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appropriate scan timing and effect of plasma
amino acid concentrations on the SUV
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Abstract

Background: [11C]methionine (MET) has been used to monitor amino acid metabolism in tumors, the pancreas,
liver, and myocardium. The aim of the present study was to standardize [11C]MET positron emission tomography
(PET) by optimizing the timing of initiation of the scan and applying correction to the plasma concentrations of
neutral amino acids (NAAs), where necessary.

Methods: Sequential whole-body MET PET/computed tomography (CT) was performed in 11 normal adults after
they had fasted for at least 4 h. After whole-body CT for attenuation correction and intravenous bolus injection of
MET, the subjects were scanned from the parietal to the groin. The scanning was repeated six to seven times.
Decay of radioactivity during the PET scan was corrected to the time of initiation of the first scan. The standardized
uptake values (SUVs) were evaluated in various organs by setting regions of interest on the tomographic images.
Plasma concentrations of NAAs were examined in relation to the SUV values.

Results: The SUVs in the pancreas reached their plateau from 6.5 to 11 min after the MET injection, and in the
brain, lung, and myocardium, they reached their plateau from 19.6 to 24.1 min. The MET uptake in the spleen and
kidney peaked early after the injection and steadily decreased thereafter. The SUVs in the liver and stomach wall
rapidly increased during the first 0 to 4.5 min and gradually elevated thereafter during the scan period. Urinary
radioactivity in the bladder reached its plateau from 26.1 to 30.6 min after the MET injection. There were no
correlations between the plasma concentrations of NAAs and the maximal SUV in any organs.

Conclusions: The present study revealed the times taken to reach the plateau of MET uptake in various important
organs, and little effects of the plasma neutral amino acid concentrations on the SUVs in PET studies conducted
after the patients had fasted for at least 4 h. In the MET PET study, 4 h fasting period before MET administration
and the scan initiation 20 min after MET administration provide the SUV values independent of scan initiation time
and the plasma neutral amino acid concentrations.
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Background
L-Methyl-[11C]methionine (MET) is a useful radiotracer
in positron emission tomography (PET) conducted for
the diagnosis of tumors [1-20]. In particular, MET
PET has been shown to enable reliable diagnosis of
brain tumors because of the low physiologic uptake of
MET in the brain. It has been reported that the extent
of tumor cell invasion can be detected more clearly by
MET PET than by computed tomography (CT) or
MRI [2-5,21]. MET PET has also been used to evalu-
ate amino acid metabolism in the pancreas and liver
and, recently, also in the myocardium [22-26]. How-
ever, the study protocol for MET PET has not yet
been standardized. For example, the reported scan ini-
tiation time after MET injection is variable, ranging
from 15 to 30 min (Table 1) [1-13,18,24,25]. Moreover,
the concentrations of neutral amino acids (NAAs) in
the plasma were not measured, despite the possibility
of these affecting the tracer MET uptake by tissues in
a competitive way. Although the NAA concentrations
in the plasma were found to be influenced when mea-
sured after a meal, a fasting period before MET PET
study has not been suggested. The purpose of this
study was to confirm previous published protocols and
standardize the scan initiation times of MET PET for
various organs. We also examined the effects of the
NAA concentrations in the plasma on the standardized
uptake values (SUVs) in the MET PET study.
Table 1 Summary of the scan initiation times after intravenou

Study Site Fasting befo
(h

Nariai et al. [2] Brain No

Shinozaki et al. [3] Brain ≧

Mahasittiwat et al. [4] Brain No

Coope et al. [5] Brain No

Hasebe et al. [6] Head and neck ≧

Jang et al. [7] Thyroid ≧

Herrmann et al. [8] Parathyroid gland 3

Morooka et al. [23] Cardiac tissue 6

Kanegae et al. [9] Lung ≧

Hsieh et al. [10] Lung ≧

Lindholm et al. [11] Breast ≧

Sasaki et al. [12] Thymus ≧

Syrota et al. [19] Pancreas No

Otsuki et al. [22] Pancreas 6

Koizumi et al. [13] Pelvis ≧

Shiiba et al. [1] Prostate Time un

Dankerl et al. [18] Bone marrow 5 to
Methods
Subjects
A total of 11 healthy volunteers (Japanese, nine males
and two females) participated in the present study after
receiving a detailed explanation on the radiotracer drug
and the purpose and contents of the study. This study
was performed with the approval of the institutional ethics
committee for clinical research of Osaka University. Writ-
ten informed consent was obtained from all the subjects.
The mean age of the 11 subjects was 24.4 years (range,

24 to 26 years), and the mean height and weight were
168.45 cm (range, 154 to 176 cm) and 59.45 kg (range,
50 to 78 kg), respectively. None of the subjects had a
prior history of any major medical illness.

Administration of the MET and PET imaging protocol
All subjects fasted for at least 4 h before the radiotracer
injection and underwent blood laboratory tests for NAA
densitometry and sequential whole-body MET PET-CT
(Gemini GXL, Philips, Cleveland, OH, USA) in the three-
dimensional acquisition mode. The scanner provides 220
continuous transaxial slices with a spatial resolution of
5.3 mm full width at half maximum in the axial direc-
tion. The axial field of view is 18 cm. Whole-body low-
dose CT for attenuation correction was performed at
the beginning of each imaging session. Thereafter, MET
(370 MBq/50 kg) was injected as a bolus into the
antecubital vein. Repeated whole-body PET scan of the
s injection of MET

re the scan
)

Scan initiation time
(min)

Dose of MET
(MBq)

20 250 to 500

4 20 370 to 720

23 740

20 740

4 23 374 to 870

6 30 740

15 to 20 272 to 603

20 370

5 15 to 20 361 to 607

6 15 to 30 296 to 555

4 20 to 35 220 to 370

6 15 70 to 818

6 to 8 370 to 740

30 370 to 740

6 23 740

known 20 3 MBq/kg

8 20 1,000 ± 0.2 (SD)
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marked area was initiated at the time of the tracer injec-
tion. Seven repeated whole-body PET scans from the
parietal crown to the groin were performed in each of
ten healthy volunteers, and six repeated whole-body
PET scans were performed in one healthy volunteer.
The data consisted of nine-frame scan with 30-s acquisi-
tion time for each frame, and the interval between
scans was set at 122 s. Decay of radioactivity during
PET scan was corrected to the time of initiation of the
first scan. PET reconstruction algorithms were the line-
of-response row-action maximum likelihood algorithm
(RAMLA) and 3D RAMLA.

Evaluation of the biodistribution
The radioactivities in various source organs were obtained
from reconstructed PET images by averaging the activities
(cps/ml) in the regions of interest (ROIs) in each organ
since the radioactivity distribution within an organ can
be considered uniform [27]. ROIs were manually located
on each organ by tracing the MET activity on the PET
images, and the maximal standardized uptake value (SUV
max) at every mid-scan time was evaluated in various
organs by setting ROIs on the whole-body PET-CT im-
ages. All the PET counts were corrected for physical
decay of 11C (T1/2 = 20.4 min). Circular ROIs with a
diameter 16 to 32 mm were drawn on tomographic
images within the brain, parotid, lung, myocardium,
ventricular blood pool, stomach, spleen, liver, pancreas,
right kidney, right and left intestine, the urine in the
urinary bladder, muscle, and bone marrow, and on
tomographic images within the prostate in the male
subjects and the breast and corpus uteri in the female
subjects. Regarding the bone marrow, the ROI was set
and measured to the fifth lumbar body that an ana-
tomical position tends to identify. Time-activity curves
in 18 source organs were obtained from the six or seven
repeated whole-body PET measurements.

Measurement of NAA concentrations in the plasma
In all subjects, the NAA concentrations in the plasma
were measured after the subjects had fasted for 4 h before
0-4.5 6.5-11 13.1-17.6 19.6-24.1

Figure 1 Whole-body coronal PET images. Representative whole-body
24-year-old healthy male after injection of MET. High accumulation in the
persisted over time.
the PET study. The venous sampling just before the PET
study was submitted and measured by the SRL company.
The amino acids measured were methionine, phenylalan-
ine, tryptophan, isoleucine, leucine, valine, threonine, tyro-
sine, and histidine, which are transported through the
same carrier termed the L-system, as methionine [28].
The affinities of the carrier system for these nine NAAs
are different. When the affinity ratio of methionine to
the nine NAAs is defined as Km(i)/Km, where Km is
the half-saturation constant for methionine and Km(i)
is the half-saturation constant for each NAA, the con-
centration Ci of each NAA divided by the Km(i)/Km is
the concentration corresponding to methionine for the
NAA carrier system. The sum of Ci/(Km(i)/Km) for
the nine NAAs, a weighted sum of the NAAs (C’), is
the methionine-equivalent concentration of the nine
NAAs for the carrier system. The Km(i) in the rat
brain was used as follows: methionine 0.040, phenyl-
alanine 0.011, tryptophan 0.015, isoleucine 0.056, leu-
cine 0.029, valine 0.21, threonine 0.22, tyrosine 0.040,
and histidine 0.100 (μmole/ml) [29]. The weighted sum of
the plasma concentrations of the NAAs determined after
the volunteers had fasted for 4 h was calculated and exam-
ined in relation to the SUV max of each organ in the
fourth scanning at 19.6 to 24.1 min.

Statistical analysis
The relationship between the SUV max of each organ in
the fourth scanning at 19.6 to 24.1 min and the weighted
sum of the plasma concentrations of the NAAs deter-
mined after the volunteers had fasted for 4 h was ana-
lyzed in every part with linear regression and Spearman
correlation tests. In all statistical analyses, significance
was defined as a P value less than 0.05. Statistical ana-
lysis was performed with StatMate IV (ATMS Co., Ltd.,
Tokyo, Japan).

Results
Evaluation of the biodistribution
Figure 1 illustrated whole-body distribution of MET after
venous injection. MET activity in the vessels was depicted
26.1-30.6 32.7-37.2 39.2-43.7 (min)
0

20

SU
V

decay-corrected coronal maximum-intensity projection images of a
pancreas and liver were observed soon after the injection and



Table 2 Average SUV max levels in each organ

0 to 4.5 min
(n = 11)

6.5 to 11 min
(n = 11)

13.1 to 17.6 min
(n = 11)

19.6 to 24.1 min
(n = 11)

26.1 to 30.6 min
(n = 11)

32.7 to 37.2 min
(n = 11)

39.2 to 43.7 min
(n = 10)

Brain 2.1 ± 1.3 2.5 ± 0.6 2.7 ± 0.7 2.8 ± 0.4 2.8 ± 0.7 3.2 ± 0.5 3.0 ± 0.9

Parotid 7.8 ± 4.2 6.1 ± 1.3 5.9 ± 1.3 5.7 ± 1.5 6.0 ± 1.5 5.3 ± 1.7 5.9 ± 2.2

Lung 2.8 ± 0.9 1.2 ± 0.2 1.1 ± 0.3 1.1 ± 0.3 1.2 ± 0.3 1.3 ± 0.4 1.4 ± 0.5

Myocardium 9.0 ± 3.0 4.2 ± 0.8 3.9 ± 0.9 4.0 ± 1.0 3.7 ± 0.9 3.7 ± 0.7 3.8 ± 1.2

Ventricular
blood pool

9.0 ± 3.1 3.0 ± 0.2 2.8 ± 0.8 2.5 ± 0.5 2.6 ± 0.7 2.6 ± 0.6 2.6 ± 0.6

Stomach 15.4 ± 6.1 13.9 ± 4.8 16.1 ± 4.8 16.5 ± 5.5 16.6 ± 5.1 18.5 ± 5.3 17.9 ± 5.4

Spleen 11.2 ± 2.2 6.4 ± 2.2 6.5 ± 2.8 6.2 ± 2.7 5.9 ± 1.8 6.7 ± 2.5 6.3 ± 1.6

Liver 14.5 ± 3.8 12.9 ± 2.2 14.0 ± 2.3 15.1 ± 2.5 15.6 ± 2.0 16.6 ± 2.5 17.2 ± 2.3

Pancreas 30.1 ± 8.3 24.5 ± 5.1 25.9 ± 5.7 26.5 ± 6.7 24.8 ± 6.9 26.5 ± 7.9 24.4 ± 7.0

Kidney 14.4 ± 4.6 7.1 ± 1.9 6.7 ± 1.3 6.8 ± 1.5 6.6 ± 2.1 7.1 ± 2.1 6.7 ± 1.8

Intestine
(right)

5.9 ± 2.4 4.9 ± 2.0 4.9 ± 1.8 5.3 ± 2.0 5.2 ± 2.0 5.3 ± 2.3 4.8 ± 2.3

Intestine (left) 6.1 ± 3.5 4.8 ± 2.9 5.1 ± 3.5 5.5 ± 3.4 4.8 ± 2.2 5.3 ± 2.6 5.6 ± 2.8

Bladder 3.7 ± 1.7 7.4 ± 5.4 10.3 ± 5.4 11.2 ± 5.9 12.8 ± 5.5 12.0 ± 5.9 11.5 ± 4.5

Muscle 2.2 ± 0.7 1.9 ± 0.6 2.1 ± 0.5 2.4 ± 0.7 2.5 ± 0.4 2.2 ± 0.4 2.7 ± 0.8

Bone marrow 6.5 ± 2.2 5.0 ± 1.2 5.4 ± 1.2 5.7 ± 1.3 6.3 ± 1.2 6.6 ± 1.9 5.8 ± 1.3

Prostatea 6.0 ± 1.9 4.7 ± 1.9 5.0 ± 1.7 4.9 ± 1.2 6.4 ± 2.6 5.3 ± 2.0 4.6 ± 1.0

Breastb 1.2 ± 0.0 1.0 ± 0.1 0.8 ± 0.1 1.0 ± 0.4 1.1 ± 0.2 1.3 ± 0.1 2.0 ± 0.9

Uterusb 5.9 ± 0.3 4.0 ± 0.3 3.4 ± 0.1 3.7 ± 0.2 3.9 ± 0.5 3.7 ± 0.1 6.6 ± 1.1

Values are means ± SD. aNine male volunteers were included in the evaluation. bTwo female volunteers were included in the evaluation.

Table 3 Mean plasma concentration of each NAA

NAA Eleven subjects
(nmol/ml)

Normal range (nmol/ml)
(95% CI)

Methionine 26.5 ± 7.4 18.9 to 40.5

Phenylalanine 54.7 ± 8.4 42.6 to 75.7

Tryptophan 44.2 ± 9.0 37.0 to 74.9

Isoleucine 68.6 ± 21.1 43.0 to 112.8

Leucine 118.9 ± 33.3 76.6 to 171.3

Valine 223.2 ± 40.2 147.8 to 307.0

Threonine 131.5 ± 33.6 66.5 to 188.9

Tyrosine 60.2 ± 7.1 40.4 to 90.3

Histidine 78.9 ± 7.9 59.0 to 92.0

Values are means ± SD. CI, confidence interval.
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only from 0 to 4.5 min and was rapidly cleared thereafter.
MET accumulated preferentially in the pancreas and liver
immediately after the injection, and the radioactivity also
persisted at high levels subsequently in the pancreas and
liver. Moderate accumulation in the glandular system,
such as in the parotid glands and bone marrow, was also
observed. The radioactivity of the urine in the urinary
bladder gradually increased and reached a plateau at 26.1
to 30.6 min after the MET injection. MET accumulation
in the brain, lung, and muscle was low throughout the
imaging period. The blood activity was low even from
6.5 to 11 min, suggesting rapid blood clearance.
The average SUV max levels in 18 source organs

were obtained from the seven repeated whole-body
PET measurements in 10 of the 11 subjects and six re-
peated whole-body PET measurements in the remaining 1
subject. The radioactivity of the blood pool in the left
ventricle decreased immediately during 6.5 to 11 min,
suggesting rapid blood clearance. The SUV max in the
pancreas reached a plateau from 6.5 to 11 min after
the MET injection (SUV max = 25). The SUV max in
the brain, lung, and myocardium reached a plateau
from 19.6 to 24.1 min after the radiotracer injection
(SUV max = 3, 1, and 4, respectively). The MET uptake
in the spleen and kidney peaked initially early after
the injection and decreased during this period. Urinary
radioactivity in the urinary bladder reached a plateau
from 26.1 to 30.6 min after the MET injection. The MET
uptake in the liver and stomach wall rapidly increased
during the first 0 to 4.5 min and gradually elevated
thereafter during the scan period. The average SUV max
levels in each organ are shown in Table 2.

Measurement of NAA concentrations in the plasma
The mean plasma concentrations of each of the nine
NAAs in normal adults measured after the subjects had
fasted for 4 h are shown at Table 3. Despite some un-
evenness found in these values, the plasma levels of all
nine NAAs in the 11 subjects measured after 4-h fasting



Table 4 Weighted sum of NAA plasma concentrations for
each subject

Subject number Age (years)/sex C’ (nmol/ml)

1 24/M 687.9

2 26/M 800.2

3 24/M 651.8

4 24/M 1025.2

5 24/M 661.8

6 24/M 601.9

7 25/M 726.6

8 24/M 630.7

9 25/M 525.2

10 24/F 644.8

11 24/F 654.1

C’, weighted sum of the plasma concentrations of the nine NAAs.
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were within the normal range. The weighted sum of the
NAA plasma concentrations measured in the 11 subjects
after they had fasted for 4 h was stable at 525.2 to
1,025.2 nmol/ml (Table 4). There was a significant cor-
relation between the weighted sum of the NAA plasma
concentrations and the time at which the SUV max of
y = 0.0048x + 11.763
R² = 0.0647
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Figure 2 Correlation between the C’ and the SUV max in representativ
were observed between the C’ and SUV max in the brain, pancreas, or liver
On the other hand, a significant correlation was observed between the C’ a
scanning (D).
the urine in the urinary bladder in the fourth scanning
reached a plateau (P < 0.05). No such significant corre-
lation was observed in the other organs. These relation-
ships in representative organs are shown in Figure 2.
Discussion
The present study revealed dynamic changes in the radio-
activity in the whole body for 43.7 min after MET infusion
in normal volunteers. The radioactivity reached a plateau
within 6.5 to 11 min in the pancreas and within 19.6 to
24.1 min in the brain, lung, and myocardium. The radio-
activity, as represented by the SUVs, was not affected by
the NAA concentrations in the plasma if the PET study
was conducted in the subjects after a fasting period of 4 h.
In the 2-[18F]fluoro-2-deoxy-D-glucose (FDG) PET study,

while the SUVs decline in normal tissues in the post-
injection period, those in tumors generally increase,
indicating that the SUVs of normal and tumor tissues
are dependent on the time of scan initiation after infusion.
Therefore, it is important to initiate the scanning at a
consistent time-point after the FDG injection. The SNM
procedure guidelines for tumor PET imaging recommended
that emission images should be obtained at least 45 min
y = 0.007x + 21.639
R² = 0.0182
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in the fourth scanning (19.6 to 24.1 min) in the 11 volunteers (A, B, C).
nd SUV max in the urine contained in the urinary bladder in the fourth
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after injection of the radiopharmaceutical [30]. The EANM
procedure guidelines for tumor PET imaging recommended
a 60-min interval between FDG administration and the start
of image acquisition [31]. In contrast, MET accumula-
tion in MET PET reaches a plateau in most normal or-
gans. The MET accumulation in brain tumors and lung
cancers also reached a plateau at 5 to 10 min after the
radiotracer injection [32,33]. These findings imply that
after the plateau phase is reached, the SUVs of normal
tissues and tumors in MET PET might be independent
of the scan initiation time. In most previous studies, the
scanning was initiated 15 min or later after MET injec-
tion (Table 1). Therefore, in accordance with the above
idea, their SUV values were consistent, despite the dif-
fering scan initiation times. It is noteworthy that the
SUV values of brain tumors and lung cancers measured
at 20 min after MET injection were significantly corre-
lated with the uptake values estimated by repeated PET
scan after MET infusion, metabolite-corrected arterial
input function, and graphic analysis [34].
The radioactivity half-life of MET is short, being 20.4

min. If the PET scan can be initiated earlier than this time
after injection of MET, high radioactivity can be expected,
and much information can be acquired. Even with small
doses of MET, a large number of patients can be evaluated
by MET PET-CT within a short time. This also leads to
reduction of the patient’s exposure to radioactivity. Our
results show that MET PET scanning for evaluating the
aforementioned targeted organs may be started 20 min or
later after injection of MET. However, even if SUV levels
are not stable in all organs, in several organs such as
the pancreas, spleen, and kidney, the scan initiation from
15 min later does not seem to become the problem.
Another factor influencing the SUVs of MET is the

plasma concentrations of NAAs. [11C]MET is transported
through the NAA transporter from the plasma to the
tissues. Therefore, plasma NAA concentrations could
affect the uptake of [11C]MET in a competitive fashion.
Ito et al. reported that brain uptake of the NAA tracer
[18F]fluorophenylalanine was inversely correlated with
the plasma NAA concentrations [29]. However, no previ-
ous studies have investigated the effects of plasma NAA
concentrations on [11C]MET accumulation in the target
tissues. In this study, we did not find a significant effect of
the plasma methionine-equivalent concentrations on the
MET uptake. This is considered to be due to the fact that
in our subjects, the NAA concentrations in the plasma
returned within normal range after a fasting period of 4 h
(525.2 to 1,025.2 nmol/ml). On the other hand, Ito et al.
did not set a fasting period prior to the study [29]. Four of
the 14 patients in their study showed plasma NAA con-
centrations outside the normal ranges.
There are two limitations to this study. First, though

blood clearance was one of the important factors for
determining the best timing of scan initiation, we did
not take blood samples and measure their radioactivities
during the scan. We carefully set and measured ROI in
the left ventricle blood pool instead and confirmed that
blood clearance was rapid. Second, [18F]fluorophenylalanine
mainly recognizes amino acid transport but is not metabo-
lized in the cell, while MET is metabolized in the cells
after transportation. The difference may affect the effect of
NAA on tissue MET uptake.

Conclusions
The present study demonstrated that the SUVs of MET
in normal tissues can be measured by starting the PET
imaging 20 min or later after MET infusion, during the
plateau phase of accumulation, and by requesting a 4-h
fasting period prior to the study. These conditions for
the procedure are expected to provide the SUVs of MET
in the target tissues independent of the scan initiation
timing or the plasma NAA concentrations.
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