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Abstract 

Background Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, 
but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input 
function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed 
on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we 
describe a novel automated approach to estimate the AIF from brain images.

Results Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a vali-
dation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised 
machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. 
All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descend-
ing aorta IDIF. The average area under the curve error and normalised root mean square error across validation data 
were − 1.59 ± 2.93% and 0.17 ± 0.07.

Conclusions Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-
dependence, and could facilitate the clinical adoption of parametric PET.
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Background
Positron emission tomography (PET) using 18F-fluoro-
deoxyglucose (18F-FDG) has established as a robust diag-
nostic tool, Offering unique insights into tissue and organ 

metabolism [1]
The integration of dynamic PET studies with kinetic 

modeling techniques provides valuable insights into 
the physiological aspects of PET tracer dynamics. This 
approach yields biologically-based parameters at the level 
of individual voxels or regions of interest (ROIs), captur-
ing crucial information on tracer delivery, metabolism, 
and binding characteristics [2]. In the case of 18F-FDG, 
parametric PET generates detailed images of kinetic 
parameters at the voxel level, explaining 18F-FDG uptake 
based on temporal changes in tissue tracer concentration 
extracted from dynamic PET data [3]. A standard method 
for kinetic parameter estimation involves utilizing a com-
partment model, originally developed by Sokoloff et  al. 
[4]. This model allows for the estimation of key kinetic 
parameters, including K1 and k2 (the influx and efflux 
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rates of the tracer between blood and tissue), and k3 and 
k4 (the phosphorylation and dephosphorylation rates of 
18F-FDG). The net influx rate, Ki = K1k3/k2 + k3 , pro-
vides an overall measure of tissue tracer uptake [4–6].

Interest in parametric PET is growing due to the 
increase of interest in precision medicine and parametric 
images are used in diagnosis, treatment monitoring, and 
to determine prognosis, particularly in neurological dis-
eases and oncology. This technique holds the promise of 
delivering more comprehensive clinical diagnostic infor-
mation compared to current SUV-based methods [7].

Parametric PET requires the accurate estimation of 
the arterial input function (AIF), which characterizes the 
time-dependent changes of tracer concentration in the 
arterial blood pool. Conventionally, the AIF is measured 
using arterial blood samples, a method which is time-
consuming and invasive, with the potential for significant 
complications [7].

To enable parametric PET imaging without arterial 
sampling, several non-invasive alternatives have been 
proposed: population-based input functions; joint esti-
mation of AIF with the kinetic parameters; and image-
derived input functions (IDIF). The population-based 
input function methods are simple to apply, but unfortu-
nately introduce errors due to inter-subject physiological 
variability and variations in injection protocols [8]. Con-
versely the joint estimation of the AIF with the kinetic 
parameters increases the unknowns required in the 
kinetic model and therefore is prone to overfitting [9, 10].

The use of an IDIF, which involves estimating the AIF 
directly from PET images, is an attractive non-invasive 
alternative to arterial sampling. The IDIF relies on the 
presence of suitable artery within the field of view and 
has been validated for blood pools such as the heart 
[11], aorta [12], and femoral arteries [13]. The large size 
of which facilitates the placement of a region of interest 
(ROI) and correction or even omission of corrections for 
the partial volume effect [2, 3, 14–17].

In PET brain studies using clinical standard field-
of-view scanners and single-bed protocols, accurate 
IDIF estimation is still challenging as the images lack 
large blood pools. The AIF extracted from intracranial 
vessels in PET images is impacted by partial volume 
effect caused by the small size of the vessels compared 
to the limited spatial resolution of PET scanners [18, 
19]. These issues may lead to underestimation of the 
AIF, affecting its waveform [15, 16]. A study using the 
HRRT PET system (~ 3  mm resolution) proposed a 
multimodal approach to generate IDIF curves, com-
paring them with blood sampling and evaluating MR 
registration. Without MR registration, notable under-
estimation occurred, with an AUC ratio of 0.40 ± 0.19. 
Combining PET with MR segmented regions improves 

results compared to PET alone, yet some underestima-
tion persists, as evidenced by an increased AUC ratio to 
0.69 ± 0.26 [20].

Furthermore, current IDIF approaches require ROIs 
to be manual positioned over the internal carotid arter-
ies or venous sinuses, which is both time-consuming 
and operator dependent [15].

To enhance the accuracy of estimating IDIF from 
brain images, one approach involves outlining the 
carotid arteries using high-resolution MRI and co-
registering the MRI to PET images [15, 21, 22]. While 
this method demonstrates good agreement with gold 
standard techniques [18], it requires an additional MRI 
and involves complex segmentation and co-registration 
pipelines [23, 24], or may be not practical in certain 
cohorts [25–27].

Atlas-based methods for IDIF estimation, which do 
not require individual additional MR images and instead 
rely on predefined blood vessels identified from the MR 
template [22, 28, 29], may encounter challenges such as 
co-registration errors and an inability to account for sub-
ject-specific variations [15].

Alternatively, automated and semi-automated AIF 
extraction methods have been proposed. For example, 
clustered-component analysis, grouping voxels with sim-
ilar time-activity curves for AIF extraction [30, 31], holds 
potential for automated AIF estimation. These automated 
and semi-automated techniques require preselection of 
image classes and advanced partial volume correction 
[16, 30–33].

More recently, machine learning has been employed 
for tissue segmentation and AIF extraction. Kuttner et al. 
[34] demonstrated that long short-term memory (LSTM) 
recurrent neural network models produce lower error 
rates than Gaussian process regression for the estimation 
of the input function from tissue time activity curves. 
Varny et al. utilized a deep neural network implementa-
tion to estimate AIF using sinogram data [35]. However, 
a drawback of current machine learning methods is their 
requirement for computational resources and for exten-
sive training data.

We aimed to develop an automated non-invasive 
method for accurately estimating the AIF using PET 
brain images alone, without modifying the standard data 
acquisition process. By combining similarity metrics 
with unsupervised machine learning, we differentiated 
between arteries and veins, enabling precise AIF estima-
tion comparable to IDIFs from large blood pools. Vali-
dation was performed using dynamic PET data from a 
long axial field of view scanner, allowing comparison of 
the brain-extracted AIF with the IDIF obtained from the 
large blood pool in the same field of view.



Page 3 of 18Moradi et al. EJNMMI Research           (2024) 14:33  

Materials and methods
Human PET imaging—study participants
This study involved 12 subjects who were oncological 
patients (4 females and 8 males) with various tumor 
types, a mean age of 62 ± 16  years and a mean weight 
of 82 ± 19 kg. Data obtained from a prior study, which 
received approval from the local institutional review 
board at the Department of Nuclear Medicine, Inselspi-
tal, Bern University Hospital, University of Bern (KEK 
2019–02,193), were made available for this study [2]. 
Subjects were randomly assigned to a model adjust-
ment group (n = 6) and a validation group (n = 6) see 
Additional file 1: Table S1 for details).

PET‑CT data acquisition
Total Body PET data were acquired using a Biograph 
Vision Quadra PET/CT (Siemens Healthineers) sys-
tem with a 106 cm axial field-of-view. In-plane spatial 
resolution was 3.27 mm full-width at half-maximum 
(FWHM) [36]. List-mode acquisition commenced 15 s 
before the intravenous bolus injection of 18F-FDG 
(average activity: 250 ± 58  MBq), followed by a 50mL 
saline flush. Data were collected for 65 min and parti-
tioned into 62 frames with durations of 2 × 10 s, 30 × 2 s, 
4 × 10  s, 8 × 30  s, 4 × 60  s, 5 × 120 s, and 9 × 300 s. The 
images were reconstructed and then smoothed using a 
2 mm FWHM Gaussian filter, leading to a voxel size of 
1.65 × 1.65 × 1.65   mm3. The standard correction meth-
ods available on the clinical scanner were employed to 
address random coincidences, scatter, attenuation, and 
radioactive decay. For image reconstruction, a point 
spread function (PSF) + time-of-flight (TOF) algorithm 
was utilized with 4 iterations and 5 subsets.

Reference imaged derived input functions
A reference IDIF was generated from a manually 
selected volume of interest in the descending aorta 
(DA), and is denoted here by IDIFDA (Image-Derived 
Input Function from DA). Specifically, mean activity in 
each time frame was obtained from a cylindrical vol-
ume of interest of diameter 10 mm and a length of 10 
mm placed over the lumen of the DA. DA was selected 
based on recent research that compared five different 
blood pools [2]. This choice was favored due to its min-
imal susceptibility to cardiac and respiratory motion, 
along with its larger diameter that mitigates partial vol-
ume effects [2]. Despite not using motion correction 
in our study, we thoroughly assessed descending aorta 
volume of interest visually, particularly in later frames 
for accurate tail delineation and manual positioning of 
ROI.

Framework for IDIFAuto extraction
Automated brain IDIF ( IDIFAuto ) extraction used a voxel-
based search to identify AIF-like shapes from image time 
activity curves, taking into consideration both the peak 
and tail of each curve. This was achieved through the fol-
lowing steps (see Fig. 1):

(1) Data preparation To create a matrix of activity 
curves using brain images, a 2D matrix FM(AM , n) 
was formed from the 4D image F(X ,Y ,Z, n) , where 
F̂  represents the 2D transformed activity curve 
matrix from the 4D image. The matrix F̂  was con-
structed by selecting all brain voxels and arrang-
ing their activity values A into F̂   (location versus 
time), where M denotes the total number of voxels 
encompassed within the field of view ( X × Y × Z ) 
and n is the number of time frames. Brain voxels 
with time activity curves were chosen by applying 
a fixed threshold of one to the averaged image over 
the time series. This ensures the selection of non-
zero voxels containing brain in the images.

 The brain region were chosen to encompass 
a length coverage of 20 cm of head. This range 
matches the coverage of the latest clinical PET 
machines, which typically have a length of 15 to 
26 cm [37].

(2) Shape identification A wavelet transform-based 
method [38] was used to identify peaks and their 
corresponding times in each activity curve.

 The tail activity value for each activity curve was 
considered based on the last two timeframes 
( 55− 65 min ). Subsequently, we computed 
the averages of the top 10 peaks (referred to as 
“ Meanpeak “) and the least 10 tail time activity 
curves (referred to as “ Meantail“). This approach of 
considering the 10 largest peaks and smallest tails 
was adopted to minimize potential noise influences, 
a more robust alternative to evaluating solely the 
single largest peak or smallest tail.

(3) Filtering and clustering: We employed two crite-
ria to filter non-AIF shaped activity curves. The 
first criterion involved selecting curves with peaks 
greater than (1− a1) × Meanpeak , where 9 spe-
cific thresholds ( a1 = 0.1 to 0.9 , steps = 0.1 ) were 
used to filter out curves originating from tissue 
and those with high partial volume effects because 
these were expected to have a lower peak. The sec-
ond criterion accepted curves with tails smaller 
than ((1− a2)×Meantail)+Meantail , where 9 
specific thresholds (ranging from a2 = 0.1to 0.9 , 
steps = 0.1 ) were investigated to filter out curves 
with high activity values in the tail of the time activ-
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Fig. 1 Illustration of the automated framework for extracting the Image-Derived Input Function (IDIF) from brain images
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ity curve, assumed to reflect tissue 18F-FDG uptake. 
Following the filtering stage, the chosen activity 
curves were classified into two groups through hier-
archical clustering [39].

 The processes of shape identification, filtering, and 
clustering were implemented in MATLAB® R2021b 
(MathWorks, Natick, MA). For shape identifica-
tion, the continuous wavelet transform method was 
employed, utilizing the built-in function ‘CWT’ 
with setting of using the “Morlet” wavelet function 
with scales ranging from 1 to 100 and a threshold 
of 0.5 for significant coefficients (these settings are 
based on the requirements of the CWT function in 
MATLAB® R2021b). For clustering, we employed 
hierarchical clustering, an unsupervised machine 
learning approach. We utilized the ‘ward’ linkage 
method to group the selected activity curves and 
divided the dendrogram into two clusters using the 
‘maxclust’ option.

(4) IDIF formation Two clusters were identified and 
averaged. The averaged curves had different shapes 
and peak latencies, as expected from venous and 
arterial time activity curves and were labeled as 
IDIFArtery and IDIFVein , representing the image-
derived arterial and venous input functions, respec-
tively.

To compare these clustered curves with the IDIFDA , the 
65-min imaging window was divided into seven time peri-
ods ( Tp , p ranging from 1 to 7): T1 was selected within the 
timeframe of 0 min to 20 s after the time of identified peak 
to ensure that it captures the highest point of the curve in 
the initial period, T2 = T1 + 10 min , T3 = T2 + 10 min , 
T4 = T3 + 10 min , T5 = T4 + 10 min ,  T6 = T5 + 10 min 
and T7 extends from the end of T6 to the end of the 65-min 
acquisition period. The area under the curve ( AUC ) for 
each time period ( AUCArtery

Tp
 and AUCVein

Tp
 ) was calculated, 

and compared with the AUC for the IDIFDA ( AUCDA
Tp

 , p 
ranging from 1 to 7). The IDIFAuto was determined by 
selecting the combination of IDIFArtery and IDIFVein  that 
had the lowest AUC error across T1 to T7.

IDIFAutoevaluation
The goodness of IDIFAuto estimation was assessed using the 
AUC and Normalised Root Mean Square Error ( NRMSE ) 
compared to IDIFDA . The AUC error was calculated using:

(1)AUCerror =
AUC − ÂUC

ÂUC
× 100,

where AUCerror is the percentage error, AUC is the AUC 
for the estimated IDIF and ÂUC is the AUC for the 
IDIFDA . The NRMSE was calculated as:

where ft  denotes the estimated IDIF at the tth time point, 
f̂t  is the corresponding value for the IDIFDA , and T  is the 
total number of timepoints in the IDIF.

Exploring patient information variations and evaluating 
algorithm performance by weight
To investigate potential variations in patient informa-
tion within the model adjustment and validation groups, 
we analysed age and weight data from Additional file 1: 
Table  S1 and reported the corresponding results of sta-
tistical tests. Moreover, irrespective of adjustment and 
validation groups, we evaluated the algorithm’s perfor-
mance based on patient weight by organizing the data-
set into three weight groups: Group 1, comprising four 
subjects with the highest weights (97 ± 22 kg); Group 2, 
including four subjects with medium weights (74 ± 5 kg); 
and Group 3, encompassing four subjects with the lowest 
weights (57 ± 6 kg). Mean and standard deviation values 
of AUCerror and NRMSE were presented, accompanied 
by the results of statistical tests.

The impact of different PSF Settings (FWHM 
of the Gaussian kernel) on the accuracy of IDIFAuto
To evaluate the performance of our framework at 
different image resolutions, we applied additional 
Gaussian blurring using 3D kernels with FWHMs 
of 1mm, 2mm, 3mm, 4mm, and 5mm to the images. 
Following additional blurring, the resulting image 
resolutions were FWHM of 3.95mm, 4.31mm, 
4.86mm, 5.53mm, and 6.29mm, calculated using 
FWHM =

√
(FWHM1)

2 + (FWHM2)
2 + (FWHM3)

2  . 
The native in-plane spatial resolution, denoted as 
FWHM1 , was 3.27mm [36]. Additional smoothing with 
a Gaussian filter of FWHM 2mm ( FWHM2 ) was applied 
to the original PET data during reconstruction. FWHM3 
represents further Gaussian blurring applied to assess 
different PSF settings. The AUCerror and NRMSE at each 
of these resolutions was calculated as above. We also 
evaluated the average number of voxels identified as 
veins and arteries at each new FWHM value.

(2)NRMSE =

√√√√√ 1

T

T∑

t=1

(
ft − f̂t

)2

f̂t
2

,
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Pixelwise kinetic modelling
Time activity curves were fitted using the irreversible two 
tissue compartment model (2TCM):

where CT (t) represents the measured total tracer concen-
tration in tissue, Cp(t) and Cb(t) represent the concentra-
tion of tracer in plasma and blood, t (in min) is a point 
in time, vb represents the fraction of volume occupied by 
the tracer in the blood pool, while the symbol ⨂ denotes 
the convolution operation. Parameters K1 ( ml/cm3/min ), 
k2 ( 1/min ), and k3(1/min ) are the kinetic parameter 
respectively representing tracer influx and efflux rates 
between blood and tissue and the rate of phosphorylation 
18F-FDG [4–6]. Kinetic parameters were generated using 
both IDIFDA and IDIFAuto for Cb(t) . Equation (3) was fit-
ted using the nonlinear least squares method, utilizing 
lsqcurvefit, a built-in function available in MATLAB® 
2021. For optimization, the Levenberg–Marquardt (LM) 
algorithm [40] was employed. The initial values for fitting 
K1 , k2 , k3 , and vb were set to 0.01. The lower bounds for 
all parameters were set to zero, while the upper bounds 
were set to one. Spatially resolved parametric maps for 
K1 , k2 , and k3 were generated for each brain. The net 
influx rate constant, representing the overall rate of tissue 
tracer uptake:

was computed directly from the kinetic parameters.
No extra smoothing, filtering, or manual outlier adjust-

ments were implemented to handle noisy data.

Patlak analysis
We applied the Patlak linear graphical plot method to the 
40–65 min data from each brain time activity curve, to 
ensure that pseudo-equilibrium was achieved [2], and Ki 
maps were generated using IDIFDA and IDIFAuto using 
the function lsqlin, a linear least-squares fitting algorithm 
implemented in MATLAB®.

Statistical analysis
Coefficient of determination ( R2 ) and linear regres-
sion analysis were performed to assess the correlation 
between the parametric maps estimated using IDIFDA 
and IDIFAuto . To compare the estimated parameters 
derived from different input functions, we presented the 
mean, standard deviation, and error, and also conducted 
a paired Student’s t-test. A significance level of 0.05 was 

(3)CT (t) = (1− vb)

((
K1k2

k2 + k3
e−(k2+k3)t +

K1k3

k2 + k3

)
⊗ Cp(t)

)
+ vbCb(t),

Ki =
K1k3

(k2 + k3)

(
ml/cm3/min

)

used to determine statistical significance. The verifica-
tion of normality assumptions was conducted through 
the Shapiro-Wilks test [41] with a significance level set at 

p < 0.05.

Results
Threshold level selection for clustered time activity curves
Figure 2 shows the identified voxels in the brain associ-
ated with activity curves for participant 6. The impact 
of setting a1 = 0.4, 0.5, 0.6 and 0.9 when a2 = 0.9 on the 
extracted data are shown. Two clusters can be discerned 
for each of the two threshold levels, and a difference in 
time to peak between the activity curves in these clusters 
is apparent. To differentiate between the two clusters, the 
activity curves with early peaks were labelled as arter-
ies, while those with late peaks were labelled as veins, 
as shown in Fig. 2. The voxel locations corresponding to 
each of the curves, corresponded to the expected loca-
tions of arteries and veins. These findings were consistent 
across all participants.

Upon visual inspection, voxels with the largest peaks 
were consistently linked to the lowest tails, primarily 
originating from large artery vessels.

Additional file 1: Table S2 compares the averaged clus-
tered IDIFs with the reference IDIFDA and shows the 
AUCerror for each cluster for different threshold levels 
( a1 = 0.1to0.9). Our results showed that the a2 thresh-
old level had a minor impact on the extracted IDIFs; we 
chose a2 = 0.9 (only activity curves with tails smaller 
than ((1− a2)×Meantail)+Meantail ) to minimise the 
likelihood of including high uptake tissue activity curves. 
We found that the average AUCerror for IDIFArtery was 
about four times larger than for the IDIFVein irrespec-
tive of the threshold level and participant. Additionally, 
the average AUCerrors for IDIFVein were − 1.98 ± 7.37%, 
− 2.55 ± 6.34% and − 3.80 ± 7.01% at the respective 0.4, 
0.5, and 0.6 threshold levels. For the same threshold 
levels, the  AUCerrors of IDIFArtery  were − 16.37 ± 7.05%, 
− 19.61 ± 4.17%, and − 20.44 ± 4.01%. These three thresh-
old levels were identified as optimal among the six par-
ticipants, as the AUCerrors for IDIFVein were found to be 
the lowest for each specific threshold level, with two par-
ticipants exhibiting the minimum error for each level. As 
such, input functions were created by averaging across 
these three levels, yielding IDIF0.4−0.6

Vein  and IDIF0.4−0.6
Artery  . 

The AUCerror for IDIF0.4−0.6
Vein  and IDIF0.4−0.6

Artery  were found 
to be − 2.97 ± 4.44% and − 18.76 ± 6.36%, respectively.
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IDIFArteryand IDIFVein compared to IDIFDA and formation 
of IDIFAuto
Additional file 1: Table S3 presents the AUCerrors in T1 to 
T7 , comparing IDIF0.4−0.6

Vein  and IDIF0.4−0.6
Artery  with the refer-

ence IDIFDA . The findings highlight that during T1 , which 
included the initial input function peak, the averaged 
AUCerror across participants for IDIF0.4−0.6

Artery  (− 1.36%) was 
lower than for IDIF0.4−0.6

Vein (15.84%). However, for all other 
time periods, the AUCerror for IDIF0.4−0.6

Vein  was lower than 
that for IDIF0.4−0.6

Artery .
Based on our findings, we observed that the optimal 

approach is to combine the initial peak of IDIF0.4−0.6
Artery  

with the remaining portion after the first peak from 
IDIF0.4−0.6

Vein  to obtain IDIFAuto . To achieve this, we inter-
polated the AIF shape to a lower time frame period of 

2 s. To minimize any discontinuity and step-like shape 
in the final AIF, we averaged values in IDIF0.4−0.6

Artery  and 
IDIF0.4−0.6

Vein  for two time points (4s) before and after the 
concatenation point, replacing them with the actual 
values to obtain IDIFAuto . We then interpolated back 
to the original 62 frames in this study. Table 1 reports 
the delay in seconds between IDIFs derived from the 
descending aorta and brain arteries and veins for each 
subject (P1 to P6). No significant difference in mean 
time to peak was observed between the descending 
aorta and brain arteries (delay = 0.66 ± 1.03  s, paired 
t-test, P = 0.17), with the mean delay with respect to 
brain veins being 6.00 ± 1.26 s and 6.66 ± 1.63 s respec-
tively. A maximum delay between the descending aorta 
and brain vein of 8  s was observed for P1, P3 and P4, 

Fig. 2 First column shows of the identified voxels in the brain associated with activity curves for participant 6 at four different threshold levels 
( a1 = 0.4, 0.5, 0.6 and 0.9 when a2 = 0.9 ). Second column shows the clustered activity curves with early and late peaks, respectively, labelled 
as arteries (green lines) and veins (blue lines). The maps in third and fourth columns show the location of the curves back onto the anatomical 
regions from which they were extracted, clearly showing the location of large arteries (green pixels) and large veins (blue pixels)
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while a minimum delay of 4 s occurred for P2. No sig-
nificant delay was found between the vein IDIF and 
tissue time activity curves (delay = 0.33 ± 0.81 s, paired 

t-test, P = 0.36). In the formation of IDIFAuto , we first 
calculated the difference in time to peak between the 
arterial and venous IDIFs and shifted the time points of 
the venous curve to align the peaks of the arterial and 
venous IDIFs.

IDIFAutofor the adjustment cohort (n = 6)
Figure  3 displays the IDIFAuto for the six subjects from 
the adjustment cohort. The automatically extracted 
IDIFs for all six accurately captured the shape of IDIFDA . 
Table  2 summarises participants’ AUCerror and NRMSE 
values. The average AUCerror was − 4.31% and the mean 
NRMSE was 0.21.

IDIFAutofor the validation cohort (n = 6)
To validate IDIFAuto , the approach was applied to a vali-
dation group of six additional subjects (Fig.  4). Auto-
matically extracted IDIFs for all subjects in the validation 

Table 1 Comparison of delay in seconds between IDIFs derived from the descending aorta, brain arteries, brain veins, and tissue time 
activity curve (TTAC) for each subject in the adjustment group (P1 to P6)

Delay (seconds) Artery versus DA Vein versus DA TTAC  versus DA Vein  versus artery TTAC  versus vein

P1 0 8 8 8 0

P2 0 4 6 4 2

P3 2 8 8 6 0

P4 2 8 8 6 0

P5 0 6 6 6 0

P6 0 6 6 6 0

Mean ± SD 0.66 ± 1.03 6.66 ± 1.63 7 ± 1.09 6 ± 1.26 0.33 ± 0.81

Fig. 3 Displays a comparison between the arterial input function automatically extracted from brain images ( IDIFAuto ) and the descending aorta 
IDIF ( IDIFDA ) for the six subjects from the adjustment cohort (P1–P6). The IDIFAuto is represented by the purple dashed line, and the IDIFDA is shown 
as the red dashed-dotted line

Table 2 Comparison of AUCerror and NRMSE between the 
automatically extracted arterial input function from brain images 
( IDIFAuto ) and the descending aorta IDIF ( IDIFDA ) for six subjects in 
the adjustment cohort (P1-P6)

AUCerror (%) NRMSE

P1 − 5.87 0.15

P2 − 10.98 0.20

P3 4.54 0.45

P4 − 11.89 0.18

P5 − 2.70 0.18

P6 1.02 0.11

Mean ± SD − 4.31 ± 6.54 0.21 ± 0.12
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group were consistent with individuals’ IDIFDA on vis-
ual inspection. The performance metrics, including the 
mean AUCerror and NRMSE values, showed slightly 
better results for the validation group compared to the 
adjustment cohort, as depicted in Table  3. Specifically, 
the mean AUCerror and NRMSE values in the validation 
group were − 1.59% and 0.17, respectively, whereas in the 
adjustment group, they were 4.31% and 0.21.

Analysing subject disparities in adjustment and validation 
groups, and evaluating algorithm performance by patient 
weight
In exploring potential factors influencing cohort per-
formance metrics, it is noteworthy that no significant 
age difference existed between the adjustment group 
(61 ± 19 years) and the validation group (62 ± 18 years), as 

determined by a paired Student’s t-test (P = 0.9). Similarly, 
no significant weight difference was observed (87 ± 25 kg 
and 66 ± 9 kg, respectively; paired t-test, P = 0.14).

The algorithm’s performance was similar in the groups 
defined according to patient weight with no significant 
differences in AUCerror being observed in comparisons 
between Group 1 vs Group 2, Group 3 vs Group 2, and 
Group 1 vs Group 3 (P = 0.39, 0.5, and 0.97, respectively; 
Group 1: 3.7 ± 6.49, Group 2: − 1.14 ± 2.4, and Group 3: 
− 3.9 ± 6.19). Similarly, there were no significant differ-
ences in NRMSE (P = 0.24, 0.054, and 0.66, respectively; 
Group 1: 0.24 ± 0.13, Group 2: 0.13 ± 0.03, and Group 3: 
0.2 ± 0.08) between the three groups, indicating that body 
weight had no observable impact on cohort performance 
metrics.

The impact of image resolution on the accuracy of IDIFAuto
Figure  5 shows that the mean and SD of the AUCerror 
and NRMSE increases with FWHM. Without additional 
blurring, IDIFAuto underestimated IDIFDA with a mean 
AUC and NRMSE of 1.59% and 0.17. At a FWHM of 
3.95mm, mean AUCerror and NRMSE were − 5% and 
0.20 in the validation group. The highest AUCerror , was 
around 20% underestimation, at a resolution of 6.29mm 
FWHM.

Figure 6 displays the average number of voxels iden-
tified as veins and arteries at threshold levels of 0.4, 
0.5, and 0.6 for different FWHM values in the valida-
tion group. At a FWHM setting of 3.83mm, mean and 
standard deviation of the number of voxels identi-
fied as arteries and veins were 431 ± 165 and 698 ± 395 

Fig. 4 Displays a comparison between the arterial input function automatically extracted from brain images ( IDIFAuto ) and the descending aorta 
IDIF ( IDIFDA ) for the six subjects from the validation cohort (P7–P12). The IDIFAuto is represented by the purple dashed line, and the IDIFDA is shown 
as the red dashed-dotted line

Table 3 Comparison of AUCerror and NRMSE between the 
automatically extracted arterial input function from brain images 
( IDIFAuto ) and the descending aorta IDIF ( IDIFDA ) for six subjects in 
the adjustment cohort (P7–P12)

AUCerror (%) NRMSE

P7 0.42 0.17

P8 0.81 0.18

P9 1.49 0.32

P10 − 5.84 0.14

P11 − 2.69 0.10

P12 − 3.71 0.13

Mean ± SD − 1.59 ± 2.93 0.17 ± 0.07
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respectively. At all FWHMs, more voxels were identi-
fied as venous than arterial and the difference between 
venous and arterial voxel number increased with 
FWHM in all participants.

Parametric mapping and Patlak analysis
The parametric maps in Figs.  7 and 8 were generated 
using a two tissue compartment model and provide a 
comparison of IDIFAuto and IDIFDA in two representa-
tive oncological subjects. Visual inspection of the Ki 
maps obtained using  IDIFAuto and IDIFDA  did not 
detect qualitative differences. Minor qualitative differ-
ences were evident for K1 , k2 and k3 maps in some sub-
jects in keeping with the sensitivity of these parameters 
to slight changes in AIF shape.

When we compared scatter plots (Figs.  9 and 10) of 
kinetic parameters at each brain voxel, estimated using 
each IDIF,  R2 exceeded 0.87 for K1 , k2 and k3 , and was 
0.99 for Ki when either AIF estimation method was 
used. Individual rate constant estimates ( K1 , k2 , k3 ) dis-
play higher variability than Ki (Additional file 2: Fig. 1 
and Additional file  3: Fig.  2), with the R2 differing by 
less than 1 (Fig. 9).

The regression line slopes for Ki in both the 2TCM and 
Patlak analyses were approximately 1.06 and 1.04, slightly 
exceeding one (Fig. 10). Conversely, the slopes for K1 , k2 
and k3 were 0.88, 0.91, and 0.98, slightly falling below one 
(Fig. 9).

The results of kinetic parameter estimation in gray and 
white matter using IDIFAuto and IDIFDA are presented in 
Additional file 1: Table 4. K1 , k2 , and k3 estimates for gray 
matter using IDIFDA were 0.173 ± 0.039  ml/cm3/min , 
0.137 ± 0.054, and 0.053 ± 0.0151/min , respectively. Cor-
responding estimates for white matter were 0.061 ± 0.021 
ml/cm3/min , 0.094 ± 0.049, and 0.025 ± 0.015 1/min . 
These values are consistent with previously reported 
ranges [42, 43].

Our analysis of the K1 , k2 and k3 values estimated 
in gray and white matter using both input functions 
revealed no statistically significant differences except for 
k2 values for white matter ( K1 : p = 0.77 (GM), p = 0.40 
(WM); k2: p = 0.20 (GM), p = 0.0064 (WM); k3 : p = 0.65 
(GM), p = 0.26 (WM); paired t-test). The mean Ki val-
ues for gray and white matter estimated using 2TCM 
with IDIFDA were 0.048 ± 0.006 and 0.011 ± 0.004 
ml/cm3/min , respectively, in close agreement with 
those obtained using the IDIFAuto (correspondingly 

Fig. 5 Illustration of the impact of different PSF Settings (FWHM of the 3D Gaussian kernel) on the accuracy of IDIFAuto in the validation group 
(n = 6)

Fig. 6 Illustration of the impact of different PSF Settings (FWHM 
of the 3D Gaussian kernel) on the number of voxels identified as vein 
and artery in the validation group (n = 6)
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0.047 ± 0.007 and 0.011 ± 0.004 
(
ml/cm3/min

)
; p > 0.05) . 

The mean percentage errors for K1 , k2 and k3 in gray 
matter were − 0.7 ± 12.3%, − 3.5 ± 6.3%, and 4.9 ± 15.4%, 
respectively and, correspondingly, for white matter were 
− 2.9 ± 12.6%, − 12.4 ± 5.8%, and − 3.5 ± 19.3%. 2TCM 
and Patlak estimates of Ki yielded errors for gray matter 
of 2.8 ± 1.7% and 1.9 ± 4.5%, respectively, while for white 
matter, the corresponding errors were − 0.3% ± 7.9% 
and 3.7% ± 5.5%. These results suggest that Ki was less 
influenced by input function shape and was primarily 

determined by AUCerror , whereas individual parameters 
were highly sensitive to input function shape.

Additional file 4: Fig. 3 depicts mean values for both 
GM and WM across K1 , k2 , k3 , 2TCMKi , and PatlakKi 
for the six subjects in the validation cohort (values in 
Additional file 1: Table 4). The plots depict R2 , the slope 
and the 95% confidence interval, highlighting the vari-
ability in K1 , k2 , and k3 estimates. Of note, the 95% con-
fidence intervals for the slope of the regression line for 
K1 , k2 , and k3 were 0.77 to 1.117, 0.86 to 1.103, and 0.76 

Fig. 7 Coronal views of 18F-FDG parametric images for a lymphoma patient (subject 6). The figure shows parameter maps of K1 ( ml/cm3/min ), k2 
( 1/min ), k3 ( 1/min ), and Ki ( ml/cm3/min ), obtained using AIF extracted from the descending aorta ( IDIFDA ) and brain with an automated framework 
( IDIFAuto ). The AIF errors between the two methods were AUCerror=1.02% and NRMSE = 0.11

Fig. 8 Illustration of axial parameter maps of K1 ( ml/cm3/min ), k2 ( 1/min ), k3 ( 1/min ), and Ki ( ml/cm3/min ) from subject 10, showing a comparison 
between AIF extracted from the descending aorta ( IDIFDA ) and brain with an automated framework ( IDIFAuto ). The AIF errors between the two 
methods were AUCerror = − 5.84% and NRMSE = 0.14
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to 1.103, respectively. For 2TCMKi and PatlakKi , the 
95% confidence intervals for the slope of the regression 
line were 0.99 to 1.106 and 0.95 to 1.059. Similarly, the 
95% confidence intervals for the R2 values ranged from 
0.88 to 0.99 for K1 , k2 , and k3 , and from 0.995 to 0.999 
for 2TCMKi and PatlakKi.

Discussion
Our study presents a simple automated framework for 
extracting the IDIF from 18F-FDG-PET brain images. A 
wavelet transform-based method was used to identify the 
peak of each time activity curve and hierarchical clus-
ter analysis was then employed to separate arterial from 
venous curves. This yielded an estimated IDIF ( IDIFAuto ) 
that combined components of the arterial and venous 
AIF and had a temporal profile that was very close to that 
of a reference aortic IDIF ( IDIFDA ). Our framework elim-
inates corrections for partial volume effect and simplifies 

parametric brain PET when limited field-of-view scan-
ners are available.

We utilized the IDIF obtained from the descending 
aorta ( IDIFDA ) as the reference arterial input function, as 
previous studies have validated its accuracy against arte-
rial blood sampling, demonstrating AUC correlations of 
0.99 [44] and 0.91 [45]. However, arterial blood sampling 
yields an AIF that differs from the AIF in the descending 
aorta due to dispersion effects. The peak activity in the 
aorta appears earlier, higher, and narrower than the AIF 
peak from arterial cannulation [46]. It is anticipated that 
dispersion-induced changes are negligible between the 
descending aorta and the arterial vasculature AIF in the 
brain. Recent research underscores the descending aorta 
as the optimal option for estimating the reference input 
function among different cardiac blood pools [2].

We found that utilizing a combination of three thresh-
olds ( a1 : 0.4, 0.5, and 0.6), which are determined based 
on the maximum identified peak, along with the smallest 

Fig. 9 Voxel-wise scatter plot for K1 (a), k2 (b), and k3 (c) for the six subjects from the validation cohort (P7–P12) showing the coefficient 
of determination ( R2 ) and linear regression analysis for the correlation between the parametric maps estimated using the descending aorta IDIF 
( IDIFDA ) and the automatically extracted image-derived input function from brain images ( IDIFAuto)

Fig. 10 Voxel-wise scatter plot for 2TCMKi (a) and PatlakKi (b) for the six subjects from the validation cohort (P7–P12) showing the coefficient 
of determination ( R2 ) and linear regression analysis for the correlation between the parametric maps estimated using the descending aorta IDIF 
( IDIFDA ) and the automatically extracted image-derived input function from brain images ( IDIFAuto)



Page 13 of 18Moradi et al. EJNMMI Research           (2024) 14:33  

tail threshold ( a2 : 0.9) as explained in the methodology 
section, yielded the lowest AUCerror , and allowed the 
estimation framework to be generalized across subjects.

The automated framework identified the time 
period consisting peak of the IDIF from brain arteries 
( IDIFArtery ) to be closer to that of the IDIFDA than that 
of veins. This likely reflects delay and dispersion effects 
as the radiotracer transits through parenchymal vessels. 
For the remaining duration, the venous IDIF ( IDIFVein ) 
showed better alignment with the IDIFDA than the arte-
rial IDIF. The larger diameter of the identified venous 
structures, as compared to the arteries, is likely to make 
the former less susceptible to partial volume effects. This 
concept has been elucidated in previous studies [47–50]. 
One study [51] utilized Graph-based Mumford-Shah 
segmentation to extract the internal carotid arteries and 
venous sinuses, with the aim of estimating non-invasive 
arterial input function. They found the combined use 
of internal carotid and venous sinus regions of inter-
est improved the accuracy of estimating the measured 
plasma input curve compared to using internal carotid 
ROIs alone. Based on the results of the AUCerrors for the 
7-time period comparison between venous and arterial 
IDIFs against the reference AIF (refer to Additional file 1:  
Table  3), we concluded that utilizing a combination of 
venous and arterial IDIFs would be preferable to mini-
mize the AUCerrors.

In comparing the performance metrics for IDIFAuto 
and IDIFDA between the validation and adjustment 
cohorts (Tables  2 and 3), we observed slightly superior 
results in the validation group. In the adjustment cohort, 
an initial exploration involving various threshold levels 
( a1 = 0.1to0.9 ) took place, leading to the identification 
of three optimal thresholds. Despite variations in opti-
mal thresholds for individual subjects, the average of 
these thresholds was chosen as the global threshold for 
the adjustment cohort. Surprisingly, this global thresh-
old inadvertently contributed to an enhanced algorithm 
performance observed in the validation cohort. This dis-
crepancy may be attributed to the random data selection 
process employed for both cohorts.

We also assessed the impact of inaccuracies in IDIF 
estimation on kinetic parameter estimates. The two tissue 
compartment model allows estimation of forward and 
reverse glucose transport ( K1 and k2 ) and phosphoryla-
tion of 18F-FDG by hexokinase ( k3 ), which are potentially 
more sensitive disease biomarkers than Ki alone [52].

Further interrogation of the results Additional file  1: 
Table  4, Additional file  2:  Fig.  1, and Additional file  3:   
Fig. 2), variations in individual rate constants ( K1 , k2 , k3 ) 
compared to Ki were observed. Voxel-wise Bland–Alt-
man plots (Additional file 2:  Fig. 1, and Additional file 3:   
Fig. 2) illustrate percentage differences in individual rate 

constants in the validation cohort, revealing more dis-
persed voxel differences for lower parameter values and 
higher percentage differences compared to both Ki esti-
mates from 2TCM and Patlak. Moreover, the R2 for Ki 
exhibits excellent performance, close to one (Fig.  10), 
while R2 for individual rate constants estimations were 
below one (Fig.  9). These discrepancies stem from the 
unexpected sensitivity of individual rate constants to 
variations in peak height, shape, and a slight time-shift 
between IDIFAuto and IDIFDA . The stability of Ki estima-
tion can be attributed to the cumulative impact of indi-
vidual rate constants on the Ki estimation process. This 
characteristic renders Ki less vulnerable to errors occur-
ring at early time points and more responsive to the AUC 
of both IDIFAuto and IDIFDA [16, 53–55].

The slopes of the regression lines for Ki in both the 
2TCM and Patlak analyses slightly exceeded one (Fig. 10), 
likely due to underestimation of AUC for IDIFAuto , con-
sistent with prior research [45]. While Ki typically corre-
lates with K1 and k3 [2], we observed lower slopes for K1 
and k3 (compared to Ki ), potentially due to the spread of 
data points in the scatter plot (refer to Fig. 9). The dispar-
ity between the slopes of the regression lines for Ki and 
K1 , particularly in white matter voxels, may be due to the 
effects of noise on parameter estimation. Furthermore, 
Additional file 4:  Fig. 3 visually illustrates the extent of 
potential variability in the slopes of the regression lines.

Noisy voxel-wise time activity curves can also intro-
duce errors in the individual rate constants, especially 
when fitting the compartment model to noisy points in 
the TAC, resulting in overfitting, particularly in k2 esti-
mation [56]. To address this issue, strategies such as 
manual adjustment (excluding specific points) [56], 
noise-filter application [57], and implementing reason-
able parameter limits are employed [58]. In our study, we 
adhered to a method that applies limitations within phys-
iological ranges for kinetic parameter estimation, without 
resorting to manual outlier adjustments to handle noisy 
data.

The additional Gaussian blurring with kernels of differ-
ent FWHM allowed the PET image resolution effect on 
the IDIF to be estimated. The diameter of the internal and 
common carotid artery is relatively small, [5.11 ± 0.87 mm 
and 6.52 ± 0.98 mm in men [59]], compared to the DA (up 
to 27mm). The IDIF from the DA was estimated using a 
10mm diameter cylinder and should not be affected by 
the image resolutions that we simulated. When the spa-
tial resolution was set to a FWHM = 3.83 mm or 4 mm 
we observed a 5% error for the AUC of the extracted IDIF 
compared to the reference AIF (Fig.  5). However, the 
error increased markedly at lower PET resolutions. Fig-
ure 6 shows that more voxels were identified as vascular 
when the image resolution decreased. Presumably this 
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reflects a greater signal spill out from vascular to neigh-
bouring voxels and implies that partial volume correction 
will become necessary [60] at lower PET image resolu-
tions to maintain an error below 5%.

Image resolution dependence also occurs with tech-
niques that manually segment the internal carotid artery. 
In a recent study [2], the IDIF was investigated using 
manual delineation of the internal carotid arteries in the 
brain and compared to those of the large blood pools 
in the cardiac region. In the study, there was observed 
a strong correlation between the amplitudes of the 
peaks and tails of the input functions obtained from the 
ascending aorta, descending aorta, left ventricle, and left 
atrium. However, the input function derived from the 
carotid arteries exhibited a significant underestimation 
of the area under the curve ( AUCerror ≈ − 30%) due to 
unaddressed partial volume effects. We believe the ROIs 
are more prone to partial volume effects, as each voxel 
was not evaluated separately, and the resulting ROIs are 
affected by spill-in and spill-out from neighbouring vox-
els. In contrast our automated framework examines each 
voxel from brain images separately and tries to select 
voxels with minimum partial volume effects by applying 
the thresholding and filtering criteria. In a similar data-
set, our approach achieved excellent agreement between 
IDIF from the brain and that from the DA ( AUCerror 
≈− 1.59 ± 2.93%).

Other methods for arterial segmentation such as MR- 
and atlas-based segmentation methods can suffer from 
co-registration errors and inability to capture subject-
specific variations [15]. Using population-based input 
functions [8] as an alternative method involves determin-
ing an appropriate scaling factor from images of large 
blood pools, arterial or venous blood sampling [61], or 
other factors [45] to scale the input function template 
for each patient. This approach adds complexity and may 
introduce potential sources of error. Our method com-
bines automated clustering and thresholding of brain 
image data and the combination of arterial and venous 
time activity curves and does not require a pre-defined 
atlas, arterial segmentation on MRI or scaling factors.

Other methods of direct carotid segmentation on PET 
images select a limited number of ‘hot’ voxels within the 
carotid artery using an operator-selected region-of-inter-
est [32] or techniques such as k-means clustering [32], 
independent component analysis [62], analysis of local 
minima [30], or graph-based Mumford-Shah energy-
minimisation algorithms [63]. Some previously published 
automated segmentation methods require peripheral 
blood samples to adjust the estimated arterial input func-
tion [30, 62]. Some methods also require manual selec-
tion of regions of interest in the estimation process [32], 
while others are not easily implemented [63]. These 

limitations may affect the generalizability and practical-
ity of previously described methods. While these studies 
have reported on the effects of errors in AIF estimation 
on Ki estimation, they have not examined effects on the 
accuracy of microparameter estimates ( K1 , k2 , k3 ) as we 
do in this study.

As an alternative approach for IDIF using a stand-
ard field-of-view scanner, whole-body dynamic PET is 
employed, commencing with an early cardiac scan to 
capture the AIF peak. Subsequently, data are collected 
through multiple whole-body bed passes, enabling 
kinetic modeling via linear Patlak analysis to estimate 
the net uptake rate ( Ki ) [58, 64–66]. Extracting IDIF 
from large blood pools through the cardiac scan is 
advantageous, being less susceptible to partial volume 
effects and spill in/out [2, 14–17]. However, precise 
estimation of kinetic parameters K1 , k2 and k3 relies on 
tissue time-activity curves from early measurements, 
which is not possible in current whole-body 18F-FDG 
PET/CT scanning. This approach primarily determines 
the net influx rate ( Ki ) [55, 67]. Our automated frame-
work estimates IDIF from brain images, facilitating 
non-invasive AIF estimation in standard field-of-view 
scanners, without the need for individual partial vol-
ume effects correction. This enables mapping of K1 , k2 , 
k3 and Ki.

In long axial field-of-view dynamic PET imaging, ran-
dom shifts and deformations can cause non-uniform 
intensity changes in the human body [68]. Patient move-
ment during prolonged scans poses challenges for visual 
quality and quantification accuracy, especially when 
estimating kinetic parameters [68, 69]. Sequential pair-
wise registration is recommended for dynamic PET stud-
ies [68], and a recent deep learning approach addresses 
motion correction in this context [70]. Although our 
study did not utilize motion correction, we carefully 
examined patient dynamic data, focusing on the last 10 
min to exclude data affected by significant head move-
ment. Additionally, we visually assessed the descend-
ing aorta volume for precise tail delineation and manual 
ROI positioning. In future studies, including our ongoing 
investigation, we aim to evaluate the impact of motion 
correction algorithms on kinetic parameter estimation 
and the accuracy of extracting IDIF from descending 
aorta and brain PET data.

Our study presents an automated framework for IDIF 
estimation from brain images using dynamic long axial 
field-of-view data from the Biograph Quadra Vision 
PET scanner. The framework was compared with the 
IDIF from a large blood pool (DA) method using total 
body PET 18F-FDG. Future studies should aim to vali-
date our proposed framework against the gold standard 
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arterial blood sampling to further evaluate its accuracy 
and reliability.

The automated framework proposed here estimates 
IDIF from brain PET images, requiring a spatial resolu-
tion greater than FWHM = 4mm for precise threshold-
ing. Future research aims to validate this approach with 
images from various PET systems. The count-rate sensi-
tivity gap between the long axial field-of-view scanner in 
this study and standard axial field-of-view PET systems 
indicates a potential for increased voxel-wise noise. This 
highlights a critical area for future studies, addressing 
both spatial resolution and voxel-wise noise in the auto-
mated framework for IDIF estimation from brain images.

In the irreversible 2TCM defined in Eq. (3), we did not 
distinguish between plasma and whole blood concentra-
tions of 18F-FDG. Previous reports [71, 72] have noted 
a systematic difference between these concentrations in 
humans. While unlikely, it may bias parameter estimates 
by around 5–10% [45].

The proposed automated AIF extraction, tested on 12 
oncological patients (with 6 used for validation), demon-
strated initial feasibility. Acknowledging the limitation of 
a small sample size and range of pathologies, future stud-
ies should include a broader range of disorders and thera-
peutic interventions in which plasma clearance and the 
shape of the AIF may be altered, including patients with 
diabetes or undergoing oncologic therapy.

An IDIF approach is limited by patient motion. In this 
study, we visually assessed the descending aorta volume, 
especially in later frames for accuracy. However, patient 
head movement can shift ROIs affecting the carotid and 
venous input function. To counter this, using a frame-by-
frame motion correction algorithm [73, 74] is advised. 
Metabolite correction was omitted in this study due to 
its insignificance in 18F-FDG studies [15]. Arterial blood 
sampling yields an AIF that differs from the AIF in the 
descending aorta due to dispersion effects. The peak 
activity in the aorta appears earlier, higher, and narrower 
than the peak from arterial cannulation. However, it 
shows minor variation in the AUC [46]. It is anticipated 
that dispersion-induced changes are negligible between 
the descending aorta and the arterial vasculature AIF 
in the brain. Nonetheless, we observed slight disparities 
in peak heights attributed to noise and the duration of 
sampling.

Conclusion
The study introduces an automated framework for pre-
cise estimation of the image-derived input function 
from 18F-FDG-PET brain images, which eliminates the 
requirement for additional partial volume effect correc-
tion. The framework decreases operator-dependency and 
enhances the potential of parametric PET adoption in 

clinical settings using high-resolution PET systems. The 
study suggests combining voxels identified as being from 
brain arteries or veins can be combined to minimize 
errors in an image-derived input function.
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