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Abstract

Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint
disorders in humans and the development of effective therapies. The assessment of these models primarily relies
on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be
tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in
the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically
translatable way for monitoring disease progression in real time. Our aim is to highlight examples that
demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging
(MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed
tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can
provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence,
animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial
resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized
structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is
a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming
available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment
of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive

methods and animal redundancy.
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Introduction

Bone and joint disorders impose an enormous social
and economic burden on society, causing disability and
substantial patient morbidity. There is a rising demand
for developing effective therapies to improve such con-
ditions [1]. The process of discovering and bringing
drugs to the clinics remains long and expensive; thus,
improving its efficiency remains a major target. Preclini-
cal testing plays a major role in this process enabling
powerful and clinically translatable methods for moni-
toring disease progression and testing drug candidates.
Imaging is becoming an important key technology in
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this process, with its ability to deliver non-invasive and
quantitative cellular and molecular information that can
access the mechanisms of drug action. Thus, imaging is
one of the most promising technologies for improving
the drug development process, facilitating translation
between preclinical and clinical findings [2]. In the last
few years, many large pharmaceutical companies and
research institutions are implementing imaging at criti-
cal stages of their preclinical studies.

With advances in transgenics and animal models for
human disease, researchers are increasingly using ima-
ging not only for drug discovery but also for phenotyp-
ing and understanding the pathophysiology of disease.
Its use has represented a keystone in the refinement of
animal models, allowing longitudinal studies and
enabling a powerful, non-invasive and clinically transla-
table way for monitoring disease progression in real
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time. For many years, studies in animal models relied on
histological analysis of tissues and/or organs post-mor-
tem. These destructive methods limited the ability of
researchers to study the progression of the disease on a
single animal serially over time as well as assessing ther-
apeutic efficiency overtime.

Imaging technologies provide good tools for assessing
anatomical, morphological, physiological and functional
parameters and molecular and cellular processes in ani-
mal models of disease. Imaging protocols and agents
have been developed to enable good spatial resolution
for the physiological and functional properties of tar-
geted tissue, including blood flow, tissue permeability,
metabolism, tissue density, cellular proliferation and
oxygenation. Currently, imaging is increasingly being
implemented at the late stage of preclinical development
through to the clinical phases, taking a major role in the
validation of specific candidate drug or treatment
regime. These non-invasive technologies allow for the
combined use of different modalities to obtain multiple
physiological and functional parameters from a single
animal study. This optimizes greatly the power of such
animal studies and the efficacy of experimental readouts.

The objective of this review is to familiarise the reader
with a selection from the range of imaging possibilities
that are available for assessing bone and joint disorders
in animal models. We will review the technologies avail-
able, discuss their current applications and address their
challenges and future implications for refinement of
musculoskeletal animal models.

Imaging technologies

Micro-computed tomographic imaging

Overview of CT technology

The development of dedicated imaging equipment for
small animals and, in particular, the implementation of
computed tomography (CT) have revolutionised the use
of animal models in musculoskeletal research, becoming
the gold standard for evaluation of bone morphology
and micro-architecture in animal models [3,4]. While
histomorphometric assessment has been extensively
used as the main standard for investigating bone archi-
tecture, the development of 3D imaging techniques such
as CT have provided an accurate non-invasive tool for
directly measuring bone architecture. Indeed, since the
development of clinical CT, the examination of small
animals for research using purpose built CT has rapidly
advanced providing high-quality resolution and fast
reconstruction and assessment protocols for preclinical
applications [5-7].

Micro-CT uses X-ray attenuation data acquired at
multiple viewing angles to reconstruct a 3D representa-
tion of the imaged specimen, characterising the spatial
distribution of the material density [8,9]. Currently
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available micro-CT scanners can achieve high resolution
with an isotopic voxel size of as low as a few micro-
metres (down to 5 um; although new generation on
nano-scanners can go down below 1 um) [10]. There
are, broadly speaking, two different micro-CT construc-
tion systems, one type in which the examined object is
placed in the centre and the X-ray detector and radia-
tion source is mounted in a gantry that rotates around
it; in this system, the geometrical magnification is
defined by the source-detector distance. This set-up is
the one most commonly adapted for animal scanners. In
the second type of CT scanner, the object is rotated
within the course of the X-ray beam and the set-up
allows the free positioning of the sample between the
detector and the source, allowing the adjustment of the
magnification level. This second construction is more
often utilised in ex vivo custom-built systems. There are
also differences on the beam geometry of the X-ray
source used. Images can be acquired by using either a
fan-shaped beam in which data are acquired through
dynamic acquisition plane by plane or by a cone beam -
this is also called ‘volume-CT’ [11] where the scanned
subject is captured completely (based on the axial extent
of the CT field of view) in one rotation, speeding up the
imaging process. Furthermore, micro-CT systems can be
fitted with a flat-panel-based detector system with slip
ring technology that allows for very high-speed data col-
lection [12]. The rapid acquisition times come at the
expense of compromising spatial resolution, but this
may be justifiable for in vivo applications that require
rapid scan times such as perfusion imaging and high-
throughput imaging. Similarly, tissue contrast enhance-
ment can be induced by using a dual-energy X-ray com-
puted tomography method in which the projection data
are acquired by using two different X-ray spectra [13].
Figure 1 illustrates the different micro-CT systems
technologies.

Current availability of multi-modality imaging plat-
forms which can provide integrated positron emission
tomography (PET)/single-photon emission computed
tomography (SPECT)/computed tomography (CT) ima-
ging and analysis are extremely useful for co-registering
images within the same gantry, facilitating a multi-
modal imaging approach within the same animal in vivo
at the same time points during disease evolution [14].
Moreover, rapid image acquisition can also be facilitated
by gating signal acquisition to cardiac and respiratory
cycles by utilising a high-speed shutter system that
allows image times as short as 10 ms [15].

Micro-CT imaging applications of preclinical models for
bone and joint disorders

Micro-CT is extensively used to investigate the structure
and density of bone in rodents. Micro-CT has high spa-
tial resolution and contrast for imaging mineralised
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Figure 1 Diagrams showing the different micro-CT designs for imaging animal models. In the systems shown in image (A, 1 and 2), the
animal is placed in the centre of the set-up and the gantry carrying the detector and the X-rays source is rotated around it. This is the common
setup used in in vivo preclinical imaging. A fan-shaped beam system fitted with a single-slice detector and cone beam system fitted with flat-
panel detector are displayed in (A, 1 and 2), respectively. In the system (B), the specimen is placed on a stand that rotates within its own axis in
the course of the beam. Image (C) shows a multimodality scanner in which the CT is integrated with PET and SPECT systems (Inveon System
Siemens Medical Solutions, Knoxville, TN, USA). This versatile system allows unified PET, SPECT and CT data acquisition. The CT system has an
automated zoom control which allows the operator to adjust the field of view and magnification.

tissues and the ability to qualitatively and quantitatively
assess 3D bone structures. This allows measurements of
trabecular morphology such as thickness and separation.
Micro-CT has been used for a wide range of bone stu-
dies, including bone anatomy and density to assess bone
repair during fracture healing [16]; bone resorption,
remodelling and regeneration [17]; bone neoplasm and
metastases [18] and bone changes influenced by meta-
bolic disorders, e.g. osteoporosis [19] and the characteri-
sation of skeletal phenotypes from different mouse
strains [20]. Figure 2 provides an example of different
imaging acquisitions of various mouse bones used for
skeleton phenotypes and bone repair studies.

The high isotropic resolution can also provide good
information on trabecular bone spatial orientation pat-
terns, density, and geometry and growth plate morphol-
ogy. While much finer detailed imaging can be achieved

in ex vivo samples, micro-CT imaging has proven very
valuable for in vivo longitudinal studies. At least a 100
pm isotropic spatial resolution can be effectively
achieved within a safe and reasonable acquisition time
through longitudinal in vivo studies [21]. Some studies
have reported in vivo isotropic resolutions down to 15
pum in serial imaging sessions using rats (seven sessions
of 10 min acquisitions with an absorbed dose of 0.5 Gy-
CTDI) [22], but there are concerns about the amount of
ionizing radiation delivered during repetitive in vivo
scanning. This radiation may introduce unwanted effects
on the tissues or processes of interest or have an
adverse effect on animal welfare [23].

Micro-CT imaging has also proven to be very valuable
in investigating morphometric changes in joints in
osteoarthritis (OA) animal models [24-26]; it has been
successfully applied to study changes in the subchondral
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Figure 2 Micro-CT images acquired ex vivo from Nude BALB/c mouse skull (3D-volume rendering image). Displaying different anatomical
regions: (a, a') lower and upper incisor tooth, (b) nasal bone, (c) frontal bone, (d) parietal bone, (e) intraparietal bone, (f) right mandible and (g)
molar tooth. (A, B) Coronal views of cranial and caudal 34 areas of the skull, respectively, displaying in image A: (a) roots of the lower incisor, (b)
frontal bone, (h) nasal septum, (i) maxillar/palatine bone, (j) mandible and (k) roots of molar tooth; in B: (d) parietal bones, (I) temporal line and
(m) basis sphenoid bone. (C) Sagittal view of the skull displaying incisor roots (a, a'), nasal, frontal, parietal, intraparietal bones (b, ¢, d, €) and
endoturbine structures (n). Micro-CT images from Nude BALB/c mouse hind foot (3D-volume rendering) showing the -V phalanges, (I) tarso-
crural joint, (m) metatarsal bone, (n) digital bone, (0) claw, (p) calcaneous bone. Examples of micro-CT C57BL/6 mouse femur showing coronal
view and 3D-volume rendering image. (a, b, ¢) Close views of the proximal epiphysis (head and greater trochanter), metaphysis area displaying
cortical and trabecular bone and the femur condyles, respectively. (d) Images displaying a sagittal 3D and 2D cross section of the proximal
epiphysis (d', d”) and a sagittal cross view showing a map of the bone thickness with higher density areas displayed as white (femoral neck). All
the samples were acquired at 80 kVp, 500 yA and with a pixel size of 9.5 um; images were reconstructed in Hounsfield units (HU) and processed

with ImageJ (NIH, Bethesda, MD, USA).

bone architecture in excised osteoarthritic knees in col-
lagenase-induced OA mice [27] and in surgical destabili-
sation models [28]. Figure 3 shows micro-CT
athrograms of mouse knees from the surgical destabili-
sation of the medial meniscus (DMM) model. Recently,
Stok and collaborators [29], by imaging excised knees ex
vivo, showed how changes in subchondral bone seem to
be inversely correlated to the ongoing degenerative
changes in the articular cartilage in STR/ort mice (natu-
rally occurring OA). Indeed, micro-CT imaging provides
quantitative and qualitative 2D and 3D assessments of
bony structures in the osteoarthritic joint such as sub-
chondral bone morphology and bone mineral density,
trabecular bone patterns, meniscus morphology,

heterotopic ossification and subchondral cyst formation
[30]. Figure 3 shows micro-CT athrograms of mouse
knees in C57BL/6 mice, 8 weeks after surgical destabili-
sation of the medial meniscus to investigate changes in
the subchondral bone (Tremoleda et al., unpublished
data). Interestingly, such technology has also been suc-
cessfully incorporated to monitor the progression of OA
in longitudinal studies in rats [31].

One of the major challenges for imaging osteoarthitis
models is that the micro-CT has low sensitivity for soft tis-
sue; hence, compromising the visualisation of the degen-
erative changes in the articular cartilage. Contrast agents
can be used to enhance the contrast resolution of CT ima-
ging, and there have been a few attempts to indirectly
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Figure 3 Computed tomography imaging of the knees in a mouse model of osteoarthritis (DMM model). Images of non-injured mouse
knee (left knee, B) and 2 months after surgical induction of osteoarthritis (DMM model; right knee, A) were acquired ex vivo at 80 kVp, 500 pA
and with a pixel size of 35 um. Series (A) and (B) show 3D surface rendering CT lateral, anterior/posterior and medial views of the DMM-knee
displaying OA-related derangements of the knee morphology 35 (remodelling of subchondral bone, hypertrophic calcifications; A), and of a non-
injured knee (B), respectively. Images were analysed for differences in subchondral sclerosis in the epiphysis: (C) coronal and (Dtransverse views.
Bone density maps show different densities throughout the subchondral weight-bearing lateral and medial regions of the tibial plateau in a
controlled non-injured knee (E) versus a DMM OA-induced knee (F). Notice the high-density area in the medial region (DMM-injury site). Bone
density was measured from micro-CT images (voxel size of 35 um) normalise to HU units, and images were processed with ImageJ (NIH).

Bone density maps

Control knee

Medial

Lateral

visualise the cartilage morphology using these agents in ex
vivo samples [32,33]. To compensate for the poor radio-
opacity of the cartilage, tissues to be imaged are equili-
brated with an ionic contrast agent which is taken up by
the cartilage matrix and distributed inversely to the density
of the negatively charged glycosaminoglycans (GAGs).
This contrast-enhanced CT technique which is based on
the detection of the equilibrium partitioning of an ionic
contrast agent (EPIC-micro-CT) provides good 3D charac-
terisation of the articular surface morphology and liga-
ment insertions ix situ in ex vivo rabbit knees [31]. This
technique allows for the monitoring of surface contours
and healing processes in injured articular cartilage in
defect repair studies as well as changes in cartilage thick-
ness. Changes to other anatomical features such as liga-
ments and non-calcified menisci can also be detected.
While the use of this methodology has great potential for

assessing cartilage degeneration in in vivo longitudinal stu-
dies, the thin layer of articular cartilage and the small joint
space in mice combined with diffusion variability between
contrast agents remain challenges for accurate quantifica-
tion of signal change.

Magnetic resonance imaging

Overview of the MRI technology

Magnetic resonance imaging (MRI) is a non-ionizing 3D
imaging technique that has advantages over other meth-
ods that depend on ionizing radiation such as CT,
SPECT and PET. It remains one of the main imaging
applications of choice for assessment of musculoskeletal
tissue structures such as tendons, cartilage, menisci and
ligaments in the clinical setting and has also being suc-
cessfully tested in animal models (mice [34], rats [35]
and rabbits [36]).
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MRI technology uses the magnetic properties of atoms
and molecules of tissues to be imaged and their interac-
tions with both a large external magnetic field and
radiowaves. The proton 'H is the nucleus mostly used
for anatomical imaging because of its abundance of soft
tissue structures where there is a high water content.
MRI technology utilises a powerful magnetic field (non-
ionizing radiation) to align the nuclear magnetization of
hydrogen atoms, and then, radio frequency (RF) pulses
(through RF coils) are used to systematically alter this
alignment, causing the hydrogen nuclei to produce a
rotating magnetic field that is detectable by the scanner.
The application of radio frequency pulses rotates the
magnetization by 90°. Then, the magnetization returns
to its initial value, and the rate at which the magnetiza-
tion decays away is characterised by two relaxation
times named as T1 and T2. These signals are then digi-
talised and processed to build up enough information to
construct an image of the targeted body area. It is this
relationship between field strength and frequency imple-
mented onto the hydrogen atoms within the tissue that
allows the use of nuclear magnetic resonance for
imaging.

MRI applications for imaging preclinical models for bone
and joint disorders

MRI assessment of bone structure has remained a chal-
lenge due to its composite biomaterial characteristics.
Bone is made up of an organic substrate (mostly col-
lagen type I approximately 40% by volume) and mineral
crystals of hydroxyapatite (approximately 45%). The
remaining volume is occupied by water (approximately
15%). Due to this limited water composition, proton
imaging of bone remains challenging. Advanced micro-
MRI systems have been used successfully to image tra-
becular bone in rats in vivo [37]. These methods rely on
indirectly imaging the trabecular bone structure that
appears as a signal void surrounded by high-intensity
signal from the fatty bone marrow. Because of the small
trabecular thickness in small animals (50 to 100 pm in
rats; 40 to 60 pm in mice), the resolution requirements
are more stringent with a high risk of overestimation of
the trabecular thickness depending on the volume of the
trabeculae and therefore an adverse signal-to-noise ratio
- reinforcing the need for longer acquisition times.

In the preclinical setting, the acquisition of high-reso-
lution MRI within an acceptable time frame remains an
important drawback due to the relatively small size of
anatomical structures in rodents; long acquisition is
needed to generate sufficient isotropic (3D) resolution
with a small-bore MRI and with high field strength.
This needs to be performed with the animal under gen-
eral anaesthesia.

To overcome the limited detection sensitivity and to
increase the signal-to-noise ratio, enhanced pulse
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sequences have been developed. These allow adequate
sample volumes to be scanned with scan times main-
tained within the limits of in vivo tolerance. 3D gradi-
ent-echo sequences allow for a shorter TE than spin-
echo or fast spin-echo sequences, allowing for faster
data acquisition compared to fast spin-echo sequences,
and therefore allow more data averaging within a fixed
duration of scan time [38].

One of the most critical aspects of preclinical MRI is
the radio frequency coil which drives both the signal
excitation and reception. Because the coil’s sensitivity
increases as its volume decreases, animal coils are smal-
ler than humans, improving the signal gain significantly
while still scanning the anatomical area of interest.
Takahashi and collaborators [39] successfully applied
MRI technology using a 3D spin-echo pulse sequence in
conjunction with spectroscopy to investigate the longitu-
dinal changes in trabecular bone architecture in
response to pharmacological interventions in rabbits.
Another promising approach is based on the use of
ultra-short echo-time (UTE) radial acquisition sequences
with hard pulse excitation, which can detect subtle
changes in mineral phosphorus and water contents of
cortical bone (*'P and 'H), as applied for investigating
changes in bone mineralization in ex vivo bones from
oestrogen deficiency-induced ovariectomised rats [40].
The quantification of water content through UTE-MRI
provides a good technique for measuring bone’s hydra-
tion state in situ with great potential for investigating
bone metabolic disorders in vivo. Figure 4 displays the
magnetic resonance (MR) images of rat and mice knees
obtained ex vivo in a 9.4-T MRI scanner using a 3D gra-
dient echo and fast spin-echo multi-slice acquisitions,
respectively.

MRI is extensively used in clinics for assessment of
articular cartilage in joint disorders. As in clinical MRI,
the MR sequence that best delineated the cartilage from
the surrounding tissues, i.e. 3D fat-suppressed spoiled
gradient echo, has also been successfully applied for
depicting changes in the rat knee of OA models [41].
Moreover, some studies in ex vivo rat knees have mea-
sured the spatial distribution of T2 relaxation times as a
function of the water content and the collagen ultra-
structure correlating with the structural integrity of the
articular cartilage [42]. These measurements may permit
early detection of changes of cartilage matrix integrity,
which could lead to osteoarthritis, and thus would be a
relevant preclinical model for the development of clini-
cal treatment before any cartilage morphological altera-
tions occur.

Another commonly used approach is the use of con-
trast agents such as gadolinium (Gd-DTPA, gadopente-
tate dimeglumine or Magnevist™ Schering, Berlin,
Germany). The Gd-DTPA penetrates into cartilage and
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Figure 4 MRI images of a rat (Wistar) and mouse (C57BL/6) knee joint. (A) 3D spin echo MR image (117 x 114 x 144 um) of a rat knee ex
vivo displaying the anatomical landmarks of the articular joint: a = femur condyle, b = tibia, ¢ = patella, d = patellar ligament, e = meniscus, f =
articular cartilage and g = intrapatellar fat pad. (B) Histological image of the knee joint. The MR images provided an excellent visualisation of the
rat knee anatomy, with detailed observations on the subchondral bone and in the articular synovial space. (a, b, ¢, d) Sequential fast spin echo
multi-slices images (axial views from proximal to palmar) from the proximal region of the mouse knee (512 x 512 um). The MR images displayed
the bones of the area of knee joint (1 = patella; 2 = femur; 3, 3' = femur condyles), providing good views of the subpatellar region and the
synovial cavity (see arrows). Images acquired in a 94-T Varian scanner (Varian, Inc, Oxford, UK) with 100 G/cm gradient coils and a Rapid bird-

cage RF coil.

distributes preferentially to areas of the cartilage in
which the GAGs are low. Subsequently, this will induce
a decrease in T1 relaxation that reflects the Gd-DTPA
concentration and thus the distribution of GAGs. This
clinically validated technique is referred to as delayed
gadolinium-enhanced MRI of cartilage and has also
been investigated in preclinical models [43]. Another
application of contrast-enhanced MRI is the assessment
of blood flow perfusion and permeability which has
important physiopathological relevance as reduced bone
blood perfusion is also an indicator of disease progres-
sion and severity. Contrast agents like gadolinium (Gd)
have been applied for imaging bone blood flow using
dynamic contrast-enhanced MRI techniques in animal
models of OA [41]. These techniques may be very valu-
able to assess the healing process and estimate the risk
of avascular necrosis.

Finally, ongoing developments in preclinical MRI tech-
nology, with the implementation of phased-array coils
which by contrast with the traditional single-channel
surface coil can increase the signal-to-noise ratio,
thereby providing superior image sensitivity covering a

specific field of view, have been successfully used for
imaging the knee joint in rats [44].

Nuclear imaging technologies
PET/SPECT systems technology
Bone scintigraphy is extensively used as one of the most
common diagnostic techniques to investigate bone
lesions and metastases in various musculoskeletal condi-
tions and in diagnostic orthopaedic medicine. Further
innovations such as single-photon emission computed
tomography (SPECT) and positron emission tomography
(PET) have allowed the acquisitions of whole-body
images of the entire skeleton. They provide increased
sensitivity for lesion detection and, importantly, a 3D
localization of the radiation emitted by radionuclide
imaging agents or biomarkers with very high detection
sensitivity down to nano- or picomolar concentration.
The growth in clinical nuclear imaging applications
has led to the development of SPECT and PET scanners
dedicated for small animal imaging [45,46]. These sys-
tems have to cope with the small size of rodents; hence,
they have to achieve enhanced spatial resolution and
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high sensitivity for the targeted biomarker. The applica-
tion of this technology in preclinical models has a signif-
icant scope for non-invasively studying dynamic
biological processes at the molecular and cellular level.
It provides good functional information through the
detection of onset and progression of a given biological
process, and can assist in the development of biomar-
kers and in measuring the effectiveness of new
treatments.

SPECT systems record gamma rays directly after
radionuclide emission. The system uses a gamma cam-
era to acquire projections data that are detected using a
parallel hole collimator. However, most of the preclinical
SPECT scanners are equipped with multipinhole colli-
mators to acquire high spatial resolution of foci of
gamma-emitting tracers within the subject volume.
Then, a tomographic reconstruction of the data is
acquired yielding a 3D dataset that can then be manipu-
lated to show any particular axis of the body. PET sys-
tems also detect gamma rays that are emitted by a
biomarker tracer labelled to a positron emitter (F-18, C-
11, N-13, O-15). These radio-nuclides emit positrons
which cause two gamma photons to be emitted in oppo-
site directions by annihilation with an electron. The two
photons are accepted to be in coincidence if their inci-
dence on a detector pair is within a predefined timing
resolution window. The scanner detects these dual emis-
sions ‘coincident in time’, providing a higher radiation
on a given location and thus higher resolution images.
This is in contrast to SPECT systems that rely on hard-
ware collimation. The resolution of preclinical PET
scanner lies in the range of 1 to 2 mm, but some state-
of-the-art dedicated preclinical SPECT systems can pro-
vide better resolution capabilities (down to the sub-
millimetre range) [43]. SPECT radiopharmaceuticals
have a long half-life, and they are routinely produced for
clinical nuclear medicine, making SPECT isotopes easily
available and more cost-effective than PET tracers.
Nevertheless, the high sensitivity of PET tracers and
their integration as biomarkers with multi-capability
applications makes them very well suited for small ani-
mal imaging. Tracers such as '*F-FDG, a glucose analo-
gue, and '®F-FLT, a pyrimidine analogue are used as
biomarkers of tissue metabolic activity and inflamma-
tion, and cell proliferation, respectively.

PET/SPECT imaging applications

Several studies have successfully reported the use of Tc-
99 m-labelled diphosphonate compounds, e.g. methylene
diphosphonate (MDP), hydroxymethane diphosphonate
and hydroxyethylidene diphosphonate, to detect changes
in bone turnover and cartilage composition in osteoar-
thritis models in rodents [47]. The co-registration of
micro-SPECT /micro-CT images allows the detection of
high Tc-99 m MDP uptake, depicting areas of high
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bone turnover, e.g. joints (knees, shoulders), spine and
skull (Figure 5). SPECT imaging of articular cartilage in
rodents has been reported using N-[triethylamonium]-3-
propyl-[15]ane-N (NTP) bound to Tc-99 m. NTP has a
high affinity for binding to negatively charged sulphate
groups of the glycosaminoglycans, a major component
of the cartilage matrix, and it has been successfully used
for in vivo imaging of a cartilage tumoural model in rats
[48].

For PET imaging, '*F-fluoride (NaF) is being exten-
sively used for assessing bone metabolism, and it has a
similar uptake mechanism to °° ™Tc-MDP, being
absorbed onto bone surfaces. This tracer diffuses well
through capillaries reaching bone extracellular fluid
where it is rapidly incorporated in the bone hydroxyapa-
tite. Its negligible binding to plasma proteins, rapid
blood and renal clearance with the high uptake after
injection (40 to 60 min) provides a higher accuracy than
SPECT imaging. Similar to MDD, it is taken up prefer-
entially in malignant cancerous bone lesions such as
sclerotic metastases and areas of altered osteogenic
activity, reflecting an increase in regional blood flow and
bone turnover [49] and for detecting bone micro-
damage [50] in preclinical models.

'8E_FDG is another PET tracer that can be used to
assess inflammatory activity indirectly in bone. '**F-FDG
is not specifically targeted to bone, but as a glucose ana-
logue, it provides a sensitive complementary functional
biomarker in defining areas of inflammation in the axial
and appendicular skeleton. PET scanning with *F-FDG
has great potential for assessing fracture healing as it
can provide a direct quantitative non-invasive assess-
ment of the metabolic activity in the region of interest
and therefore measure bone repair in fracture models
[51], providing information on the treatment and prog-
nosis of delayed fracture healing. '*F-FDG is also widely
used in clinical oncology in musculoskeletal sarcomas,
as the tracer is directly taken up into tumour cells and
is often used to detect metastases. It has been used suc-
cessfully to localise and quantify skeletal metabolic
activity in the study of preclinical cancer metastasis in
bone [52].

Optical imaging technologies

Optical imaging, including fluorescence and biolumines-
cence, is becoming an attractive tool for examining and
monitoring disease states and to determine therapy
effectiveness in living tissues in preclinical models.
Fluorescence technology and applications

Fluorescence imaging relies on the detection of light
emission of specific fluorophore when excited by appro-
priate wavelength energy. Several approaches have been
described in vivo, including the use of non-specific dye
tracking (e.g. for detection of non-specific inflammatory
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Figure 5 Combination of micro-SPECT and micro-CT images. Acquired 3 h post-injection of * ™Tc-MDP (dose 150 MBq i.v.; bone-targeted
tracer) demonstrating in vivo bone imaging in C57BL/6 mouse. Micro-SPECT data were obtained through helical acquisition over an axial field of
view of 100 mm through 60 projections of 30 s. (A, B) Full body SPECT sagittal and coronal images, respectively, to detect the high MDP uptake
within the skeleton with high uptake in joints (knee, shoulders, hip), spine and in the skull. (C) Micro-SPECT/CT coronal 3D image of the animal
showing the MDP uptake; note the high spatial resolution of the CT acquisition to localise the main areas of Tc-99 m-MDP uptake. (D, E) Micro-
SPECT/CT images of the anterior quarter of the animal, showing the high uptake of the tracer in the skull and shoulders-glenohumeral joint, and
the posterior quarter, showing the uptake in the hip joint (femur and sacrum) and the knee joints.

sites), the use of fluorophores tagged-antibody-based
targets for specific cell molecules and/or metabolic path-
ways and the development of fluorescence reporter pro-
teins (e.g. GFP) for the detection of gene expression.
Targeted fluorescence imaging of arthritic joints has
shown an increase in fluorescence signal in the arthritic
joints in disease models. This is in part associated with
increased blood perfusion and vascular leakiness, which
are recognised to occur in areas of inflamed synovium
[53]. In vivo targeting of specific key components identi-
fied during the inflammatory process such as the label-
ling of the F4/80 antigen on macrophages has been
achieved [54]. Similarly, other components of the
inflammatory cascade can be traced in vivo. For exam-
ple, E-selectin-targeted in vivo imaging is a quantifiable
method of detecting endothelial activation. E-selectin or

endothelial adhesion molecule-1 is a 115-kDa glycopro-
tein induced on endothelial cells in response to pro-
inflammatory cytokines involved in rheumatoid arthritis
such as interleukin-1f and tumour necrosis factor alpha
(TNF-a) [55]. E-selectin has been well validated as a
potential biomarker of disease activity in rheumatoid
arthritis [56].

Anti-E-selectin antibody labelled with NIR fluorophore
has demonstrated specific signal increases compared to
control antibody in a mouse model of paw swelling
induced by the intra-plantar injection of TNF-a. This
has also been demonstrated in acute collagen-induced
arthritis, a widely used model of RA. Mapping of fluor-
escent E-selectin-specific signal in difference to the sig-
nal returned from fluorescently labelled control
antibody is demonstrated in Figure 6[57]. Utilising
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Figure 6 Specific anti-E-selectin targeted fluorescent signal co-registered with X-ray imaging. Following injection of either anti-E-selectin
or anti-DNP (control) antibodies labelled with Dylight 750 nm NIR fluorophore (Thermo Fisher Scientific Inc,, Rockford, IL, USA) at a dose of 5 ug
i.v, paw swelling was induced by intraplantar injection of murine TNF-au into the right paw (RP) in C57/BL6 mice (marked by arrows) (n = 4 to
6). Mean fluorescence signal (MFI) quantified at the 8 h time point is shown for different groups of mice. The mean background intensity from

control and anti-E-selectin-targeted animals was subtracted. In the left-hand panel, the corresponding fluorescent image overlaid onto a co-
registered X-ray. The colour wheel to depict signal intensity has been adjusted to the range as shown on the graph.

fluorescent compounds to label antibodies allows for a
more targeted and specific approach to identify different
components of disease, quantify levels of inflammation
and assess the effect of novel therapies. Similarly, activ-
ity-based fluorophores where signal becomes amplified
at the site of inflammation have also been used success-
fully in mouse models of arthritis demonstrating
increases in signal intensity in the injured joint [58].
This type of approach may be particularly useful for
optical imaging in OA, since local perturbations in pro-
teolytic activity may be small and require amplification
for adequate signal detection.

Fluorescence is also extensively used to image the ske-
leton, with a multitude of commercially available bone
specific fluorophores (e.g. OsteoSense™ from PerkinEl-
mer, Waltham, MA, USA), fluorescently labelled alen-
dronate from Caliper®LifeSciences (Hopkinton, MA,
USA) and BoneTag™ from LI-COR™Biosciences (Lin-
coln, NE, USA) [59], which are incorporated in the cal-
cified bone matrix at spots with high bone turnover and
are therefore good indicators of bone remodelling in
sites of bone damage such as fractures and cancer-
induced osteolytic/blastic lesions [60].

Bioluminescence technology and applications

Bioluminescence imaging is based on the detection of
photons produced after an enzymatic reaction in living
organisms. It is commonly used in reporter gene assays,
where the promoters of genes under study have been
linked to the luciferase gene, which in the presence of
its substrate (luciferin) generates light. The most com-
monly used luciferase enzyme used for bioluminescence
imaging purposes comes from the firefly (emitting light
around 560 nm). This approach requires the luciferase
enzyme to be transfected into the living cells and must

be tightly controlled with the appropriate promoter.
Also, a substrate needs to be delivered where the
enzyme may be expressed. This may be challenging for
certain organs and may affect the dynamics of the emis-
sion response due to different pharmacokinetic profiles
related to altered tissue properties. Despite these condi-
tions, its high specificity, low background signal, high
signal-to-noise ratio and the ability to study gene
expression over the lifetime of the animal are reasons
why this technology is used extensively for in vivo ima-
ging studies. Bioluminescence imaging has been success-
fully utilised to study the development of arthritis in
transgenic mouse models [61], and because of its high
sensitivity, it is also used widely in bone metastasis stu-
dies, to monitor the development and progression of
luciferase positive tumour cell lines within the whole
body [62].

Challenges for in vivo preclinical imaging

The implementation of non-invasive imaging technolo-
gies provides a very useful avenue for more rapid, effica-
cious and cost-effective use and characterisation of
animal disease models. They represent a good alterna-
tive assessment tool for the invasive techniques and his-
tological or biochemical assays that are already used
extensively. By combining different imaging modalities,
accurate quantitative and qualitative structural and func-
tional data targeting molecular mechanisms can be
acquired (Table 1).

The ability to image live animals is one of the most
important advantages of these technologies. But this
also represents a major challenge as biological motion,
not only gross body movement but also that induced by
breathing and cardiac activity, affects the resolution of
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Table 1 Main features of current imaging modalities for in vivo preclinical musculoskeletal research

Imaging Resolution Sensitivity Imaging Application Radiation Detection Limitations
modality time depth of
view
Micro-CT 10 um m-cmol Seconds  Excellent contrast for mineralized X-rays No limit Radiation exposure
to tissue
minutes
Mostly anatomical imaging Long acquisition times
MRI 50to 100 p-mmol Minutes  Excellent contrast tissue resolution No No limit High investment
um to hours -anatomical and functional infrastructure and running
Imaging cost
Long acquisition time
Expert operator
PET Tto2mm  p-nmol Minutes Functional imaging Gamma No limit Short half-life PET tracer
radiation (requirement cyclotron
unit)
High cost of tracers
High investment
infrastructure
SPECT <1 mm p-nmol Minutes  Tomographic functional imaging Gamma No limit Limited sensitivity
radiation
High investment
infrastructure
Fluorescent Tto2mm  p-nmol Seconds Functional imaging Fluorescent <1 to 10 cm Not translated into clinical
(optical imaging) to emission modality
minutes
Bioluminescence 1 to 2 mm  p-nmol Seconds Functional imaging Light <10 cm Not translated into clinical
(optical imaging) to emission modality
minutes

Injection of substrate

the images. Animals are imaged under anaesthesia,
which helps to restrain their gross motion, but there is
still the need to control cardiac and respiratory motion.
Moreover, anaesthesia has undesirable effects interfering
with the body temperature control and also respiratory
rates. Close monitoring is required for refining the effi-
cacy of preclinical testing and ensuring the standardisa-
tion and repeatability of studies.

Another important challenge is the small size of ani-
mal specimens that require high resolution and sensitiv-
ity in smaller fields of view and also take into account
the physiological motions of the animals. The imple-
mentation of gating methods has markedly improved
the acquisitions, minimising any interference effects due
to the physiological movement. Gating (prospective or
retrospective, if image acquisition is acquired simulta-
neously or processed post-acquisition) is already imple-
mented in most of the preclinical in vivo imaging
systems using specialised software. The benefits of
applying gating during image acquisition have been well
reported in micro-CT imaging of rodents [13]. While
such motion artefacts may not be so relevant when ima-
ging appendicular skeleton, their effects are significant
when imaging the skull and axial skeleton.

Post-image processing is also of paramount impor-
tance, especially when integrating data acquired through

different modalities and to correct for the posture and
shape variability between different animals or within the
same animal through a follow-up study. While analysing
techniques used for these multidimensional image data-
sets are quite complex and are not easily interchange-
able, many software tools have been developed (e.g.
Amira, Image], OsiriX; see review [63]) providing facil-
ities for image registration, 3D surface-rendering and
image segmentation. To integrate different datasets, the
most commonly used technique is atlas registration,
whereby individual acquisitions are registered to an
idealised expert-defined atlas based on prior images.
Recently, Baiker and collaborators [64] developed a fully
automated method for atlas-based whole-body segmen-
tation from low-contrast micro-CT data which effec-
tively allowed intra- and inter-subject registrations using
data acquired in vivo, with remarkable accuracy, over-
coming large variations in posture and shape. Snoeks
and collaborators [65] nicely demonstrated the strength
of multi-modality imaging by combining the use of bio-
luminescence and micro-CT to image bone metastases
in vivo.

With the increasing demand to acquire higher tem-
poral and spatial resolution images, animal welfare is an
important consideration, especially the cumulative effect
of any radiation dose on the animal’s well-being and
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physiological status. This is of most concern in longitu-
dinal studies where the cumulative radiation dose can
be extremely high. The effect of ionizing radiation in
rodents has been well studied after micro-CT. The lethal
dose in mice, which is typically expressed as LD5g/30
(whole-body radiation dose that would kill 50% of
exposed animals within 30 days) is in the range 5 to 7.6
Gy. The typical X-ray whole-body radiation dose for a
3D micro-CT scan ranges from 0.017 to 0.78 Gy [4].
These sub-lethal doses of radiation are unlikely to really
compromise the animal using in vivo micro-CT for
longitudinal studies. In the case of musculoskeletal
applications, higher resolutions may be required, but it
is likely that only a small area of the animal will be
imaged. The exposure to radiation may be an issue to
be considered in oncological in vivo studies as the dose
is perhaps more likely to have an effect on the growth
of the tumours to be imaged [66] and also could influ-
ence other biological pathways affecting bone remodel-
ling [67].

The potential of small animal imaging goes far beyond
anatomical studies, and by combining all the different
imaging modalities, functional and anatomical analyses
can be integrated. While PET and SPECT can provide
excellent sensitivity for functional procedures through
labelled biomarkers, combination with CT imaging
allows for accurate spatial correlation of the biomarker
within the body. Similarly, other multi-modality
approaches such as PET/MRI are under development to
increase the spatial and temporal resolution of the PET
and the sensitivity of MRI [68].

With the increasing availability of new tracers as bio-
markers to target specific musculoskeletal disorders, data
from PET/SPECT or optical imaging combined with CT
will play a key role in translational bone and cartilage
research. Similarly, optimization of the micro-CT system
is likely to lead to more sensitive detectors and will pro-
vide higher spatial resolution with shorter acquisition
times, reduced radiation dose with improvements in gat-
ing acquisitions and interactive reconstruction. These
will undoubtedly reinforce the use of these techniques
for preclinical research into bone and cartilage disorders.

Conclusion

In conclusion, the increasing use of imaging technolo-
gies in animal models supports its prominent role in
translational research for bone and joint disorders. With
ongoing developments in micro-CT and MRI preclinical
scanners, imaging of bone and cartilage structures can
be achieved down to the micro-structural level, effec-
tively visualising trabecular bone structure and cartilage
composition. On the other hand, the implementation of
PET and SPECT and optical imaging in the musculoske-
letal preclinical field provides significant potential for

Page 12 of 14

investigating the dynamics of bone and joint biological
processes at the molecular and cellular levels with the
ability to monitor the effectiveness of novel therapeutic
targets. New PET and fluorescent tracers are being
developed as biomarkers for specific disorders that can
be utilised for testing the efficacy of new drugs and vali-
dating their safety at early stages of drug development.
Ongoing research is focussing on integrating different
imaging modalities with the aim of facilitating successful
translational applications from anatomical to functional
endpoints, to improve the efficacy in musculoskeletal
preclinical studies.
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