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Abstract 

Background Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer-related deaths 
in men. Prostate-specific membrane antigen (PSMA) as a target has gained increasing attention. This research aims 
to investigate and understand how altering size of PEG impacts the in vitro and in vivo behavior and performance 
of PSMA inhibitors, with a specific focus on their pharmacokinetic characteristics and targeting properties.

Results Two 68Ga-labeled PSMA-targeted radiotracers were developed, namely  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-
WD, with varying sizes of polyethylene glycol (PEG).  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD had excellent affinity 
for PSMA with IC50 being 8.06 ± 0.91, 6.13 ± 0.79 nM, respectively. Both tracers enabled clear visualization of LNCaP 
tumors in PET images with excellent tumor-to-background contrast. They also revealed highly efficient uptake 
and internalization into LNCaP cells, increasing over time. The biodistribution studies demonstrated that both radio-
ligands exhibited significant and specific uptake into LNCaP tumors. Furthermore, they were rapidly cleared 
through the renal pathway, as evidenced by  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD showing a tenfold and a fivefold 
less in renal uptake, respectively, compared to  [68Ga]Ga-Flu-1 in 30 min. Both in vitro and in vivo experiments demon-
strated that PEG size significantly impacted tumor-targeting and pharmacokinetic properties.

Conclusions These radiotracers have demonstrated their effectiveness in significantly reducing kidney uptake 
while maintaining the absorbed dose in tumors. Both radiotracers exhibited strong binding and internalization char-
acteristics in vitro, displayed high specificity and affinity for PSMA in vivo.

Keywords Prostate-specific membrane antigen (PSMA), Prostate cancer (PCa), Polyethylene glycol (PEG), LNCaP, 
Micro-PET/CT

*Correspondence:
Yue Chen
chenyue5523@126.com
Nan Liu
liunan_815@163.com
Wei Zhang
zhangwscd@uestc.edu.cn
Zhijun Zhou
zhouzjiang@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13550-024-01071-z&domain=pdf
http://orcid.org/0000-0003-1584-5076


Page 2 of 13Liu et al. EJNMMI Research           (2024) 14:15 

Introduction
Prostate cancer (PCa) is the second most frequent can-
cer and the fifth leading cause of cancer-related deaths 
in men [1]. The American Cancer Society estimated that 
there would be approximately 2.7 million new cases and 
34,500  PCa-related deaths in 2022, and the numbers 
will grow to 2.9 million new PCa cases and 34,700 PCa-
related deaths in 2023 [1, 2]. PCa mostly occurs at the 
primary site and has a good prognosis, but PCa is more 
likely to metastasize and recur, with a metastasis rate 
of 30–40% after treatment, eventually progress to cas-
tration-resistant prostate cancer (CRPC), which is the 
leading cause of death in PCa patients [3–5]. Despite sig-
nificant efforts, currently available diagnostic and thera-
peutic strategies are often ineffective [6, 7]. Therefore, 
accurate diagnosis and grading of PCa are crucial for 
effective and successful patient treatment [8].

Recently, Positron emission tomography (PET) imag-
ing with prostate-specific membrane antigen (PSMA) 
as a target has gained increasing attention. PSMA, also 
known as glutamate carboxypeptidase II (GCPII), is 
overexpressed in almost all types of human PCa as well 
as in neovascularization of various solid tumors and the 
expression level of PSMA increases with tumor grade 
and stage [9–12], but with significantly lower expres-
sion in healthy tissues [13, 14]. As a result, PSMA can 
serve as a target for PCa imaging and targeted therapy 
through binding of targeting molecules [15–20]. Despite 
the clinical success of certain radiotracers such as  [68Ga]
Ga-PSMA-11,  [18F]F-PSMA-1007, and  [18F]F-DCFPyL 
(Fig. 1), there is still a significant demand for molecules 
with exceptional specificity, affinity, and favorable phar-
macokinetics, especially those possessing theranostic 
properties.

We previously reported a compound  [68Ga]Ga-Flu-1, 
a lysine-ureido-glutamate-based PET tracer with DOTA 
as chelator (Fig.  2), bearing a lipophilic bulky group 

(9-carboxyfluorene) on the lysine residue.  [68Ga]Ga-Flu-1 
showed superior properties such as high tumor-to-back-
ground contrast, higher tumor uptake, and lower kid-
ney uptake compared with  [68Ga]Ga-PSMA-11. Despite 
reduced kidney uptake, this value still was 3 folds greater 
than that in the tumor at 2 h 21.High uptake by the kid-
neys might potentially lead to the failure to identify 
metastases in or near the kidneys [22]. In the past dec-
ades, researchers discovered that, attachment of PEG 
to peptides or proteins, so-called PEGylation, offers 
improved water solubility and stability as well as reduced 
clearance through the kidneys, leading to a longer circu-
lation time [23–26]. The PEGylation strategy inspired us 
to synthesize novel variants of Flu-1 by incorporating dif-
ferent sizes of PEG onto Flu-1 structure, with an objec-
tive of examining the effects of varying PEG sizes on the 
in vitro and in vivo properties of Flu-1.

Materials and methods
Precursor synthesis
The synthetic routes and chemical structures of PP4-WD 
and PP8-WD were illustrated in Scheme 1. Both PP4-WD 
and PP8-WD were synthesized using multi-step reactions 
as reported by our group 27. The intermediate compound 
3 has been reported somewhere else [21]. Subsequently, 
the precursors underwent purification through semi-pre-
parative reversed-phase high-performance liquid chro-
matography (RP-HPLC). The comprehensive synthesis 
details are provided in the Supporting Information.

68Ga radiolabeling
68Ga as a positron-emitting isotope with a maximum 
energy of 1.9 MeV (88%), was obtained by eluting a 68Ge 
(t1/2 = 271 d)/68Ga (t1/2 = 68  min) generator (ITG, Ger-
many) using a 0.05  M HCl solution. Radiolabeling of 
the compounds was performed by incubating 5–10  μg 
of the corresponding conjugate (1 mg/mL) with varying 

Fig. 1 The most-often-used PET tracers for PCa detection are based on the Lys-urea-Glu scaffold
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amounts of 68GaCl3 (18.5–40  MBq) in sodium acetate 
buffer (NaAc/HAc = 0.5 M/0.5 M) and heating the solu-
tion at 95 °C for 15 min. The reaction mixture was then 
diluted with 4  mL of saline and purified through a pre-
activated Oasis HLB column, followed by washing with 
5 mL of saline. The final product was eluted with 100 μL 
of 50% ethanol and diluted with 400 μL of physiologi-
cal saline. The radiochemical purity was determined by 
RP-HPLC.

177Lu‑radiolabeling
177Lu was provided by the Institute of Nuclear Physics and 
Chemistry at the China Academy of Engineering Physics 
(Mianyang, China). A quantity of 177LuCl3 (37–74 MBq) 
was transferred to a reaction vial containing 5–10 μg of 
the corresponding conjugate, along with 0.25 M sodium 
acetate buffer (NaAc/HAc = 0.5  M/0.5  M). The mixture 
was subjected to heat via vibration in a metal thermo-
static bath at 95 °C for 15 min. Following this, the cooled 
reaction solution underwent filtration with sterile water 
using a pretreated Oasis HLB column. Radioactive purity 
was determined through RP-HPLC with 50% ethanol as 

the elution solvent, and the resulting solution was subse-
quently diluted with physiological saline.

natGa‑labeled standards
To prepare natGa-labeled standards, a solution of 
PP4-WD (0.59  mg, 0.5  μmol) or PP8-WD (0.68  mg, 
0.50 μmol), was incubated with ultrapure natGa(III)-chlo-
ride (Aladdin, China) (40 eq.) in 0.25 M sodium acetate 
buffer (NaAc/HAc = 0.5  M/0.5  M) (200 μL) and 0.05  M 
HCl (800 μL) at 95  °C for 15 min. The reaction mixture 
was then purified by RP-HPLC, and the RP-HPLC eluates 
containing the desired compound were collected, pooled, 
and lyophilized.

Radiochemical stability
To investigate the stability of the 68Ga-labeled com-
pounds,  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD were 
incubated in either phosphate-buffered saline (PBS) 
or human serum at 37  °C for 30, 60, and 120  min in a 
shaking incubator. The radiochemical purity of samples 
incubated in PBS at each time point was determined 
using RP-HPLC. For the samples in human serum, a 

Fig. 2 The chemical structures of Flu-1, PP4-WD, and PP8-WD
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pretreatment step was applied. Briefly, the human serum 
samples underwent precipitation with acetonitrile, and 
the radiochemical purity of each supernatant aliquot 
was determined using RP-HPLC after centrifugation for 
5 min at 10,000 rpm. The experiments were performed in 
triplicate.

Competitive cell binding assay
LNCaP prostate cancer cell line obtained from the 
American Type Culture Collection (ATCC, Manas-
sas, VA) was used for cell affinity studies. The cells were 
grown in a meilunbio RPMI 1640 medium (ATCC modi-
fied) supplemented with 10% fetal bovine serum and 1% 
streptomycin/penicillin (Thermo Fisher Scientific, USA) 
at 37  °C in a humidified 5%  CO2 atmosphere. Two days 
(48 ± 2  h) prior to in  vitro experiments, the cells were 
harvested using trypsin-ethylenediaminetetraacetic acid 
(EDTA; 0.25% trypsin, 0.02% EDTA) in PBS and centri-
fuged. The supernatant was disposed, and the cell pellet 
was resuspended in a culture medium, and LNCaP cells 

(150,000 cells/well) were counted with a hemocytometer 
and seeded in poly-L-lysine-coated 24- well plates used 
in cell binding studies. The cells were then allowed to 
grow at 37  °C for 48  h. PC3-PIP cells provided by Pro-
fessor Xiaoyuan Chen (Singapore) require additional 
Puromycin (2 µg/ml) in addition to the appealed culture 
conditions. Detailed information regarding uptake and 
internalization experiments can be found in the previous 
report [26].

In order to determine the binding affinity, a competitive 
cell binding assay was performed. LNCaP cells (100,000 
cells/ well) seeded in 96-well plates were incubated with 
a 0.185 MBq/50μL solution of  [68Ga]Ga-PSMA-11 in the 
presence of eight different concentrations of natGa-PP4-
WD or natGa-PP8-WD (0 − 10,000 nM, 50 μL/well). After 
incubation for 1  h at 37  °C, the cells were washed with 
ice-cold PBS three times and lysed with 1  M NaOH. 
The total radioactivity in each well was measured with 
a gamma counter. The 50% inhibitory concentration 
(IC50) values were calculated by fitting the data using a 

Scheme 1 Synthesis of PP4-WD, PP8-WD. (PP4-WD: where n = 4, PP8-WD: where n = 8)
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nonlinear regression algorithm (GraphPad Prism Soft-
ware). Experiments were performed at least three times 
including quadruplicate sample measurements.

Log D7.4
10  µL of each 68Ga-radiolabeled compound 
(~ 0.037 MBq) were added to a vial containing 500 µL of 
octanol and 490 µL of 0.01 M PBS (pH = 7.4). After vor-
texed for 5 min and centrifuging for 10 min (5000 rpm), 
the radioactive count of the octanol and PBS phases 
were determined with a γ-counter (CAPRAC-t, Edmon-
ton, Canada). Log  D7.4 was then determined using the 
following equation: Log  D7.4 = Log [(γ counts in the 
octanol phase − γ counts in background)/(γ counts in 
PBS − γ counts in background)]. Each group was repeated 
3 times, and the average value was expressed as log 
 D7.4 ± standard deviation (SD).

Biodistribution and imaging studies
All animal experiments were performed with the 
approval of the institutional animal ethics committee. 
Male NOD/SCID mice (5 − 6 weeks old) implanted with 
LNCaP cells were used for imaging and biodistribu-
tion experiments as previously described [27]. The mice 
were imaged or used in biodistribution studies once 
the tumor grew to 8 − 10 mm in diameter over a period 
of 4 − 5  weeks. At the same time, male balb/c-nu mice 
(5 − 6 weeks old) implanted with PC3-PIP cells were used 
as an alternative tumor model for imaging and biodistri-
bution experiments.

To perform imaging studies, the male mice bearing 
LNCaP tumors were injected with the corresponding 
radioligand (~ 2.5 MBq; 100 μL) via their tail veins. The 
micro-PET/CT scans (Inveon PET, Siemens) were con-
ducted at 10, 30, 60, and 120 min after injection. The mice 
were anesthetized and maintained under 2% isoflurane in 
oxygen at a flow rate of 2 L/min during the 2-h imaging 
study. First, a 10 min static PET imaging acquisition was 
carried out, followed by a 10 min CT scan for localization 
and attenuation correction. Data analysis was performed 
using Inveon Research Workplace software. For PC3-PIP 
tumor model, the imaging studies were performed with 
micro-PET/SPECT/CT (Inliview-3000B, Novel Medical). 
Data analysis was performed using Nmsoft-Al ws v1.7–1 
software.

To conduct biodistribution studies, male mice bear-
ing LNCaP or PC3-PIP tumors with an average body 
weight of approximately 20 ± 5  g and a tumor diameter 
of 8 − 10  mm were administered a bolus injection of 
2.5  MBq of the corresponding radioligand via the tail 
vein. After 30, 60, and 120 min, the mice were anesthe-
tized with isoflurane and subsequently euthanized by 
 CO2 asphyxiation. Blood was drawn, and the organs 

of interest were promptly harvested, blotted dry, and 
weighed. The radioactivity of the collected mouse organs 
was measured and expressed as the percentage of the 
injected dose per gram of tissue (%ID/g). Each group 
consisted of at least five mice.

Results
Chemical and radiochemical synthesis and characterization
As shown in Scheme 1, the synthesis of these precursors 
through multiple step reactions is quite straightforward. 
We first constructed urea-based compound 2 bear-
ing protected glutamate and lysine residues, followed 
by hydrogenation of compound 2 to yield compound 
3. Next, compound 3 underwent nucleophilic addi-
tion reaction with methyl glyoxylate, forming an imine, 
which was then reduced by  NaBH4 to provide compound 
4. Compound 5 was obtained by reacting 4 with 9-car-
boxyfluorene, then the methyl group was removed to 
yield compound 6. The conjugation of compound 6 with 
the DOTA chelator was achieved through an amidation 
reaction, followed by the removal of the Fmoc-protective 
group under alkaline conditions to obtain compound 
7. Subsequently, compounds 6 and 7 were subjected to 
an amidation reaction followed by deprotection in trif-
luoroacetic acid. Finally, the target molecule was puri-
fied using RP-HPLC, resulting in a purity of over 95% for 
both precursors. PP4-WD and PP8-WD were character-
ized by ESI + Mass and had retention times at 8.0  min 
and 8.3 min on RP-HPLC, respectively (Additional file 1: 
Fig. S1–S2, Fig. 3A).

68Ga labeling
The synthesis of 68Ga-labeled PSMA inhibitors was 
achieved by reacting PP4-WD or PP8-WD with 68GaCl3 
in NaAc/HAc (v/v = 1/1 with pH = 4.3) buffer solution 
within 15  min at 95  °C. 68Ga labeling efficiency of both 
precursors analyzed with RP-HPLC for both 68Ga-labeled 
PSMA inhibitors are > 95%. After purification with 
Oasis HLB 1  cc (10  mg) extraction cartridges (Waters, 
USA), the radiochemical purity (RCP) for both radioli-
gands then exceeded 98%. The retention times for  [68Ga]
Ga-PP4-WD and  [68Ga]Ga-PP8-WD were 8.0  min and 
8.1 min, respectively (Fig. 3B).

Lipophilicity
Hydrophilicity of these radioligands were investigated by 
measuring the partition coefficient (Log  D7.4) between 
octane and PBS. The Log  D7.4 values of  [68Ga]Ga-PP4-
WD and  [68Ga]Ga-PP8-WD were − 3.06 ± 0.15 and 
− 4.27 ± 0.26, respectively (Table 1). These results indicate 
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that  [68Ga]Ga-PP8-WD is more hydrophilic than  [68Ga]
Ga-PP4-WD.

Stability
The stability of both  [68Ga]Ga-PP4-WD and  [68Ga]
Ga-PP8-WD was investigated by incubating each radio-
ligand in either PBS or human serum at 37  °C (Fig. 4). 
After 2 h of incubation, the radiochemical purity of two 
radiotracers was slightly reduced in the PBS medium 
but still remained as high as 97%. Both radiotracers 
demonstrated remarkable stability in human serum, 
as indicated by the radiochemical purity of  [68Ga]

Ga-PP4-WD and  [68Ga]Ga-PP8-WD remaining at 
96.83 ± 0.87% and 96.69 ± 0.21% at 2 h, respectively.

Cell affinity studies
The specific cell surface binding and internalization into 
LNCaP cells were determined for  [68Ga]Ga-PP4-WD 
and  [68Ga]Ga-PP8-WD with  [68Ga]Ga-Flu-1 as a refer-
ence. As shown in Fig.  5, both uptake and internaliza-
tion of three radioligands displayed a time-dependent 
pattern and rose over 120  min duration. Specifically, 
the uptake and internalization of  [68Ga]Ga-PP4-WD 
reached 26.30 ± 2.06% and 9.36 ± 1.70% after 120  min 
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Fig. 3 HPLC chromatogram of PP4-WD, PP8-WD (A) and Radio-HPLC chromatogram of  [68Ga]Ga-PP4-WD,  [68Ga]Ga-PP8-WD (B)

Table 1 Analytical data of PP4-WD, PP8-WD, and Flu-1

1 Mass spectrometry data detected as [M +  H]+. 2Retention times of the Ga-labeled compounds.3Values of radiochemical purity were measured by RP-HPLC. An Agilent 
analytical column (250 × 4.6 mm) was utilized with mobile phases consisting of 0.1% TFA in water (A) and ACN (B). A linear gradient of solvent A (90–10% in 15 min) in 
solvent B (10–90% in 15 min) at a flow rate of 1.0 mL/min. 4Data for  [68Ga]Ga-Flu-1 was obtained from a previously published report [21]

Compound Chemical formula Calculated mass m/z1 tr (min)2 Radiochemical purity 
(%)3

Log  D7.4

PP4-WD C54H79N9O20 1174.27 1174.55 8.01 97.98 ± 0.56 − 3.06 ± 0.15

PP8-WD C62H95N9O24 1350.48 1350.66 8.09 96.56 ± 0.32 − 4.23 ± 0.26

Flu-14 C47H66N8O15 983.43 983.47 8.13 88.53 ± 1.21 − 2.64 ± 0.25

Fig. 4 Stability of  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD. Radiochemical purity was recorded in PBS (A) and human serum (B) at 30, 60, 
and 120 min
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of incubation, respectively. Under the same condition, 
 [68Ga]Ga-PP8-WD exhibited only moderate uptake 
and internalization rates, measuring at 10.16 ± 1.87% 
and 5.72 ± 0.95%, respectively, with a gradual increase 
observed over the same period. In contrast,  [68Ga]Ga-
Flu-1 demonstrated rapid enhancement in both uptake 
and internalization levels throughout the course of the 
experiments and eventually reached 34.57 ± 4.14% and 
21.3 ± 0.13%, respectively, at 120  min. Overall, all three 
radioligands displayed increasing uptake and internali-
zation levels over the course of experiments. Compared 
to the other two radioligands under the same conditions, 
 [68Ga]Ga-Flu-1 revealed higher uptake and internaliza-
tion levels.

The binding affinity of  [68Ga]Ga-PP4-WD and  [68Ga]
Ga-PP8-WD was measured by in  vitro competition 
binding assays using PSMA-expressing LNCaP cells 
and  [68Ga]Ga-PSMA-11 as the reference compound. As 
shown in Additional file  1: Figure S3, both compounds 
competitively inhibited binding with  [68Ga]Ga-PSMA-11 
to LNCaP cells in a dose-dependent manner. The calcu-
lated  IC50 values for  [68Ga]Ga-PP4-WD,  [68Ga]Ga-PP8-
WD, and  [68Ga]Ga-Flu-1 were 8.06 ± 0.91, 6.13 ± 0.79, and 
9.62 ± 1.70 nM [20], respectively.

Biodistribution
Biodistribution was conducted to evaluate the major 
organ distribution profile of radiotracers in LNCaP 
tumor-bearing NOD/SCID mice.  [68Ga]Ga-Flu-1 was 
examined as the positive control, which was reported by 
our group previously [21]. The results were decay-cor-
rected, listed as a percentage of the injected activity per 
gram of tissue mass (%ID/g), and presented as the aver-
age ± standard deviation (SD) (Fig.  6, Additional file  1: 
Tables S1–S3).

The results indicated that all radioligands exhibited 
high specific uptake and rapid accumulation in LNCaP 

tumors. After 30  min, the radioactivity accumula-
tion of the three radioligands, namely  [68Ga]Ga-PP4-
WD,  [68Ga]Ga-PP8-WD, and  [68Ga]Ga-Flu-1, was 
found to be 33.45 ± 3.40%ID/g, 16.18 ± 2.53%ID/g, and 
32.86 ± 12.02%ID/g, respectively. Furthermore, tumor 
uptake continued to increase over time, as demonstrated 
by the values of 39.28 ± 3.25%ID/g, 18.64 ± 2.20%ID/g, 
and 52.07 ± 14.83%ID/g at 60 min. However, these values 
decreased to 25.75 ± 2.43%ID/g, 17.12 ± 2.57%ID/g, and 
40.11 ± 9.24% ID/g at 120 min.

The results showed that renal pathway is the pri-
mary route of excretion for all three radioligands. 
Specifically, the renal uptake of  [68Ga]Ga-PP4-WD 
and  [68Ga]Ga-PP8-WD was significantly reduced 
compared to  [68Ga]Ga-Flu-1. The uptake values at 
30  min were 47.24 ± 3.68%ID/g for  [68Ga]Ga-PP8-WD 
and 25.63 ± 3.46%ID/g for  [68Ga]Ga-PP4-WD, and 
240.00 ± 34.68%ID/g for  [68Ga]Ga-Flu-1. While the accu-
mulated activity in kidneys decreased over time for all 
three radioligands, it remained relatively high for  [68Ga]
Ga-Flu-1 at 127.83 ± 27.94%ID/g, in contrast, there was 
a substantial reduction in accumulated activity for both 
 [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD, with values 
of 2.23 ± 0.58%ID/g and 6.39 ± 1.56%ID/g, respectively. 
For other normal organ/tissues, the radioactivity accu-
mulated was rapidly eliminated.

In contrast to the biodistribution results of the LNCaP 
model,  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD 
tumors were slightly decreased in the PC3-PIP tumor 
model. The uptake of  [68Ga]Ga-PP4-WD and  [68Ga]
Ga-PP8-WD in tumors was 27.43 ± 1.81%ID/g and 
15.21 ± 3.33%ID/g, respectively, compared to the uptake 
values of 39.28 ± 3.25%ID/g and 18.64 ± 2.20%ID/g in 
LNCaP tumor mice model, respectively. However, the 
trend of tumor uptake at each time point was the same 
as in the LNCaP model, such that although renal uptake 
of  [68Ga]Ga-PP4-WD was higher than  [68Ga]Ga-PP8-WD 
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at 30 min, renal uptake of  [68Ga]Ga-PP4-WD was lower 
than  [68Ga]Ga-PP8-PD WD after 60  min and 120  min. 
In the PC3-PIP model, the peak uptake was still around 
60  min, while the tumor uptake of  [68Ga]Ga-PP4-WD 
was also higher than the  [68Ga] Ga-PP8-WD at the cor-
responding time points, which is consistent with the 
characteristics in the LNCaP model. In addition, accord-
ing to the biodistribution results of the PC3-PIP model, 
the overall uptake of  [68Ga]Ga-PP8-WD was increased 
slightly in non-target organs, but these increases were 
all small or even negligible (Additional file 1: Figure S4, 
Tables S7–S8).

Tumor‑to‑normal tissue (T/N)
The biodistribution data in LNCaP tumor model at 
30, 60, and 120 min were used to calculate the ratios of 
tumors to key normal organs (Fig.  7, Additional file  1: 
Tables S4–S6). As illustrated in Fig.  7, within a two-
hour time course, the ratios for target organs exhibited 

a consistent upward trend for all three radioligands. 
Interestingly, the data indicated that while the tumor 
uptake of  [68Ga]Ga-PP4-WD is lower than that of  [68Ga]
Ga-Flu-1, the T/N ratios for  [68Ga]Ga-PP4-WD in all 
selected organs are significantly higher than that of both 
 [68Ga]Ga-PP8-WD and  [68Ga]Ga-Flu-1.

Micro‑PET/CT imaging
NOD/SCID mice bearing LNCaP tumors were selected 
for the whole-body micro-PET/CT imaging study of 
 [68Ga]Ga-PP4-WD,  [68Ga]Ga-PP8-WD, and the reference 
radiotracer  [68Ga]Ga-Flu-1.

To evaluate the specificity of radioligands, blocking 
experiments were performed. In brief, 40  nmol of the 
PSMA inhibitor 2-PMPA was administered, followed by 
the injection of approximately 2.6  MBq of radioligands 
after 30  min. Then a static scan of micro-PET/CT was 
performed 60 min later. Upon blocking, it was observed 
that there was substantially reduced radioactivity 
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Fig. 6 Organ biodistribution of  [68Ga]Ga-PP4-WD (A),  [68Ga]Ga-PP8-WD (B), and  [68Ga]Ga-Flu-1 (C) in LNCaP tumor model expressed as %ID/g tissue 
at 30, 60, and 120 min post-injection (p.i.) Data are expressed as the mean ± SD (n = 5). small int. = small intestine
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detected for both  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-
WD (Additional file 1: Figure S5A, S5B). Meanwhile, no 
significant reduction in uptake within normal organs, 
indicating the exceptional specificity of  [68Ga]Ga-PP4-
WD and  [68Ga]Ga-PP8-WD for LNCaP tumors. In paral-
lel, we conducted blocking imaging of PC3-PIP using the 
identical methodology as previously described, and the 
outcomes were in concordance with those observed in 
the LNCaP tumor model (Additional file  1: Figure S5C, 
S5D). This consistency underscores the remarkable spec-
ificity of  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD for 
PSMA-positive tumors.

Time-dependent static scans were performed for  [68Ga]
Ga-PP4-WD,  [68Ga]Ga-PP8-WD, and  [68Ga]Ga-Flu-1 
at 10, 30, 60, and 120 min (Fig. 8, Additional file 1: Fig-
ure S6). These radioligands exhibited rapid accumula-
tion in PSMA-positive LNCaP tumors as early as 10 min 
p.i., and by 120  min, all radioligands showed a clean 
background. Consistent with the biodistribution data, 
radioactivity for  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-
WD was swiftly cleared from renal. In contrast,  [68Ga]

Ga-Flu-1demonstrated a significantly higher level of 
accumulated radioactivity in the renal area throughout 
the experiment.

Following the static PET scan, a dynamic PET scan was 
performed to understand the pharmacokinetics of these 
radiotracers (Fig.  9). The dynamic uptake curves over a 
2-h period revealed their fast-targeting properties, as 
the radiotracers quickly accumulated in the tumor and 
remained increasing uptake throughout the experiment. 
In terms of renal uptake, both  [68Ga]Ga-PP4-WD and 
 [68Ga]Ga-PP8-WD revealed an initial increase followed 
by a subsequent decrease. In contrast, the accumulation 
of  [68Ga]Ga-Flu-1 exhibited a continually ascending pat-
tern. Furthermore, both  [68Ga]Ga-PP4-WD and  [68Ga]
Ga-PP8-WD displayed superior renal clearance com-
pared with  [68Ga]Ga-Flu-1. Dynamic coronal fused 
micro-PET/CT images obtained after injection of  [68Ga]
Ga-PP4-WD (A),  [68Ga]Ga-PP8-WD (B), and  [68Ga]
Ga-Flu-1(C) in LNCaP tumor model over 2 h were per-
formed in supplementary information (Additional file 1: 
Figure S7).
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Fig. 7 The tumor-to-heart (T/H), tumor-to-liver (T/L), tumor-to-kidney (T/K), tumor-to-salivary (T/Sl) and tumor-to-blood (T/Bl) values at 30, 60, 
and 120 min were obtained from the biodistribution data of  [68Ga]Ga-PP4-WD (A),  [68Ga]Ga-PP8-WD (B), and  [68Ga]Ga-Flu-1 (C) in LNCaP tumor 
model
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Micro‑SPECT/CT imaging
Balb/c-nu mice carrying PC3-PIP tumors were cho-
sen for the micro-SPECT/CT imaging investigation of 
 [177Lu]Lu-PP4-WD and  [177Lu]Lu-PP8-WD (see Addi-
tional file  1: Figure S8). The findings indicated that, 

under the same parameters. Both radioligands exhib-
ited rapid targeted uptake and maintained a favorable 
tumor-to-background ratio for up to 168  h, with mini-
mal observable uptake in non-target organs, except for 
the bladder.

Fig. 8 Maximum intensity projections of whole-body coronal micro-PET/CT images of a NOD/SCID male mouse bearing an LNCaP tumor 
xenograft (red arrow for the tumor, white arrow for the kidney). The tumor-targeting efficacy of  [68Ga]Ga-PP4-WD,  [68Ga]Ga-PP8-WD and  [68Ga]
Ga-Flu-1 was demonstrated by time-dependent static scans at 60 min p.i. of  [68Ga]Ga-PP4-WD (A),  [68Ga]Ga-PP8-WD (B), and  [68Ga]Ga-Flu-1 (C). 
Approximately 2.6 MBq was injected into each mouse
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Fig. 9 %ID/g (mean) was obtained from the whole-body coronal micro-PET/CT scans of the NOD/SCID male mice bearing LNCaP tumor 
xenografts. The tumor-targeting efficacies of  [68Ga]Ga-PP4-WD (A),  [68Ga]Ga-PP8-WD (B), and  [68Ga]Ga-Flu-1 (C) were demonstrated by dynamic 
micro-PET scans
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Discussion
In previous work, we developed a PSMA-targeted inhibi-
tor called  [68Ga]Ga-Flu-1, which utilized a Lys-urea-Glu 
backbone and demonstrated excellent specificity and 
affinity in  vivo for PSMA. However, we also observed a 
significant disparity in uptake between the kidneys and 
prostate tumor, with the kidneys showing much higher 
levels of  [68Ga]Ga-Flu-1. The elevated uptake in kidneys 
raises concern about its potential impact on renal func-
tion and its potential to hinder the precise detection of 
kidney metastases in the cases where such metastases 
are present. PEG chains were often used as linkers to 
improve the hydrophilicity and the circulation time of the 
radiotracer in blood, leading to diverse biodistribution of 
the radiotracer [28, 29]. The lengths of PEG chains might 
have significantly impact on various biological properties 
of the drug, including hydrophilicity [30], absorption or 
release [31], blood circulation, and targeting ability with 
a size-dependent pattern [32, 33]. Lee W et  al. showed 
that a PEGylated antibody cleared much faster from the 
blood while maintaining tumor uptake compared to its 
non-PEGylated counterpart [34].In this study, the com-
pounds with PEG chains containing four repeat units 
of middle size and eight repeat units of larger size were 
incorporated, and compared with non-PEGylated ligand, 
the in vitro and in vivo properties were examined.

The results revealed that introducing PEG chain had 
a noticeable impact on the physicochemical proper-
ties of the compound, leading to significant impact on 
its in vitro and in vivo properties. Specifically, the water 
solubility, as expected, was enhanced after PEG modi-
fication, as indicated by the decrease in  LogD7.4 value 
from − 2.64 ± 0.25 for the unmodified  [68Ga]Ga-Flu-1 
to − 4.23 ± 0.26 for  [68Ga]Ga-PP8-WD, demonstrating a 
considerable improvement in water solubility. Accord-
ingly, biodistribution properties of both radiotracers have 
undergone significant alterations, such as renal uptake, 
in particular, reduced by a factor of 40 and 20 at 120 min 
p.i. compared to  [68Ga]Ga-Flu-1, respectively. Radio-
activity accumulation in other normal organs like liver, 
was slightly reduced as well. Statistical analysis revealed 
that the uptake of  [68Ga]Ga-Flu-1 in LNCaP tumor was 
significantly higher than  [68Ga]Ga-PP8-WD at 60  min 
p.i. (P < 0.05). However, there was no significant differ-
ence between  [68Ga]Ga-PP4-WD and  [68Ga]Ga-Flu-1 
(P > 0.05). The renal uptake of both  [68Ga]Ga-PP4-WD 
and  [68Ga]Ga-PP4-WD was significantly lower than for 
 [68Ga]Ga-Flu-1 (P < 0.05) at given time points. These 
results indicated that PEG-modified compounds can 
effectively facilitate the renal clearance and reduce their 
uptake in the kidneys, likely by reduced tubular reabsorp-
tion, decreased binding to renal transporters, or rapid 
kidney filtration of the radioligands.

Whole body coronal micro-PET/CT static images of 
NOD/SCID male mice carrying LNCaP tumor xeno-
grafts had a clean background and high image quality. 
Combined with the dynamic uptake profile, it is evident 
that  [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD were 
metabolized via kidneys as evidenced by a rapid decline 
of radioactivity within 2 h. In addition, when considering 
the dynamic uptake curves and the ability to effectively 
block tumor visualization in mice with tumors, both 
 [68Ga]Ga-PP4-WD and  [68Ga]Ga-PP8-WD highlighted 
the excellent specificity and quick targeting property for 
PSMA. These findings align with biodistribution results. 
Therefore, the substitution of the linker group with PEG 
remained the targeting characteristics while significantly 
decreasing renal uptake of the radiotracers. Although 
there was a slight decrease in tumor uptake, this was 
offset by reduced uptake in normal organs. As a result, 
these radiotracers still achieved impressive T/N (tumor-
to-normal) values and image contrast.

Conclusion
In summary, we have successfully developed two  [68Ga]
Ga-labeled PSMA-targeted radiotracers featuring PEG-
modified chains. These radiotracers have demonstrated 
their effectiveness in significantly reducing kidney uptake 
while maintaining the absorbed dose in tumors. Both 
radiotracers exhibited strong binding and internaliza-
tion characteristics in vitro, displayed high specificity and 
affinity for PSMA in vivo. Notably,  [68Ga]Ga-PP4-WD, in 
particular, holds promise as a potential new diagnostic 
PET tracer for prostate cancer.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
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