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Abstract

Background: Serotonergic neurons in the rodent hypothalamus are implicated in key neuroendocrine and
metabolic functions, including circadian rhythmicity. However, the assessment of the serotonergic system in the
human hypothalamus in vivo is difficult as delineation of the hypothalamus is cumbersome with conventional

region-of-interest analysis. In the present study, we aimed to develop a method to visualize serotonin transporters
(SERT) in the hypothalamus. Additionally, we tested the hypothesis that hypothalamic SERT binding ratios are
different between patients with hypothalamic impairment (HI), pituitary insufficiency (Pl), and control subjects ().

Methods: SERT availability was determined in 17 subjects (6 HI, 5 Pl, and 6 healthy controls), 2 h after injection of
123I—N—w—ﬂuoropropyl—ZB—carboxymethoxy—BB—(4—iodopheny|) nortropane (["?2FP-CIm), using single-photon emission

specific-to-nonspecific binding ratios.

Results: In each healthy subject, ['*I]

Trial registration: Netherlands Trial Register: NTR2520

computed tomography (performed on a brain-dedicated system) fused with individual magnetic resonance
imaging (MRI) scans of the brain. The hypothalamus (representing specific SERT binding) and cerebellum
(representing nonspecific binding) were manually delineated on each MRI to assess ["23NFP-CIT binding and

FP-CIT binding was higher in the hypothalamus than in the cerebellum, and
the mean hypothalamic binding ratio of SERT was 0.29 + 0.23. We found no difference in hypothalamic binding
ratios between Hl, PI, and control subjects (HI 0.16 + 0.24, PI 045 + 0.39, C 0.29 + 0.23, p value 0.281).

Conclusions: We were able to demonstrate SERT binding in the human hypothalamus in vivo. However, we did
not find altered hypothalamic SERT binding in patients with hypothalamic impairment.
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Background

The human hypothalamus is a small brain structure of
only 4 ml in the diencephalon that directs a multitude of
important functions in the body, including pituitary hor-
mone release, diurnal rhythmicity, energy homeostasis,
and autonomic regulation [1]. The serotonergic system
is one of the key regulators of these functions [2-6]. Ani-
mal studies showed that numerous hypothalamic areas
receive axon collaterals from serotonergic perikarya lo-
cated in the midbrain [7,8]. Hypothalamic microinjection
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of serotonergic agents into brain-cannulated rats produces
potent and selective effects on feeding patterns and food
choice [9]. Moreover, serotonergic stimulation of selected
hypothalamic areas in rodents affects energy metabolism
[10], circadian rhythmicity [11], and cardiovascular re-
sponses [4]. By inference, dysfunction of the serotonergic
system is likely to be one of the determinants of symptoms
in patients with hypothalamic dysfunction such as obesity,
disturbed sleep, and drowsiness [12-14].

Imaging of serotonin transporters (SERT) with single-
photon emission computed tomography (SPECT) or
positron emission tomography (PET) provides an import-
ant opportunity to study the serotonergic system in vivo.
SERT are expressed exclusively in the membrane of seroto-
nergic neurons and regulate intrasynaptic neurotransmitter
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levels. The concentration of transporters is assumed to re-
flect the homeostatic tone of neurotransmitter systems
[15]. Several studies have investigated SERT in vivo in the
diencephalon in humans [16-19], providing strong evi-
dence for expression of SERT in the human diencephalon.
However, the expression of SERT in the hypothalamus
was poorly defined as spatial resolution of nuclear imaging
techniques is limited, and delineation of a structure as
small and heterogeneous as the hypothalamus is cumber-
some with conventional region-of-interest (ROI) analysis
[20]. To our knowledge, only one study demonstrated
hypothalamic SERT binding using PET and [''C]DASB,
although the delineation of the hypothalamus was not
strictly defined [21].

The aim of this study was to evaluate whether SERT
binding can be demonstrated in the human hypothalamus
in vivo using SPECT imaging and '**I-N-w-fluoropropyl-
2B-carboxymethoxy-3p-(4-iodophenyl)nortropane ([**I]
EP-CIT). For this purpose, we combined conventional
magnetic resonance imaging (MRI) for anatomical refer-
ence with SPECT imaging of the SERT with ['**[]FP-CIT
using a brain-dedicated system [22,23]. This radiotracer is
approved to visualize and quantify dopamine transporters
as early as 3 h after injection [24], but more recent studies
showed its capacity to assess specific binding to
extrastriatal SERT as well. For instance, in rats, [***I]FP-
CIT binding in the hypothalamus could be blocked as well
as displaced by a selective serotonin reuptake inhibitor
[25,26]. MDMA (a selective neurotoxic drug for serotonin
neurons) was able to reduce hypothalamic binding of B-
CIT (a radiotracer pharmacologically comparable to [**I]
FP-CIT) in rats and monkeys [27]. In nonhuman primates,
["'C]FP-CIT binding in the diencephalon was displaced by
B-CIT. In humans, [*1]FP-CIT binding in the midbrain
and diencephalon could be blocked by a selective sero-
tonin reuptake inhibitor [22]. In addition, in an autoradio-
graphic study of the postmortem human brain, [**°I]B-CIT
binding in the thalamus, hypothalamus, and midbrain,
with the exception of the substantia nigra, could be com-
pletely displaced by addition of the selective serotonin re-
uptake inhibitor citalopram, indicating that binding in
these areas is almost exclusive to SERT and not to dopa-
mine transporters [28]. The capacity to assess specific
binding to extrastriatal SERT in humans is optimal be-
tween 2 and 3 h after injection [23,29].

As a next step, we investigated if hypothalamic specific-
to-nonspecific ['**IJFP-CIT binding ratios are impaired in
patients treated for a large sellar tumor giving rise to vis-
ual field defects. These tumors are highly suspect for giv-
ing rise to hypothalamic impairment by various factors
including direct tumor invasion or involvement, trauma
related to surgery, and radiation [30]. As these patients
suffer from pituitary insufficiency, we included a third
group with pituitary insufficiency without a history of
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visual field defects, radiotherapy, and surgery to correct
for potential confounding by endocrine factors.

Methods

Subjects

Six healthy control subjects were included in the present
study. Exclusion criteria were age below 18 or above
65 years; the use of medication interfering with serotonin
or dopamine metabolism (e.g., psychotropic medication
like SSRIs or other antidepressants); lifetime ecstasy, am-
phetamine, or cocaine use; intravenous drug abuse as
measured by self-report; participation in another study as-
sociated with exposure to ionizing radiation during the
last 12 months; pregnancy; and the presence of any con-
traindication for MRI. All subjects completed the Beck
Depression Inventory, the Mini-Mental State Examination,
the Symptoms Checklist, and Snaith-Hamilton Pleasure
Scale before inclusion to exclude subjects with severe
neuropsychiatric problems.

Furthermore, eligible patients with clinical suspicion of
hypothalamic impairment and patients with pituitary in-
sufficiency, i.e., at least one impaired anterior pituitary
hormonal axis, were recruited from the outpatient clinic
of the Department of Endocrinology and Metabolism of
the Academic Medical Centre and the Department of
Endocrinology of the VU Medical Centre. All patients were
seen on a regular basis by an internist-endocrinologist
for clinical and biochemical evaluation. They received
conventional hormone replacement therapy consisting of
L-thyroxin, hydrocortisone, testosterone, recombinant
human growth hormone, and/or vasopressin analogues
when indicated. Exclusion criteria were identical to those
for healthy control subjects.

We selected three groups that were carefully matched
for age and gender: (1) six healthy control subjects (C); (2)
six subjects with probable hypothalamic impairment (HI),
defined as having a history of surgery in the sellar region,
cranial radiotherapy, as well as compression of the optic
chiasm; and (3) five subjects with pituitary insufficiency
(PI), without a history of cranial surgery, radiotherapy, or
compression of the optic chiasm. The HI group consisted
of subjects treated for non-functioning macroadenoma
(n = 3), craniopharyngioma (n = 1), growth hormone
(GH)-producing macroadenoma (n = 1), or dysgerminoma
(n = 1). All subjects with HI were adrenocorticotropic hor-
mone (ACTH)-, thyroid-stimulating hormone (TSH)-,
and luteinizing hormone/follicle-stimulating hormone
(LH/FSH)-deficient; n = 5 had GH deficiency, and n = 2
had antidiuretic hormone (ADH) deficiency. In the PI
group, n = 3 subjects had Sheehan syndrome, and n = 2
subjects had pituitary apoplexy. All subjects with PI
were ACTH-, GH-, and LH/FSH-deficient, and n = 4
were TSH-deficient. As expected, the three groups were
comparable with respect to age, sex, and body mass index
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(Table 1). Written informed consent was obtained from
all subjects, and the study was approved by the Medical
Ethical Committee of the Academic Medical Centre from
the University of Amsterdam and performed in accord-
ance with the Declaration of Helsinki.

["Z1]FP-CIT brain SPECT imaging

Subjects were examined using SPECT with the ligand
['**I]FP-CIT, which has a high affinity for the dopamine
transporter and somewhat lower affinity for the SERT.
Radiosynthesis of ['*’IJFP-CIT was performed as de-
scribed earlier [31]. To block the uptake of free radioactive
iodide in the thyroid, each subject received 300 mg of po-
tassium iodide in the 24 h before the SPECT imaging.
Acquisition of the SPECT images took place at 2 h after
an intravenous bolus injection of approximately 115 MBq
['***IJFP-CIT (range, 110 to 120 MBq). They were per-
formed using a 12-detector single-slice brain-dedicated
scanner (Neurofocus 810, which is an upgrade of the
Strichmann Medical Equipment, Cleveland, OH, USA)
with a full-width at half-maximum resolution of approxi-
mately 6.5 mm throughout the 20-cm field of view. Sub-
jects were positioned with their head parallel to the
orbitomeatal line to acquire axial slices parallel and up-
ward from this line to the vertex in 5-mm steps. The en-
ergy window was set at 135 to 190 keV. Attenuation
correction of all images was performed as described earl-
ier [32], and all images were reconstructed in three-
dimensional (3-D) mode.

MRI

For anatomical reference, a T1-weighted 3-D MRI scan
was acquired from each individual using a 3-T Philips
Intera scanner (Philips Healthcare, Best, The Netherlands)
with a standard head coil.

Image analysis
To analyze the brain SPECT images, we defined ROIs for
the hypothalamus and cerebellar cortex (excluding the

Table 1 Clinical characteristics
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vermis) in each participant. These unique ROIs were
manually drawn by experienced researchers in the field of
the hypothalamus (AA and EF) on each individual T1-
weighted 3-D MRI scan using in-house-developed soft-
ware [33]. AA and EF were blinded to the clinical data.
Using the same software, SPECT scans of the subjects
were manually matched with their individual T1-weighted
3-D MRI scan. In the first step, the individual MRI scan
was reoriented towards the anterior-posterior commissure
line. Second, the individual SPECT data were overlaid
onto the individual MRI and manually matched in all
three (x, y, z) planes. Finally, the mean amounts of radio-
activity/voxel were determined for each ROI. Activity
in the cerebellar cortex (excluding the vermis) was as-
sumed to represent nonspecific binding. The specific-
to-nonspecific binding ratios were calculated as follows:
(Binding in hypothalamus — Nonspecific binding in the
cerebellar cortex) / Nonspecific binding in the cerebellar
cortex [34,35].

Delineation of the hypothalamus on MRI

We delineated the hypothalamus as visualized schemat-
ically in Figure 1, using anatomical landmarks wherever
possible. Rostral border: lamina terminalis, where the
optic chiasm attaches to the mediobasal hypothalamus.
Lateral border: as indicated in Figures 1 and 2. Dorsal
border: septum verum. We included the area of the bed
nucleus of the stria terminalis and the lateral septum. At
a more caudal level (Figure 1B), we used the sulcus
hypothalamicus as dorsal border. Caudal border: we in-
cluded the mammillary bodies as the most caudal hypo-
thalamic structures.

Sample size calculation

In a previous study by Booij et al., ['***I]JFP-CIT binding
ratios to SERT in the diencephalon of healthy subjects
were 0.51 + 0.17 [22]. Blocking of SERT in the dienceph-
alon by paroxetine (a selective serotonin reuptake inhibi-
tor) decreases this binding ratio to 0.17 + 0.15. As no

HI Pl Control subjects p value
=6 n=>5 n==6
Age (year) 510+ 60 538 +6.1 497 +74 0.590
Male/female (n) 2/4 2/3 2/4 0.966
Body mass index, kg/(height)? 327 +£10.1 293+55 266+ 20 0333
ACTH deficiency, n (%) 6 (100) 5 (100) 0 (0)
GH deficiency, n (%) 5(83.3) 5 (100) 0 (0)
TSH deficiency, n (%) 6 (100) 4 (80) 0(0)
LH/FSH deficiency, n (%) 6 (100) 5 (100) 0 (0)
ADH deficiency, n (%) 2 (33.3) 0 0 (0)

HI, patients with probable hypothalamic impairment, defined as having a history of surgery in the sellar region, cranial radiotherapy, and compression of the optic
chiasm; PI, subjects with pituitary insufficiency but without a history of cranial surgery, radiotherapy, or compression of the optic chiasm.
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Figure 1 Delineation of the hypothalamus in coronal view. (A), (B), and (C) represent different levels of the hypothalamus, from rostral (A),
middle (B), to caudal (C). Note that only one side of the hypothalamus is shown.

preliminary data were available regarding the effect of
HI on serotonergic neurotransmission in the hypothal-
amus, we used these values to calculate our sample size,
assuming that healthy controls will have a binding ratio
of ['***I]FP-CIT to SERT in the diencephalon of 0.51 *
0.17, that HI patients will have a binding ratio of 0.17 +
0.15, and that PI patients will have a binding ratio of
0.34 + 0.16. To detect a difference between the three
groups (hypothalamic impairment vs. pituitary insuffi-
ciency without hypothalamic impairment vs. healthy
controls) with significance level a = 0.05, power = 80%,
variance of means = 0.019, and a common standard devi-
ation = 0.16, we needed six subjects per group (used

software: nQuery Advisor 7.0, 1995-2007, developed by
Janet D. Elashoff).

Statistics

Statistical analysis was done using PASW Statistics for
Windows, version 19.0 (SPSS Inc. Chicago, IL, USA).
Numerical variables were presented as mean + SD and
categorical variables as counts (percentages). Interobserver
variability in the hypothalamic specific-to-nonspecific
binding ratios was assessed using intraclass correlation co-
efficient (ICC). Differences between the three groups were
tested with one-way ANOVA or chi-square test where

high activity (yellow).

Figure 2 SPECT and MRI of the hypothalamus. (A) Coronal SPECT image of a healthy subject 2 h after injection of approximately 115 MBq
[")FP-CIT at the level of the hypothalamus. (B) Coronal T1-weighted MRI image of the same subject with ROI drawn on the hypothalamus. (C)
Coregistered SPECT and T1-weighted MRI image with ROl drawn on the hypothalamus. The SPECT images are color encoded for low (black) to
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appropriate. A two-sided p value <0.05 was considered as
statistically significant.

Results

SPECT measures of SERT in the hypothalamus in healthy
control subjects

In each healthy control subject, ['***IJFP-CIT binding was
higher in the hypothalamus than in the cerebellum, and
the mean hypothalamic binding ratio of SERT was 0.29 +
0.23. We found no difference in the hypothalamic binding
ratios of SERT between HI, PI, and control subjects (HI
0.16 + 0.24, PI 0.45 + 0.39, C 0.29 + 0.23, p value 0.281).
Of note, there was a very good interobserver agreement
between the two independent observers (ICC 0.951, 95%
confidence interval (CI) 0.872 to 0.982).

Discussion

This study is the first to demonstrate in vivo SERT bind-
ing in the human hypothalamus using ['**IJFP-CIT
SPECT. We were able to demonstrate hypothalamic
SERT binding by fusing SPECT scans with individual
conventional MRIs. Previous SPECT studies have
reported SERT binding in the human thalamus/hypo-
thalamus region, hypothalamic/midbrain area, or di-
encephalon [18,22,36], and one study examined human
hypothalamic SERT binding using PET imaging and
[''C]DASB [21]. However, the delineation of the hypo-
thalamus in those studies was not as precise as in our
present method. We used 3T-MRI for anatomical refer-
ence to manually draw unique templates of each hypo-
thalamus. The technique used overcomes the lack of
anatomical reference on SPECT images, which has often
been a methodological limitation. Moreover, two experts
with extensive knowledge on the neuroanatomy of the
human hypothalamus delineated the hypothalamus with
a very good interobserver agreement. This is an import-
ant aspect as the exact borders of the hypothalamus are
not a matter of clear-cut certainty [37,38], and the distri-
bution of important cell types is not necessarily limited
by classical hypothalamic neuroanatomical landmarks as
visualized by Nissl staining.

The mean hypothalamic SERT binding ratio of the
present study appeared to be lower than previously
reported in the diencephalon [23], possibly related to a
more precise delineation of the target area in the present
study and to age differences. Central SERT availability
declines with physiological aging [39], and our study in-
cluded subjects older than those in the study by
Koopman et al. [23]. Of note, the binding ratio in the
group of control subjects, as well as in the HI group, is
significantly above 0 (one-sample ¢ test: ¢ = 3.09,
p = 0.027), and the variability in binding ratio is in line
with that reported by Kupers et al. [21].
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We observed a relatively large interindividual variation
in SERT binding potential. This is in line with previous
observations of SERT in the midbrain and diencephalon
areas [21,23,40,41]. We cannot rule out having systemat-
ically underestimated the binding ratio as the cerebellum
contains small amounts of SERT and due to partial vol-
ume effects [42,43]. Using the cerebellum to correct for
nonspecific binding, this underestimation is expected to
be 7% at most [44].

Contrary to our hypothesis, we were unable to demon-
strate differences in hypothalamic SERT binding ratios
between HI, PI, and control subjects, suggesting that
hypothalamic serotonergic neurotransmission is not se-
verely affected in patients suspect for hypothalamic im-
pairment. This is remarkable as serotonin plays a very
important role in the hypothalamus [2-6], which is sup-
ported by immunohistochemical studies in animals
[2,45,46] and humans [47] showing strong SERT immuno-
reactivity in the hypothalamus. Moreover, patients treated
for a sellar tumor giving rise to compression of the optic
chiasm often continue to experience some physical and
mental impairment despite proper endocrine substitution
therapy [48-54]. Interestingly, their impairments show
many similarities with the diverse functions of the hypo-
thalamus and the serotonergic system.

In some, but not all, subjects with HI, we were able to
identify anatomic hypothalamic abnormalities on the
MRI scans. This did not preclude precise delineation,
given the excellent interobserver agreement between the
two independent observers (ICC for the HI group 0.943,
95% CI 0.567 to 0.992).

However, several limitations of our study should be
mentioned. First, subjects having HI and PI are not read-
ily available as their disease is a relatively rare condition
[55]. We managed to include six patients with HI, in line
with our power calculation, and matched each of them
with six age- and gender-matched controls and five sub-
jects with PI. Moreover, the power calculation was based
on the effect of blocking agents on SERT availability.
With our current results, the power of the study is low.
We cannot exclude that the effect of hypothalamic im-
pairment is more subtle and therefore not detectable
with the current design. Furthermore, a straightforward
clinical definition of HI is lacking. Subjects in the HI
group were selected on the basis of a history of cranial
radiation therapy, cranial surgery, and expanding tumor
of the sellar region. Unfortunately, conclusive proof of
hypothalamic impairment is difficult to establish as the
functions of the hypothalamus are highly diverse, and
validated clinical tests or imaging modalities to assess
the integrity of hypothalamic function are lacking.
Therefore, it is possible that some of our HI patients
have only minor hypothalamic impairment which may
mitigate overt serotonergic dysfunction.
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Conclusions

We were able to demonstrate SERT binding in the hu-
man hypothalamus in vivo. This technique will allow
functional studies on hypothalamic SERT in various
pathologies. In particular, our technique might be of
interest for future studies on mood disorders and food
intake regulation, given the importance of the serotoner-
gic system and hypothalamus in these processes. We did
not find altered specific-to-nonspecific [***IJFP-CIT
binding ratios in patients treated for a large sellar tumor
giving rise to visual field defects, although a number of
methodological issues preclude a definitive conclusion.
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