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Abstract 

Background Vertebral compression fractures (VCFs) are common clinical problems that arise from various reasons. 
The differential diagnosis of benign and malignant VCFs is challenging. This study was designed to develop and vali-
date a radiomics model to predict benign and malignant VCFs with 18F-fluorodeoxyglucose-positron emission tomog-
raphy/computed tomography (18F-FDG-PET/CT).

Results Twenty-six features (9 PET features and 17 CT features) and eight clinical variables (age, SUVmax, SUVpeak, 
SULmax, SULpeak, osteolytic destruction, fracture line, and appendices/posterior vertebrae involvement) were ulti-
mately selected. The area under the curve (AUCs) of the radiomics and clinical–radiomics models were significantly 
different from that of the clinical model in both the training group (0.986, 0.987 vs. 0.884, p < 0.05) and test group 
(0.962, 0.948 vs. 0.858, p < 0.05), while there was no significant difference between the radiomics model and clini-
cal–radiomics model (p > 0.05). The accuracies of the radiomics and clinical–radiomics models were 94.0% and 95.0% 
in the training group and 93.2% and 93.2% in the test group, respectively. The three models all showed good calibra-
tion (Hosmer–Lemeshow test, p > 0.05). According to the decision curve analysis (DCA), the radiomics model and clini-
cal–radiomics model exhibited higher overall net benefit than the clinical model.

Conclusions The PET/CT-based radiomics and clinical–radiomics models showed good performance in distinguish-
ing between malignant and benign VCFs. The radiomics method may be valuable for treatment decision-making.
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Background
Vertebral compression fractures (VCFs) are common 
clinical problems that can be caused by various reasons 
[1–4]. According to the nature of the disease, it can be 
divided into benign and malignant VCFs.  Benign VCFs 
are caused by osteoporosis or trauma, while malignant 
VCFs are caused by tumors, such as metastatic solid 
tumors, myeloma, lymphoma, and Langerhans cell histi-
ocytosis (LCH) [1–3, 5]. With increasing age, benign and 
malignant VCFs can occur simultaneously [1, 6]. Correct 
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identification of benign and malignant VCFs is of great 
importance in guiding treatment.

Both open biopsy and percutaneous biopsy are inva-
sive with complications of different degrees. Modern 
radiological imaging techniques, including computed 
tomography (CT), magnetic resonance imaging (MRI) 
and bone single photon emission computed tomography/
computed tomography (SPECT/CT), may be helpful in 
the differential diagnosis based on morphology, signal 
intensity abnormalities, blood flow and metabolic status. 
MRI has been established as the most relevant imaging 
technique for the diagnosis of malignant vertebral lesions 
due to its high sensitivity to bone marrow abnormalities 
[7, 8]. Some characteristics commonly associated with 
malignant fractures include the presence of an epidural 
or paravertebral soft tissue mass, abnormal signal of the 
pedicle or other posterior elements, diffuse posterior ver-
tebral border convexity and so on [3, 8]. However, when 
these typical signs are absent, the diagnosis can be chal-
lenging. In addition, there are some drawbacks to MRI, 
including limited availability, absolute and relative con-
traindications such as pacemakers and claustrophobia.

18F-fluorodeoxyglucose-positron emission tomog-
raphy/computed tomography (18F-FDG-PET/CT) can 
provide information about both morphological changes 
and metabolic status of the diseased vertebra. In gen-
eral, tumor-induced fractures accumulate 18F-FDG, while 
benign fractures are not expected to accumulate the 
same high level of 18F-FDG [1, 9, 10]. This feature is help-
ful for the quantitative analysis of the lesions. In the study 
by Won-Ik Cho et  al., the threshold of the maximum 
standardized uptake value (SUVmax) was 4.25 to differ-
entiate malignant and benign VCFs, with 85% sensitiv-
ity and 71% specificity for malignancy [10]. In addition, 
some studies have found that the patterns of FDG uptake 
such as increased activity involving the pedicle and pos-
terior element are also of great value in differentiating the 
nature of VCFs [10, 11]. In addition, many quantitative 
metabolic parameters of PET/CT, such as the peak stand-
ardized uptake value (SUVpeak), lean body mass correc-
tion of SUV (SUL), and metabolic tumor volume (MTV) 
have been widely used in the diagnosis, treatment and 
prognosis assessment of various tumors [12–16]. How-
ever, few studies have involved using them in the differ-
ential diagnosis of benign or malignant bone lesions [17, 
18].

To date, the diagnosis of the causes of VCFs by CT, 
MRI, bone SPECT/CT and PET/CT is still largely 
dependent on the experience of diagnostic physicians. 
Radiomics can extract a large number of quantitative 
features from digital medical images in high through-
put and provide objective information that is difficult 
for human eyes to quantify [19–21]. Many studies have 

included reports of the high diagnostic performance of 
radiomics in distinguishing benign and malignant VCFs 
using CT and MRI [3, 22].

The objective of this study was to predict the benign 
and malignant nature of VCFs based on PET/CT radi-
omics and clinical indicators.

Materials and methods
Study participants
Our institutional Ethics Review Board approved this 
retrospective study and waived the written informed 
consent requirement. The analysis was conducted on 
439 patients diagnosed with vertebral compression 
fracture or pathological fracture after PET/CT in our 
hospital from January 2016 to January 2023, with a total 
of 539 vertebrae. Vertebral compression fracture was 
defined as (1) a reduction in vertebral height, (2) corti-
cal discontinuity of an endplate or vertebral cortex with 
impaction into the vertebral body, or (3) buckling of the 
vertebral cortex [19, 23]. Patients who had lost follow-
up, unclear final diagnosis, asymptomatic old compres-
sion fractures, poor image quality or corresponding 
vertebral body treatment (such as vertebroplasty, 
kyphoplasty, local radiotherapy of vertebra or systemic 
chemotherapy) before PET/CT were excluded, and 121 
patients with 144 vertebrae were enrolled in the study. 
All enrolled patients had varying degrees of pain in the 
corresponding vertebral area within 6  weeks before 
PET/CT examination. The cohort of patients was ran-
domly divided into a training group (n = 100) and a test 
group (n = 44) at a ratio of 7:3. There were 47 benign 
VCFs and 53 malignant VCFs in the training group 
and 20 benign VCFs and 24 malignant VCFs in the test 
group (Fig. 1).

Image acquisition
18F-FDG-PET/CT imaging was obtained by a GE Discov-
ery710 instrument, USA. 18F-FDG was produced by the 
GE Minitrace cyclotron and FDG synthesis module, and 
the radiochemical purity was > 95%. All patients fasted 
for more than 6  h, and blood glucose was controlled 
below 11.1 mmol/L before injection. Patients received an 
intravenous injection of approximately 3.70–5.55  MBq/
Kg body weight of 18F-FDG, and PET/CT scans were 
performed from the top of the skull to the upper 
femur (limbs were scanned if necessary) after a 60  min 
rest. The CT scanning voltage was 120 keV, tube current 
was 100 mAs, and the layer thickness was 3.75 mm. PET 
scanning was performed with three-dimensional acquisi-
tion, 2.5 min/ bed, and 5 ~ 7 beds were collected. An iter-
ative method was used to reconstruct the image.
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Clinical data collection, lesion segmentation and radiomics 
feature extraction
Two nuclear medicine physicians with more than 5 years 
of experience, who were blinded to the lesion results, 
analyzed and recorded the lesion features, including 
lesion site, number, osteolytic destruction, fracture line, 
soft tissue mass/swelling, and appendices/posterior ver-
tebrae involvement. If there was a disagreement, the 
decision was made by a third experienced nuclear medi-
cine physician. Multiple metabolic parameters includ-
ing SUVmax, SUVpeak, SULmax, and SULpeak were 
measured by creating a region of interest (ROI) along the 
lesion edge. Data on the patients’ age, sex and history of 
malignancy were also collected.

The workflow of the radiomics analysis included 
lesion segmentation, radiomics feature extraction, fea-
ture selection, and model construction (Fig. 2). PET/CT 
data in digital imaging and communications in medicine 
(DICOM) format were imported into 3D-slicer soft-
ware (Version 5.1.0, https:// www. slicer. org). Two experi-
enced PET/CT diagnostic physicians manually drew the 
ROI and were blinded to the final diagnosis and clini-
cal history of the patients. For each fractured vertebra, 
a three-dimensional ROI was drawn along the margin 
of the cortex of the whole vertebral body and the ante-
rior margin of the bilateral pedicle on sagittal CT images 
of 3.75-mm thickness. The ROI of PET was sketched 

along the edges of the ROI of CT. A total of 107 features 
including 18 first-order features, 75 texture features and 
14 shape features were extracted from the ROIs of PET 
and CT images using 3D Slicer’s built-in module Slicer-
Radiomics. There are five categories of texture features, 
including the gray-level dependence matrix (GLDM), 
gray-level co-occurrence matrix (GLCM), gray-level 
run length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), and neighboring gray tone difference matrix 
(NGTDM). To ensure the stability and reproducibility of 
the acquired radiomics features, each set of PET and CT 
image data ROIs was segmented, and radiomics features 
were extracted twice. The intraclass correlation coef-
ficient (ICC) for each radiomics feature was calculated. 
ICC > 0.75 was considered indicative of stability, and fea-
tures were thereby entered into the statistical analysis 
that followed.

Feature selection and radiomics model establishment
Student’s t test was conducted if the features were con-
sistent with the normal distribution, and the Mann–
WhitneyU test was conducted if the features were not. A 
value of p < 0.05 was considered statistically significant. 
For features with high repeatability, the Pearson’s stand-
ard correlation coefficient (defined as corr) was used 
to calculate the correlation among features. For those 
pairs of features showing high correlation coefficient 

Fig. 1 Flowchart of patient screening in this study. VCFs vertebral compression fractures

https://www.slicer.org
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(corr > 0.9), the feature with a higher p value was excluded 
and the maximum redundancy was deleted each time. 
Least absolute shrinkage and selection operator (LASSO) 
regression was applied with penalty parameter tuning 
by tenfold cross-validation, and features with nonzero 
coefficients were selected. Finally, the features of CT and 
PET after screening were entered into a support vector 
machine (SVM) classifier to establish a radiomics signa-
ture that distinguished between benign and malignant 
VCFs. A radiomics model was built based on both CT 
and PET findings.

Clinical model building and clinical–radiomics model
The building process of the clinical signature was almost 
the same as the radiomics signature. Student’s t test was 
used for normally distribution data, and the Mann–
WhitneyU test was used for nonnormally distributed 

data. The Chi-square test was used for categorical varia-
bles. Statistically significant characteristics were selected. 
The same machine learning model in the clinical signa-
ture building process was used. Then, the clinical signa-
ture and radiomics signature were combined to develop 
a final clinical–radiomics prediction model. A clinical–
radiomics nomogram was developed in this study.

Performance evaluation of the models
The performance of each model was assessed according 
to the area under the curve (AUC) based on the receiver 
operating characteristic (ROC) curve analysis, and the 
sensitivity, specificity, accuracy, positive predictive value 
(PPV), and negative predictive value(NPV) were cal-
culated in the training and test groups. The Delong test 
was used to compare the AUC between the three models. 

Fig. 2 Workflow of the radiomics analysis. ROI region of interest. 3D ROI three-dimensional ROI. CV cross-validation. MSE mean square error. ROC 
receiver operating characteristic. DCA decision curve analysis
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Decision curve analysis (DCA) was used to determine 
the clinical benefit of each model.

Statistical analysis
Statistical analyses were performed using SPSS (version 
20.0; IBM Corp.) and the “Onekey AI” platform (https:// 
www. medai. icu), which is based on PyTorch 1.8.0. Con-
tinuous variables are expressed as the mean ± standard 
deviation(SD), and categorical variables are expressed as 
absolute counts and percentages(%). Statistical signifi-
cance was defined as a two-sided p value < 0.05.

Results
Clinical characteristics
Among the 121 patients, 51 patients were diagnosed 
with benign VCFs, with 67 vertebral bodies (27 males, 
24 females, age 70.6 ± 8.9  years, range 50–92  years), 
and 70 patients were diagnosed with malignant VCFs, 
with 77 vertebral bodies (40 males, 30 females, age 
60.6 ± 13.4  years, range 13–81  years). The difference 
between benign and malignant VCFs was statistically sig-
nificant in age (p < 0.05), but not in sex (p > 0.05).

All cases were confirmed by histopathology or clinical 
follow-up examination. Of the 67 benign VCFs, 6 were 
surgically confirmed and 61 were confirmed by clinical 
follow-up; among them, 39 cases had a history of malig-
nant tumors. Of the 77 malignant VCFs, 31 were con-
firmed by puncture or surgery, and 46 were confirmed by 
comprehensive imaging diagnosis and follow-up. Among 
them, 64 cases were metastatic solid tumors (28 lung can-
cers, 7 breast cancers, 6 prostatic cancers, 5 thyroid can-
cers, 4 colorectal cancers, 4 hepatocellular carcinomas, 
2 gastric cancers, 2 renal cancers, 2 esophageal cancers, 

cervical cancer, ovarian cancer, pancreatic cancer, and 
synovial sarcoma), 6 cases were multiple myeloma, 5 
cases were lymphoma, and 2 cases were Langerhans cell 
histiocytosis.

Radiomics feature selection, establishment 
and performance of the radiomics model
Twenty-six features, consisting of 9 PET features (6 first-
order features and 3 texture features) and 17 CT features 
(3 first-order features, 13 texture features and 1 shape 
feature) were selected to construct the radiomics model 
after LASSO regression and tenfold cross-validation 
(Fig. 3). The details of the selected features are shown in 
Fig. 4. The formula of the radiomics signature score (rad-
score) for each patient is shown in Table 1.

The AUC of the radiomics model for predicting the 
probability of malignancy of the VCFs was 0.986 (95% 
confidence interval [CI], 0.9714–1.0000) for the train-
ing group and 0.962 (95% CI, 0.9137–1.0000) for the test 
group (Fig. 5). The accuracy, sensitivity, specificity, PPV, 
and NPV were 0.940, 0.887, 1.000, 1.000, and 0.887 in the 
training group and 0.932, 0.917, 0.950, 0.957, and 0.905 in 
the test group, respectively (Table 2).

Establishment and performance of the clinical model 
and clinical–radiomics model
The selection of features for establishing the clinical 
model was based on a p value < 0.05 in the training and 
test groups. SUVmax, SUVpeak, SULmax, SULpeak, age, 
osteolytic destruction, fracture line and involvement of 
the appendices/posterior vertebrae met the conditions 
and were used to build clinical model (Table 3).

Fig. 3 LASSO regression and tenfold cross-validation were used to select the radiomics features. a LASSO coefficient profiles of the radiomic 
features. b Optimal feature selection of CV. LASSO least absolute shrinkage and selection operator. CV cross-validation. MSE mean square error

https://www.medai.icu
https://www.medai.icu
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The AUC of the clinical model for predicting the prob-
ability of malignancy of the VCFs was 0.884 (95% CI, 
0.8153–0.9518) for the training group and 0.858(95% CI, 
0.7437–0.9729) for the test group (Fig. 5). The accuracy, 
sensitivity, specificity, PPV, and NPV were 0.850, 0.830, 
0.872, 0.880, and 0.820 in the training group and 0.841, 
0.875, 0.800, 0.840, and 0.842 in the test group, respec-
tively (Table 2).

The AUC of the clinical–radiomics model for predict-
ing the probability of malignancy of the VCFs was 0.987 
(95% CI, 0.9716–1.0000) for the training group and 0.948 
(95% CI, 0.8787–1.0000) for the test group (Fig.  5). The 

accuracy, sensitivity, specificity, PPV, and NPV were 
0.950, 0.906, 1.000, 1.000, and 0.904 in the training group 
and 0.932, 0.958, 0.900, 0.920, and 0.947 in the test group, 
respectively (Table 2).

Performance of the prediction models and nomogram 
construction
The clinical model, radiomics model and clinical–radi-
omics model all showed good calibration. The p val-
ues of the Hosmer–Lemeshow test for the three models 
were 0.664, 0.787, and 0.422 in the training group and 
0.241, 0.237, and 0.051 in the test group, respectively. 

Fig. 4 Histogram of the coefficients of the selected features

Table 1 Formular of radiomics signature score (rad-score)

Rad-score = 0.5351086867374044

 + 0.056623*firstorder_Minimum_CT
 + 0.153041*firstorder_RootMeanSquared_CT
 − 0.119239*firstorder_TotalEnergy_CT
 − 0.004347*GLCM_ClusterShade_CT
 − 0.219531*GLCM_DifferenceVariance_CT
 + 0.194025*GLCM_Imc1_CT
 + 0.124174*GLCM_Imc2_CT
 + 0.085175*GLDM_DependenceEntropy_CT
 + 0.189177*GLDM_DependenceVariance_CT
 + 0.055343*GLDM_SmallDependenceLowGrayLevelEmphasis_CT
 − 0.021720*GLRLM_LongRunLowGrayLevelEmphasis_CT
 + 0.020565*GLRLM_ShortRunLowGrayLevelEmphasis_CT
 + 0.127269*GLSZM_SizeZoneNonUniformity_CT
 − 0.015686*GLSZM_SmallAreaEmphasis_CT
 + 0.157129*GLSZM_ZonePercentage_CT
 + 0.062160*NGTDM_Strength_CT
 + 0.013747*SHAPE_Elongation_CT

 − 0.310642*firstorder_10Percentile_PET
 − 0.195190*firstorder_Energy_PET
 + 0.839216*firstorder_RootMeanSquared_PET
 + 0.098178*firstorder_Skewness_PET
 + 0.021632*firstorder_TotalEnergy_PET
 − 0.282702*firstorder_Variance_PET
 + 0.095305*GLDM_DependenceNonUniformityNormalized_PET
 − 0.057897*GLDM_DependenceVariance_PET
 − 0.009464*GLDM_GrayLevelNonUniformity_PET
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The Delong test was used to compare the AUCs of the 
three models. In both the training and test groups, the 
radiomics model and clinical–radiomics model were sig-
nificantly different from the clinical model (p < 0.05), but 
there was no significant difference between the radiomics 
model and clinical–radiomics model (p > 0.05). The DCA 
demonstrated that the radiomics model and clinical–
radiomics model could provide higher overall net ben-
efit than the clinical model (Fig. 6). A nomogram based 
on the rad-score and clinical risk factors was developed 
(Fig. 7).

Discussion
Imaging plays a crucial role in the diagnosis of VCFs. 
Early and accurate differential diagnosis of benign 
and malignant VCFs can allow clinicians to effectively 
choose appropriate treatment plans and potentially 
provide improved outcomes. Previous studies have 
reported several CT features that were more frequently 
found in benign VCFs with statistical significance, 
including fracture lines, sclerotic bands beneath the end 
plate, and diffuse thin paraspinal soft tissue thickening 

[1, 24]. In addition, the intravertebral vacuum phenom-
enon has never been visualized in malignant VCFs, 
although its occurrence is uncommon and not statis-
tically significant [1]. CT findings that are predictive 
of malignant VCFs include osteolytic destruction and 
epidural or focal paravertebral soft tissue masses [24, 
25]. One study showed an accuracy of 89.7% in the dif-
ferentiation of malignant from osteoporotic vertebral 
fractures based on the CT scoring system [24]. In our 
study, osteolytic destruction, fracture line and appendi-
ces/posterior vertebrae involvement had statistical sig-
nificance in differentiating benign and malignant VCFs, 
but there was no significant difference in soft tissue 
mass/swelling. A possible reason is that benign VCFs 
can present as paravertebral or epidural hemorrhage 
with soft tissue edema. Malignant VCFs usually pre-
sent as soft tissue masses. However, if there is inflam-
mation around the tumor and/or no tumor infiltrating 
the cortex, malignant VCFs may also present as similar 
smooth soft tissue swelling [1]. In our study, we did not 
distinguish between soft tissue masses and swelling, 
which might have influenced the results.

Fig. 5 AUCs of the prediction models. a The training group. b The test group. AUC  area under the curve

Table 2 Performance of the prediction models

AUC  area under curve; CI confidence interval; PPV positive predictive value; NPV negative predictive value

Prediction model AUC 95%CI Accuracy Sensitivity Specificity PPV NPV Group

Clinical model 0.884 0.8153–0.9518 0.850 0.830 0.872 0.880 0.820 Train

Radiomics model 0.986 0.9714–1.0000 0.940 0.887 1.000 1.000 0.887 Train

Clinical–radiomics model 0.987 0.9716–1.0000 0.950 0.906 1.000 1.000 0.904 Train

Clinical model 0.858 0.7437–0.9729 0.841 0.875 0.800 0.840 0.842 Test

Radiomics model 0.962 0.9137–1.0000 0.932 0.917 0.950 0.957 0.905 Test

Clinical–radiomics model 0.948 0.8787–1.0000 0.932 0.958 0.900 0.920 0.947 Test
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Conventional metabolic parameters of PET/CT such 
as max and peak of SUV and SUL have been used to 
quantify intratumoral heterogeneity [26]. Some previous 
studies involved investigating the diagnostic accuracies 
of PET/CT for differentiating between malignant and 

benign VCFs and revealed sensitivity ranging from 86 
to 100% and specificity ranging from 29.4 to 92.8% [10, 
27, 28]. In a meta-analysis, the results reported that PET/
CT had excellent diagnostic accuracy in the detection of 
malignant VCFs, with a sensitivity of 0.96, specificity of 

Table 3 Clinical variables of benign and malignant VCFs in the training and test groups

SUVmax maximum standardized uptake value; SUVpeak peak of standardized uptake value; SULmax maximum lean body mass correction of SUV; SULpeak peak of 
lean body mass correction of SUV

*The differences were assessed by Mann–Whitney U test or student T-test
† Mean ± SD: mean ± standard deviation
‡ Percentage

Clinical variable Training (n = 100) Test (n = 44)

Benign (n = 47) Malignant (n = 53) p Value* Benign (n = 20) Malignant (n = 24) P Value

SULpeak 2.79 ± 0.90† 5.72 ± 2.73  < 0.001 2.73 ± 1.02 5.46 ± 3.08  < 0.001

SULmax 3.45 ± 1.12 7.35 ± 3.59  < 0.001 3.36 ± 1.15 7.16 ± 4.05  < 0.001

SUVpeak 3.58 ± 1.08 7.37 ± 3.50  < 0.001 3.43 ± 1.27 6.92 ± 3.90  < 0.001

SUVmax 4.43 ± 1.35 9.46 ± 4.51  < 0.001 4.23 ± 1.45 9.08 ± 5.08  < 0.001

Age, year 71.68 ± 9.29 59.89 ± 14.40  < 0.001 69.00 ± 8.74 62.25 ± 11.76 0.04

Osteolytic destruction  < 0.001 0.003

 No 39 (82.98)‡ 14 (26.42) 18 (90.00) 10 (41.67)

 Yes 8 (17.02) 39 (73.58) 2 (10.00) 14 (58.33)

Fracture line  < 0.001 0.025

 No 29 (61.70) 51 (96.23) 13 (65.00) 23 (95.83)

 Yes 18 (38.30) 2 (3.77) 7 (35.00) 1 (4.17)

Soft tissue mass/swelling 0.097 0.974

 No 35 (74.47) 30 (56.60) 16 (80.00) 18 (75.00)

 Yes 12 (25.53) 23 (43.40) 4 (20.00) 6 (25.00)

Appendices/posterior verte-
brae involvement

 < 0.001 0.034

 No 38 (80.85) 15 (28.30) 17 (85.00) 12 (50.00)

 Yes 9 (9.15) 38 (71.70) 3 (15.00) 12 (50.00)

Fig. 6 DCA of the prediction model. a The training group. b The test group. DCA decision curve analysis
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0.77 and AUC of 0.94 [29]. However, a single metabolic 
parameter (SUVmax) was chosen for analysis in all of 
these studies. In our study, we chose multiple param-
eters for analysis. The SUVmax value of benign VCFs 
was lower than that of malignant VCFs, which was use-
ful in the differential diagnosis of VCFs and consistent 
with previous studies [1, 29, 30]. The SUVpeak, SULmax, 
and SULpeak values of malignant VCFs were higher than 
those of benign VCFs (p < 0.05), indicating that malignant 
VCFs were associated with higher metabolic activity on 
PET/CT.

Age was significantly different in distinguishing 
between benign and malignant VCFs. The mean age in 
the malignant VCF group was less than that in the benign 
VCF group, which was consistent with previous stud-
ies [2, 19, 24]. In our study, the clinical model including 
age, SUVmax, SUVpeak, SULmax, SULpeak, osteolytic 
destruction, fracture line and appendices/posterior verte-
brae involvement showed a sensitivity of 0.830, specificity 
of 0.872, and AUC of 0.884 in the training group and sen-
sitivity of 0.875, specificity of 0.800, and AUC of 0.858 in 
the test group, all of which were values lower than those 
from the meta-analysis by Kim SJ et al. [29]. This may be 
because asymptomatic old compression fractures were 
excluded in our study, and the metabolic parameters of 
acute VCFs on PET/CT may be higher than those of old 
VCFs.

Radiomics has been used in many clinical studies, 
including tumor molecular characteristics, patient 
prognosis and response to therapy [31]. A number of 
studies have shown that radiomics and deep learning 
based on CT and MRI have good diagnostic perfor-
mance in distinguishing benign and malignant VCFs. 
The AUCs of the radiomics score on CT for predicting 
the malignancy probability of VCFs were 0.852–0.97 
[19, 25]. The AUC and accuracy of machine learn-
ing based on MRI to identify benign versus malig-
nant indistinguishable VCFs were 0.86 and 87.61%, 

respectively [32]. Liu B et  al. believed that automatic 
deep learning networks showed better diagnostic per-
formance than radiologists in identifying benign or 
malignant VCFs, and were potentially useful tools for 
future clinical applications [33]. In our study, we devel-
oped and validated a radiomics model and a clinical–
radiomics model to predict the malignancy of VCFs 
on PET/CT. The discrimination performance of the 
radiomics model and clinical–radiomics model was 
higher than that of the clinical model in both the train-
ing group (AUC: 0.986, 0.987 vs. 0.884, p < 0.05) and the 
test group (AUC: 0.962, 0.948 vs. 0.858, p < 0.05).

We believe that radiomics-based models can improve 
the diagnostic accuracy and efficiency of diagnostic 
physicians because radiomics models use mathemati-
cal algorithms to describe lesions more objectively and 
can complement radiologists by providing quantita-
tive information that is not available through visual 
analysis. Radiomics features are believed to reflect 
intraregional heterogeneity [21, 34]. In our study, the 
radiomics model included 9 PET features (6 first-order 
features and 3 texture features) and 17 CT features (3 
first-order features, 13 texture features and 1 shape fea-
ture). Among the 26 features, the root mean squared, 
skewness, dependence variance, size zone nonuniform-
ity and dependence entropy were the features with high 
weight coefficients. Root mean squared as entropy-
derived data has emerged as one of the most relevant 
radiomics features for tumor aggressiveness [35]. The 
skewness represents the asymmetry of the gray distri-
bution. Higher skewness has been reported as a predic-
tive feature of reduced survival and genetic mutations 
in lung and colorectal cancer [36–38]. In our study, we 
found that malignant VCFs had a higher discretized 
intensity skewness than benign VCFs, which was con-
sistent with the results of Choong Guen Chee’s study 
[19]. Furthermore, we created a nomogram including 
the rad-score and clinical risk factors that can depict 

Fig. 7 Nomogram to predict the malignancy of VCFs
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the prediction results and provide an easy-to-use 
method for individualized prediction of benign and 
malignant VCF.

This study has several limitations. First, this was a 
single-center retrospective study with a relatively small 
sample size, especially in the test group. Second, most 
of the malignant VCFs were metastatic tumors, while 
the proportion of myeloma and lymphoma was small, 
which might lead to potential confounding factors. 
Third, the slice thickness of 3.75  mm might be a limi-
tation to this study. Thinner axial slices could increase 
reliability. Furthermore, we used radiomics for the 
analysis, and expanding the sample size for deep learn-
ing might make the results more reliable and mean-
ingful. Finally, we only performed internal validation. 
Additional external validation is required to confirm 
the robustness and generalization of our model.

Conclusions
In summary, the radiomics model and clinical–radiom-
ics model combining clinical parameters with radiom-
ics scores based on 18F-FDG-PET/CT can be used to 
predict the malignancy of vertebral compression frac-
tures with high diagnostic accuracy. The predictive 
models can serve as potential decision support tools 
for clinicians and nuclear medicine physicians and help 
facilitate the appropriate management of patients with 
VCFs.
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