localization through surface renderings of segmented regions. (A) Rendered 18F-FDG uptake
regions of a representative mouse after segmentation. (B) Rendered 18F-ZHER2-Affibody uptake regions (shown in red) of the representative mouse
after segmentation was overlaid with segmented FDG uptake regions. (C) Segmented volume due to the 18F-ZHER2-Affibody tracer localization is
shown in color code.
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Figure 5 18F-ZHER2-Affibody-PET, MRI, and fused (PET/MRI) images of a representative mouse. PET/MRI (transaxial) sections of HER2-positive
lung metastases of a representative mouse, 1 h after 18F-ZHER2-Affibody injection (collected 9 weeks after cell injection). First row: fused PET/MRI,
second row: PET, and third row: MRI.

some of the segmented slices from MR images obtained
by the proposed method. For quantitative evaluation, we
compared TP and FP volume fractions of the segmented
tissues with the reference truth, obtained by two expert
clinicians. Note that it is often the case in medical and
biomedical image analysis tasks that radiologist-derived
volumes are accepted as reference truths (i.e., surrogate
truths) when biopsy-proven volume information is not
available, as it is the case in this study. For given refer-
ence truths, it is also necessary to present inter- and/or
intra-observer variations along with segmentation results
for statistical validation. For a fair comparison, we aver-
aged the performances of the two experts and reported
the results in Table 1. Volumes derived by the proposed

segmentation were correlated with expert-derived vol-
umes, as mentioned in the previous subsection. After the
linear regression analysis, the resulting correlation coeffi-
cient was found to be R2 = 0.97. Similarly, Bland-Altman
plot in Figure 8 shows a strong correlation with manual
segmentation results.

Comparison of the proposed segmentation method to the
state of the art
We compared our proposed PET-guided random walk
image co-segmentation method to commonly used image
segmentation methods: region growing [22] and graph
cut [23]. Our proposed PET-guided MR image co-
segmentation algorithm provided a precise boundary and

Figure 6 Observer agreement rates. Observer agreements on segmentation of 30 lesions in PET/CT (left) and PET/MRI (right) are shown. Volumes
were computed as number of voxels within the segmented regions.
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Figure 7 Qualitative evaluations of the proposed segmentation technique. (A) and (C) show examples of MRI axial slices from a mouse that
had breast cancer. (B) and (D) show the accurately delineated pathological site using our proposed method, corresponding to slices in (A) and (C).
While connected tumor region are shown in red, disconnected regions are indicated in green.

volume identification of tumors, whereas the region grow-
ing and the popular graph cut algorithm failed to provide
a precise boundary of the tumor regions. For an example
MR slice demonstrated in Figure 9A, the region growing
algorithm leaks into non-object territories as shown in
Figure 9B, and due to the inherent noise, the algorithm
lacks the ability to capture the precise boundary of the
metastases region. In Figure 9C, leakage in the graph
cut algorithm is inevitable owing to the complex shaped

Table 1 Mean and standard deviation (SD) of TP
(sensitivity) and (1−FP) (specificity) rates within the
proposed segmentation framework

Modality TP(%) 1-FP(%)

PET/MRI Mean 97.3 90.2

SD 0.4 11.8

PET/CT Mean 92.3 82.8

SD 10.1 18.9

PET only Mean 83.2 80.8

SD 2.5 17.5

CT only Mean 56.1 49.9

SD 20.1 29.7

MRI only Mean 89.5 81.4

SD 3.1 15.8

boundary of the tumor regions and highly similar intensity
values of nearby objects. On the other hand, true delin-
eation of the metastases region was obtained with the
proposed method as demonstrated in Figure 9D.
Furthermore, we compared our proposed method to

our previously established semi-automated method, con-
ducted on the same animal model and published in
[3]. Our proposed method provides two advantages over
our previously conducted method: (1) the foreground
(i.e., ROI) and background regions are identified without
the help of human interaction; therefore, the proposed
method herein is fully automated, and (2) the proposed
method does not require an additional false-positive cor-
rection step as opposed to our previous work [3] because
the proposed co-segmentation method in this study is
extremely robust due to automatic identification of highly
reliable background and foreground seeds. With our
previously established interactive method, the total seg-
mentation times took 20 to 25 min per animal (manual
delineation can take 40 to 45 min), whereas the proposed
method only takes 2 min at most.

Robustness analysis for seed selection
By considering PET guidance in our proposed framework,
we are aiming to facilitate the segmentation process by
constraining foreground and background regions auto-
matically. Using an appropriate encoder function, one
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Figure 8 Blant-Altman plots for automated andmanual segmentation results are given. Bias = 76.5, 95% limits of the agreement = [−222.4,
375.4]. Units are in number of voxels. Solid and dashed lines indicate mean of differences and its 95% confidence interval, respectively.

may easily set up localization of the foreground seeds. It is
important to note that spatial positions of the foreground
seeds are not affected from an encoder parameter because
the foreground seeds that we identify are localized in
the voxels with maximum intensity values of the uptake
regions (i.e., SUVmax). On the other hand, the background
seed selection mechanism may be affected by encoder
function. To analyze this effect, we conducted additional

experiments with varying thresholding parameters
(i.e., N) for the background seed selection process.
Figure 10 shows the average dice similarity coefficient
(DSC) rates as a function of N (i.e., thresholding level
for PET images), where the most accurate results were
obtained when N was selected within the reliable region
(i.e., corresponding to typical thresholding values used
in clinical routine). Among them, the sub-region 2 gave

Figure 9 Segmentation evaluation through comparison to the state-of-the-art methods. For a given MRI slice (A), a qualitative comparison of
the proposed segmentation (D), with respect to two of the state-of-the-art segmentations (i.e., region growing in (B) and graph cut in (C)), is
shown. Boundary of the tumors in (B) and (D) are shown in red. Regions identified by graph cut (C) are shown in pink.
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Figure 10 DSC values as a function of PET thresholding
parameter for background/foreground seed selection are
demonstrated. In reliable regions, DSC rates indicate accurate
segmentations compared to an unreliable region, where thresholding
parameter is set unrealistically high. Within reliable regions,
sub-region 2 shows the highest DSC rates compared to sub-region 1;
however, the DSC rates are still comparable. This fact emphasizes the
robustness of the seed selection process through PET thresholding.

almost the same DSC rates and was slightly better than
sub-region 1. Note that most of the thresholding values
give reasonably accurate segmentation results except
when N is set unrealistically high. Even in that case,
around 60% accuracy can be observed. Note that N = 2.5
corresponds to a 40% thresholding of PET images in
practice, which is accepted as a clinical routine in sev-
eral studies. With our framework, similar thresholding
parameters are all lying in the reliable region of the fore-
ground/background seed selection as demonstrated in
Figure 10.

Computational cost and parameter training
All programs used in this study were developed using
C++, gcc 4.5 (Copyright (c) 2010 Free Software Founda-
tion) on a Linux workstation, and all statistical computa-
tions were processed in R (version 2.12.2) and MATLAB
(Copyright (c) 2010 Mathworks). The time required to
identify background and foreground seeds from PET
images and propagate the these seeds into anatomical cor-
respondences for final guidance in the delineation took
2 min at most per animal, whereas the time required
for manual identification of PET regions and correspond-
ing boundaries in anatomical images took an average of
40 to 45 min per animal. For parameters of the graph
cut algorithm, randomly selected slices from MR images
with tumor metastasis were used to determine optimum
parameters for background and foreground intensity pri-
ors. Similarly, mean and standard deviation of intensity
values for a few tumor regions were used as a homogeneity
parameter for the region growing algorithm.

Discussion
In our work, CT to PET and MRI to PET image fusions
were provided by a co-registration process in which small
alignment errors may occur. Therefore, manual adjust-
ment and qualitative judgment by expert clinicians were
often required. This could possibly decrease the effi-
ciency of a study design in terms of timing; however,
the misalignment problem can be solved by hybrid imag-
ing techniques. For instance, recently developedMRI-PET
scanners are starting to be used in small-animal models
[24], where no co-registration process is required since
MR and PET images are obtained simultaneously with this
new hybrid imaging technology.
Measuring the quality of a segmentation algorithm is the

key for creating a deployable system, and it has long been
a research issue how to evaluate segmentation algorithms
when there is no absolute ground truth. The performance
of expert observers generating segmentations of medi-
cal images has been difficult to quantify because of the
difficulty of obtaining or estimating a known true seg-
mentation for clinical data. Unfortunately, there is no
ground truth available if histopathologic samples are not
available. This is the main hurdle for all medical image
segmentation algorithms. Instead, scientists use manually
segmented structures and compare those structures with
algorithm-generated segmentations in terms of overlap or
boundary differences. Currently, manually creating refer-
ence truths is the state-of-the-art segmentation evaluation
and development strategy for the medical image process-
ing and analysis field. Although we followed the state-
of-the-art evaluation metrics for image segmentation in
our work, we would like to note a very recent work of
Kohlberger et al. [25], where authors presented a generic
learning approach based on a novel space of segmenta-
tion features, which can be trained to predict the overlap
error and dice coefficient of arbitrary organ segmentation
without knowing the ground truth delineation. Although
measuring the quality of a segmentation produced
by an algorithm is a long-standing research topic,
arguably, it may be possible in the near future to eval-
uate image segmentation algorithms without having a
reference truth.

18F-FDG-PET/CT imaging has emerged as a clini-
cal cornerstone in many diseases, including oncology,
infection, and inflammation. Because 18F-FDG is a non-
specific marker of cell metabolism, which may be elevated
in tumor growth as well as in immunologic reactions, the
search for more specific markers of disease continues. In
our study, we demonstrated quantitatively that 18F-FDG
was not as strong of a predictor as the 18F-ZHER2 Affi-
body radiotracer when quantifying HER2-positive breast
cancer lesions. We did not re-iterate the invention of
tumor-specific antigen; however, we did provide a suitable
computational platform that clinicians and researchers
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need for measuring anatomical volumes and spatial
extent of the functional information of tumors accurately,
robustly, and longitudinally - and within seconds (for
heightened efficiency). The importance of assessing lesion
volumes, as well as measuring cellular behavior within the
lesions, accurately and efficiently arises from the need to
perform in vivo monitoring of disease progression versus
regression in response to treatment in clinical and preclin-
ical (animal-based) studies. Characterization of lesions
- in terms of volumes and molecular cellular character-
istics - potentially assists staging, which predicts how
aggressive the lesion will be in causing future disease in
the patient.
MRI may be a useful alternative to CT in hybrid PET

imaging. Although MRI has the benefit of contributing
no ionizing radiation to the patient’s exposure (unlike
CT), the use of MRI with PET (instead of PET/CT) is
still an ongoing subject of intense investigation to prop-
erly diagnose and measure lesions. There are currently
numerous studies in the literature comparing MRI with
CT for visualization and quantification of the lungs, and
CT is seemingly far superior at visualizing the lungs
and organs in the chest cavity. Although this is true for
many disease models within the lung anatomy, it does not
change the effectiveness of our method when segment-
ing breast cancer metastases in our small-animal model
using MRI. Our proposed method can also be used for
PET-CT hybrid imaging, as demonstrated in our previous
co-segmentation studies [17,18].
Although it would be useful to investigate the func-

tional characterization of the breast tumors (i.e., benign
and malignant) when the reference standard (i.e., biopsy
specimens) is available, this subject is outside the scope
of this paper. Nevertheless, potentially useful quantita-
tive functional information can also be obtained with
our proposed quantification framework such that pre-
cise functional characterization of the metabolic activities
(i.e., based on the SUV of uptake distribution) may be
possible with the accurate co-segmentation technique we
proposed herein.

Conclusions
In the present study, we quantitatively and qualitatively
compared both molecular imaging agents used in PET
imaging (18F-FDG vs. 18F-ZHER2-Affibody) and structural
imaging modalities (CT vs. MRI). We determined that
the 18F-ZHER2-Affibody radiotracer used in PET imag-
ing, when combined with corresponding MR images,
provided the most suitable platform for robust and accu-
rate volume quantification of HER2-positive breast cancer
lesions in small-animal models. Because the proposed
method can effectively merge and optimize information
from both anatomical and functional images, our method
holds a real potential for identifying new image-based

markers. This computational aid may improve the effi-
ciency and cost-effectiveness of radiology and nuclear
medicine workflows.
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