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Abstract 

Background This study aimed to retrospectively evaluate the feasibility of total-body 18F-FDG PET/CT ultrafast acqui-
sition combined with a deep learning (DL) image filter in the diagnosis of colorectal cancers (CRCs).

Methods The clinical and preoperative imaging data of patients with CRCs were collected. All patients underwent 
a 300-s list-mode total-body 18F-FDG PET/CT scan. The dataset was divided into groups with acquisition durations 
of 10, 20, 30, 60, and 120 s. PET images were reconstructed using ordered subset expectation maximisation, and post-
processing filters, including a Gaussian smoothing filter with 3 mm full width at half maximum (3 mm FWHM) 
and a DL image filter. The effects of the Gaussian and DL image filters on image quality, detection rate, and uptake 
value of primary and liver metastases of CRCs at different acquisition durations were compared using a 5-point Likert 
scale and semi-quantitative analysis, with the 300-s image with a Gaussian filter as the standard.

Results All 34 recruited patients with CRCs had single colorectal lesions, and the diagnosis was verified pathologi-
cally. Of the total patients, 11 had liver metastases, and 113 liver metastases were detected. The 10-s dataset could 
not be evaluated due to high noise, regardless of whether it was filtered by Gaussian or DL image filters. The signal-to-
noise ratio (SNR) of the liver and mediastinal blood pool in the images acquired for 10, 20, 30, and 60 s with a Gauss-
ian filter was lower than that of the 300-s images (P < 0.01). The DL filter significantly improved the SNR and visual 
image quality score compared to the Gaussian filter (P < 0.01). There was no statistical difference in the SNR of the liver 
and mediastinal blood pool, SUVmax and TBR of CRCs and liver metastases, and the number of detectable liver metas-
tases between the 20- and 30-s DL image filter and 300-s images with the Gaussian filter (P > 0.05).

Conclusions The DL filter can significantly improve the image quality of total-body 18F-FDG PET/CT ultrafast acquisi-
tion. Deep learning-based image filtering methods can significantly reduce the noise of ultrafast acquisition, making 
them suitable for clinical diagnosis possible.
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Background
Recently, new PET/CT scanners with long-axial field of 
view (LAFOV) and silicon photomultiplier (SiPM) detec-
tion systems have been introduced, such as the axial 
FOV of 194-cm PET/CT (uEXPLORER, United Imag-
ing Healthcare Co), 106-cm PET/CT (Biograph Vision 
Quadra, Siemens Healthineers), and 64-cm PET/CT 
(PennPET Explorer) scanners [1–4]. These LAFOV PET/
CT scanners are characterised by increased sensitiv-
ity owing to their ability to collect more photons during 
scanning, allowing reduced tracer injection doses and 
shortened acquisition time.

Shorter acquisition durations are desirable for the com-
fort of patients, particularly those who are distressed, 
claustrophobic, have shortness of breath, are children, 
or require less dosage of anaesthetic; shorter acquisition 
durations is also cost-effective. One of the challenges in 
routine PET/CT is to deal with patients with dyspnoea 
in a recumbent position or severe pain following bone 
metastases. In such cases, maintaining diagnostic perfor-
mance whilst achieving fast PET acquisitions would be 
especially beneficial.

However, shortening the acquisition time may result in 
increased noise, lower signal-to-noise ratio (SNR), and 
potentially unnecessary image artefacts [5]. These fac-
tors may affect the quality and accuracy of the images, 
potentially compromising the diagnosis and treatment 
planning for the patient, especially for the detection of 
liver metastases or interference of physiological accu-
mulation of 18F-FDG by the adjacent colon in colorectal 
cancer (CRC). Benign FDG uptake in the colon on PET/
CT indicates physiological uptake, inflammation (such as 
inflammatory bowel disease), and benign lesions (such 
as benign polyps). This can affect the detection and diag-
nosis of CRCs, especially when the difference between 
tumour and colon benign uptake is not significant or 
when there is noise interference.

The advent of deep learning-based image filters has 
the potential to decrease noise and enhance image qual-
ity in short-term image acquisition, such as HYPER DLR 
launched by United Imaging Healthcare and licenced 
by the US Food and Drug Administration (FDA) 510(k) 
clearance. HYPER DLR, a deep learning-based algorithm 
for PET image filters, can effectively remove noise from 
images captured under low count rate conditions, sig-
nificantly improving image quality. This technology can 
boost image SNRs by 42% and increase imaging speed 
[6].

Xing et  al. attempted to use HYPER DLR to reduce 
image noise and achieved good results, but did not evalu-
ate the image quality with an acquisition time of less than 
1 min [6]. Some researchers have explored ultrafast PET 
acquisition and attempted to evaluate PET image quality 

within 1  min [7–10]. However, image noise caused by 
short-term acquisition using a Gaussian filter has affected 
the diagnosis, with standard detectors covering an axial 
field of view [11]. Although these studies on the ultrafast 
acquisition of PET/CT have revealed that acquisition 
speed has significantly improved, studies on the quality 
of images using a Gaussian filter still need to be com-
pleted. Further to this, previous studies have included a 
variety of diseases, but there is a lack of research on CRC, 
specifically in patients with liver metastasis. The effect 
of liver noise on the ability to detect metastatic tumours 
remains unknown.

Therefore, considering the 300-s OSEM reconstruction 
image with a 3 mm Gaussian smoothing filter as a stand-
ard image, we retrospectively compared the effects of the 
Gaussian and DL image filters on image quality, detection 
rate, and uptake rate of primary and metastatic CRCs in 
total-body PET/CT imaging at different acquisition dura-
tions (10, 20, 30, 60, and 120 s).

Methods
Study design and population
The local Institutional Review Board approved this ret-
rospective study (No. KY2023-020-01) and waived the 
requirement for informed consent. From April 2022 to 
December 2022, 34 consecutive patients with CRCs were 
enrolled in this study.

Inclusion criteria
Patients were included in this study based on the follow-
ing inclusion criteria: (i) no previous history of malignan-
cies; (ii) the diagnosis was confirmed by histopathology; 
and (iii) only received symptomatic treatment and had no 
history of chemotherapy, radiotherapy, or surgical resec-
tion before the PET/CT scan.

Exclusion criteria
Patients were excluded for the following reasons: (i) 
incomplete image datasets and (ii) lack of a final histo-
logical diagnosis.

Patient preparation and PET/CT protocol
All patients fasted for more than 4  h before 18F-FDG 
injection according to the EANM procedure guide-
lines for tumour imaging (version 2.0) [12]. All patients 
underwent implantation of 22 G indwelling intravenous 
catheters (Jierui Medical Product), followed by 18F-FDG 
manual administration with 2.96  MBq/kg. The patients 
were instructed to lie on the bed as calmly as possible. 
Imaging was started 60 ± 5 min after 18F-FDG injection. 
Image acquisition was performed using a total-body 
PET/CT scanner (uEXPLORER, United Imaging Health-
care, Shanghai, China) with an axial FOV of 194  cm. 



Page 3 of 12Liu et al. EJNMMI Research           (2023) 13:66  

Additional file 1: Table 1 lists the parameters of the PET 
component of the PET/CT scanner. Low-dose CT was 
performed before PET for attenuation correction and 
anatomical localisation with a dose-modulation tech-
nique. Subsequently, total-body PET imaging was per-
formed using a 3D list-mode with 300-s acquisition for 
one-bed position.

PET images were initially reconstructed with OSEM 
using data from the full 300-s acquisition. Images 
were post-processed using a 3  mm isotropic Gauss-
ian smoothing filter. The necessary correction methods 
were applied, such as attenuation and scatter correc-
tion. Subsequently, the PET images were reconstructed 
using various acquisition times (10, 20, 30, 60, and 120 s) 
to simulate fast scans with both Gaussian and DL image 
filters. The parameters used in the OSEM reconstruction 
process included time of flight (TOF) and point spread 
function (PSF) modelling, three iterations, 20 subsets, 
600  cm field of view, a matrix size of 192 × 192, a pixel 
size of 3.125 × 3.125 × 2.886   mm3, and a Gaussian post-
filter of 3 mm FWHM. For the DL image filter process, 
the Gaussian post-filter was replaced, whereas all other 
reconstruction parameters were the same as described 
above.

Imaging analysis
All images were transferred to a workstation (uWS-
MI:R002, United Imaging Healthcare) and reviewed in 
standard planes. Taking the 300-s image with a Gaussian 
filter image as a standard image, Gaussian and DL filter-
ing images with five image datasets (10, 20, 30, 60, and 
120 s) were included for comparison.

For qualitative analysis, the image quality of various 
time-point PET/CT datasets was evaluated visually by 
two nuclear physicians (Xiaochun Zhang and Taotao 
Sun) with over a decade of experience in PET/CT diagno-
sis. According to the widely used 5-point Likert scale, the 
image quality was scored, and the criteria were as follows: 
(i) very poor image quality and excessive noise (score 1); 
(ii) poor image quality and increased noise (score 2); (iii) 
fair image quality, similar to the regular image of daily 
practice (score 3); (iv) good image quality, superior to the 
regular image of daily practice (score 4); and (v) excellent 
image quality with minimal noise (score 5) [13–17]. The 
two readers were blinded to the evaluation of the various 
time-point PET/CT dataset images and scored.

To eliminate intra-observer variability in the quan-
titative analysis, PET/CT images were quantitatively 
evaluated by a single nuclear physician with over a 
decade of experience in PET/CT diagnosis. Semi-
automatic 3D delineation of the FDG-avid lesions 
was performed to cover the entire tumour. 3D iso-
contour volume of interest (VOI) based on 41% of the 

maximum standardised uptake value (SUVmax) thresh-
olds was used and recommended by EANM guidelines 
[12]. The tumour VOIs were obtained with the 300-s 
OSEM reconstruction with Gaussian (3  mm FWHM) 
filter and subsequently replicated and applied to other 
PET acquisition datasets of images. Mean standard-
ised uptake value (SUVmean), maximum standardised 
uptake value (SUVmax), and peak standardised uptake 
value (SUVpeak) within a 1-cm3 spherical volume were 
automatically generated.

According to the recommendations of PERCIST, 
hepatic 18F-FDG activity was assessed using a fixed 
3-cm-diameter spherical VOI on the right lobe of the 
liver [18, 19]. Additionally, 18F-FDG activity in the 
mediastinal blood pool was evaluated using a cylindri-
cal VOI with a diameter of 1 cm and a long axis of 2 cm 
(parallel to the descending aorta) at the centre of the 
descending thoracic aorta. The SUVmean and standard 
deviation (SD) of the liver and mediastinal blood pool 
were recorded. The liver and mediastinal blood pool 
SNRs were calculated by dividing SUVmean by SD. The 
calculation formula used was as follows:

The tumour-to-background ratio (TBR) was calcu-
lated by dividing the SUVmax of the tumour by the 
SUVmean of the liver. The calculation formula used was 
as follows:

To evaluate the detectability of the primary lesion of 
CRCs, the SUVmax of the adjacent proximal and distal 
bowel of the tumour was measured, and the tumour-to-
adjacent bowel ratio (TAR) was calculated. The calcula-
tion formula used was as follows:

For patients with multiple liver metastases, the num-
ber of liver metastases was found on the 300-s image 
with a Gaussian filter image as a standard image refer-
ence, and the analysis focused on the largest and small-
est lesions on the standard reconstruction. The liver 
metastases TBR and detection rate of liver metastases 
were calculated. The calculation formula used was as 
follows:

Liver SNR =

SUVmean of Liver

SD

Mediastinal blood pool SNR

=

SUVmean of Mediastinal blood pool

SD

TBR =

SUVmax of tumour

SUVmean of Liver

TAR =

SUVmax of tumour

SUVmax of the surrounding bowel of tumour
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Statistical analysis
Continuous variables were presented as mean ± SD, 
and categorical variables were presented as frequen-
cies and percentages. The weighted Kappa statistic was 
applied to evaluate inter-observer agreement for differ-
ent acquisition durations of the PET/CT datasets image 
scores. The value of the agreement was categorised as fol-
lows: no agreement (κ < 0), slight agreement (0 ≤ κ < 0.2), 
fair agreement (0.21 ≤ κ < 0.4), moderate agreement 
(0.41 ≤ κ < 0.6), substantial agreement (0.61 ≤ κ < 0.8), 
and excellent agreement (0.81 ≤ κ ≤ 1). The Friedman’s 
test with post hoc comparisons using Bonferroni correc-
tion was used to compare differences in SNR, TBR, and 
tumour SUVs among various time-point PET/CT data-
set images. Statistical analyses were performed using 
SPSS (v.26.0), GraphPad Prism (v.9.0.0), and MedCalc 
(v.19.0.7). A two-tailed probability value of < 0.05 was 
considered statistically significant.

Results
Population
From April 2022 to December 2022, 34 consecutive 
patients with a single CRC lesion, histopathologically 
confirmed, were enrolled in this study. Of the total 
patients, 11 had liver metastases, and 113 liver metasta-
ses were detected. All 11 patients underwent triple-phase 
abdominal contrast-enhanced CT (CECT), and the size 
of the liver metastases was measured using enhanced CT. 
Patient characteristics are shown in Table  1. The distri-
bution of the primary tumour sites in CRCs is shown in 
Additional file 2: Fig. 1.

Qualitative assessment of image quality and inter‑observer 
agreement
Based on a 5-point Likert scale, the weighted kappa 
coefficient for the inter-observer agreement of the image 
quality evaluation was 0.822 (95% confidence interval, 
0.655–0.989). The 10-, 20-, and 30-s acquisition dura-
tions images with Gaussian filter were scored 1 or 2, 
and none were scored 3. DL image filter significantly 
improved the visual image quality scores of 20-, 30-, and 
60-s acquisition time images compared to Gaussian filter 
(P < 0.01) (Additional file 3: Fig. 2 and Additional file 4: 
Fig. 3). The scores of PET image using Gaussian and DL 
image filter for different acquisition durations are shown 
in Fig. 1.

Liver metastases TBR =

SUVmax of Liver metastases

SUVmean of Liver

Quantitative assessment of image quality
The 10-s dataset could not be evaluated due to high 
noise, regardless of whether it was filtered by Gaussian 
or DL image filters. The SNR of the liver and medias-
tinal blood pool in the images acquired for 10, 20, 30, 
and 60 s with a Gaussian filter was lower than that of 
the 300-s images (P < 0.01) (Additional file  5: Fig.  4). 
The DL filter significantly improved the SNR and vis-
ual image quality score compared to the Gaussian fil-
ter (P < 0.01). There was no statistical difference in the 
SNR of the liver (P = 0.176 and P = 0.635) and medias-
tinal blood pool (P = 0.257 and P = 0.942) between the 
20- and 30-s DL image filter and 300-s images with 
the Gaussian filter. The SNR of different acquisition 
duration images with Gaussian and DL image filters is 
shown in Fig. 2, Table 2, and Table 3.

Table 1 The characteristics of the patients

Characteristics Value

Number of patients 34

Age (years) 67 (32–93)

Gender, n (%)

 Male 20

 Female 14

Weight (kg) 56.9 ± 12.0 (35.0–85.0)

Height (cm) 161.4 ± 8.5 (143.0–181.0)

BMI (kg/m2) 21.7 ± 3.4 (15.6–30.1)

Fasting blood glucose level (mg/dl) 105.4 ± 18.8 (73.8–160.2)
18F-FDG injection dose (MBq) 168.4 ± 35.5 (103.6–251.6)

CEA (ng/ml) 74.5 ± 185.3 (0.92–1033.0)

Delay time (min) 60 ± 4.3 (51–72)

Location (number of patients)

 Rectal cancer 1

 Colon cancer 33

  Ascending 11

  Transverse 5

  Descending 10

  Sigmoid 7

TNM

 I-II 6

 III 11

 IV 17

Primary tumour

 SUVmax 21.6 ± 13.9 (7.3–82.7)

 TBR 8.8 ± 4.9 (2.9–26.7)

Liver metastases

 SUVmax 8.4 ± 5.2 (3.2–22.7)

 TBR 3.7 ± 2.2 (1.5–8.4)

 Size

  Largest lesion 4.6 ± 2.7 (1.0–8.5)

  Minimal lesion 0.9 ± 0.4 (0.6–2.1)
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Quantitative assessment of colorectal cancer and liver 
metastases
The SUVmax and TBR of CRCs and liver metasta-
ses gradual increased with decreasing acquisition 
times. There were no statistical differences in the SUV-
max (P = 0.961 and P = 0.071) and TBR (P = 0.189 and 
P = 0.081) of CRCs and liver metastases between the 
20- and 30-s DL image filter and 300-s images with the 
Gaussian filter. The SUVmax and TBR of different acqui-
sition durations of images with Gaussian and DL image 
filters are shown in Fig.  3, Tables  2, and Table  3. The 
SUVmax and TBR of the 60- and 120-s images with DL 
image filter were lower than those of the 300-s images 
with Gaussian filter (P < 0.01) (Additional file 6: Fig. 5). A 
comparison of all quantitative data is presented in Addi-
tional file 7: Table 2.

To evaluate the detectability of primary lesions of 
CRCs, we introduced TAR, which is the ratio of the 
primary tumour to tumour–adjacent bowel SUVmax. 
There was no statistical difference in the TAR (P = 0.324, 
P = 0.306, P = 0.125, and P = 0.073) between the Gauss-
ian and DL image filter images with different acquisition 
durations (20, 30, 60, and 120 s) and the 300-s images 
with Gaussian filter image.

With the 300-s images with Gaussian filter image as 
a standard image reference, a total of 113 liver metas-
tases were detected. The 10- and 20-s acquisition dura-
tions images with Gaussian filter exhibited noticeable 
noise, making it difficult to observe small liver metastases 

(Fig. 4). Sub-centimetre liver metastases were not condu-
cive to display on the DL image filter image (Fig. 5). Com-
pared with the 300-s images with Gaussian filter images, 
the detection rate of liver metastases on 60 and 120-s 
images with DL image filter decreased. In terms of the 
number of detectable liver metastases, the 10- and 20-s 
acquisition durations images with Gaussian filter were 
significantly lower than the 300-s images with Gaussian 
filter images (P < 0.05). There was no statistical difference 
in the number of detectable liver metastases between the 
20- and 30-s images with DL filter and the 300-s images 
with Gaussian filter image (P = 0.077 and P = 0.123).

Discussion
Our current study shows that DL image filter can sig-
nificantly improve the image quality and SNR for low 
count data. Without affecting the quantitative evalua-
tion of CRCs or liver metastases, the acquisition time 
of total-body PET/CT can be reduced to 20  s using DL 
image filter. For the visual qualitative evaluation of image 
quality, DL image filter significantly improved the image 
quality score of 20-, 30-, and 60-s acquisition time images 
compared with Gaussian filter (P < 0.01). Visually, there 
was no difference in image quality between DL image fil-
ter images and 300-s images with Gaussian filter images 
(Additional file  8: Fig.  6). For the SNR of the liver and 
mediastinal blood pool, compared with Gaussian filter, 
DL image filter can increase the SNR of 20-s, 30-s, and 
60-s datasets images by three times (Fig.  3A and 3B). 
Because of the 10-s datasets, whether Gaussian filter or 
DL image filter was too poor in SNR, it was not consid-
ered. Compared with the 300-s images with Gaussian fil-
ter images, the SNR of the 20- and 30-s images with DL 
image filter was similar.

When the acquisition time for PET/CT imaging is 
reduced, the image noise level tends to increase signifi-
cantly. The SUVmax of CRC and liver metastatic lesions 
also tends to increase gradually. This observation applies 
to both images processed with a Gaussian filter and DL 
image filter. However, it is noted that the increase in 
SUVmax is relatively lower when using the DL image 
filter compared to the Gaussian filter. The detection of 
sub-centimetre liver metastases of CRCs is still a problem 
that puzzles PET/CT daily work. It is worth noting that 
DL image filter makes it difficult to detect sub-centimetre 
liver metastases from CRCs.

In this study, we compared the data from similar stud-
ies [9]. The results are presented in Table  4. Compared 
with the current study, the SNR of the liver and medias-
tinal blood pool in Zhang et al.’s study is higher than that 
of our image data, whether it is 30- or 300-s image with a 
Gaussian filter. We speculate that this is caused by differ-
ent FDG doses (3.7 vs. 2.96 MBq/kg).

Fig. 1 The image quality score of PET image reconstructed using 
Gaussian and DL image filter for different acquisition durations. DL 
image filter significantly improves visual image quality scores of 20-, 
30-, and 60-s acquisition time images compared to Gaussian filter 
(P < 0.01). There is no statistical difference in the image quality score 
between the 120-s Gaussian or DL image filter image and the 300-s 
Gaussian filter image (P > 0.05)
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Meanwhile, we also found that the SNR of the 20- 
and 30-s DL image filter images was higher than that of 
Zhang et  al.’s 30-s Gaussian filter image [9]. Addition-
ally, the SNR of 30-s DL image filter image was similar 
to that of Zhang et al.’s 300 s with a Gaussian filter image 
[9]. It has been demonstrated that the SNR of DL image 
filter images is better than that of Gaussian filter by a 
30-s ultrafast acquisition by total-body PET/CT. And the 

30-s DL image filter images was equivalent to the 300-s 
reconstruction images. The SUV and TBR of CRCs in 
this study were significantly higher than those in Zhang 
et al.’s study, presumably because of the different types of 
tumours included.

The increase in image noise due to fast acquisition may 
affect the detection and diagnosis of CRCs, especially 
when the difference between tumour and benign colon 

Fig. 2 The SNR of different acquisition durations images with Gaussian and DL image filter. The SNR of the liver (A) and mediastinal blood pool 
(B, measured at descending aorta) of the DL image filter image with different acquisition durations is higher than that of the Gaussian filter image 
(P < 0.01). C and D show that the SNR improves steadily as the acquisition time increases, for both Gaussian and DL image filter images. There 
is no statistical difference in the SNR of the liver (E) and mediastinal blood pool (F) between the 20- and 30-s DL image filter image and the 300-s 
Gaussian filter image (P > 0.05)
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uptake is not significant or noise interference. Our study 
also evaluated the detectability of CRC lesions, compared 
the difference between CRC lesions and adjacent bowel 
benign FDG uptake, and used the SUVmax of lesions and 
adjacent bowel uptake. The shortened acquisition time 
led to deviations in SUVmax caused by noise.

Significantly, compared with the 300-s image with a 
Gaussian filter images, we have shortened the acquisition 

time and are more friendly to patients who cannot tol-
erate the conventional PET/CT acquisition time. In the 
routine management of CRCs, ultrafast acquisition may 
be a practical substitute for 300-s PET/CT acquisition.

Additionally, our study found that the SUVmax of 
the Gaussian filter image datasets acquired for more 
than 60 s was consistent with the results of the datasets 
acquired for 5  min (Fig.  4). Our results are consistent 
with Tan et al.’s research on assessing CRCs with data col-
lected at 1–5 different minute time points using the same 
equipment [20]. However, these results differ from those 
of Sher et al., who found that the SUVmax of images col-
lected at 1.5 min differed from those collected at 5 min 
[21]. This may be due to differences in equipment (long-
axial FOV PET detectors and standard PET detectors) 
and the composition of the study cases, which are not 
focused on CRCs (mainly lymphoma and lung cancer).

Limitations of our study
The limitations of this study include its small sample size 
and retrospective design. One limitation of this study is 
that only one patient had a BMI greater than 30, defined 
as obesity. It is well known that obesity affects SNR 
and reduces the SNR of fast-acquisition PET images. 
This study also did not qualitatively and quantitatively 

Table 3 Quantitative comparison of 20- and 30-s deep learning 
filter and 300-s Gaussian filter images

Gaussian filter Deep learning filter P value

300S 20S 30S

SNR

 Liver 17.0 ± 4.4 14.7 ± 6.2 18.7 ± 6.7 P > 0.05

 Aorta 18.8 ± 6.9 16.7 ± 6.9 19.4 ± 7.3 P > 0.05

SUVmax

 Lesion of CRCs 21.6 ± 13.9 20.4 ± 13.1 19.9 ± 12.9 P > 0.05

 Liver metastases 8.4 ± 5.2 7.8 ± 5.2 7.6 ± 5.0 P > 0.05

TBR

 Lesion of CRCs 8.8 ± 4.9 8.2 ± 4.6 8.1 ± 4.5 P > 0.05

 Liver metastases 3.7 ± 2.2 3.9 ± 2.2 3.3 ± 2.2

TAR 7.5 ± 4.4 7.5 ± 5.0 7.4 ± 5.0 P > 0.05

Fig. 3 The SUVmax and TBR of CRCs and liver metastases of different acquisition durations images with Gaussian and DL image filter. The SUVmax 
(A) and TBR (B) of CRCs showed gradual increases with decreasing acquisition times. There are no statistical difference in SUVmax (C) and TBR (D) 
of CRCs between the 20- and 30-s DL image filter image and the 300-s Gaussian filter image (P > 0.05). E, F, G, and H show the same findings in liver 
metastases
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Fig. 4 A patient with CRC and liver metastases. Maximum intensity projection (MIP) PET images (A), axial PET images of colon cancer (B), and axial 
PET images of liver metastases (C) with Gaussian filter with different acquisition durations (10, 20, 30, 60, 120, and 300 s). The 10-, 20-, and 30-s 
acquisition durations images with Gaussian filter exhibited noticeable noise, making it difficult to observe small liver metastases (red arrow). As 
the acquisition duration was extended, the liver metastases were clearly displayed

Table 4 Quantitative comparison based on 300-s Gaussian filter image and comparison with relevant study

Gaussian filter P value Gaussian filter Deep learning filter P value

300S 30S 300S 30S 20S

The current study SNR

 Liver 17.0 ± 4.4 5.6 ± 1.2 P < 0.01 17.0 ± 4.4 18.7 ± 6.7 14.7 ± 6.2 P > 0.05

 Aorta 18.8 ± 6.9 6.2 ± 1.5 P < 0.01 18.8 ± 6.9 19.4 ± 7.3 16.7 ± 6.9 P > 0.05

SUVmax 21.6 ± 13.9 23.4 ± 13.9 0.063 21.6 ± 13.9 19.9 ± 12.9 20.4 ± 13.1 P > 0.05

TBR 8.8 ± 4.9 9.4 ± 4.9 0.418 8.8 ± 4.9 8.1 ± 4.5 8.2 ± 4.6 P > 0.05

Zhang et al SNR

 Liver 19.71 ± 5.58 9.03 ± 2.51 P < 0.01

 Aorta 16.60 ± 6.48 10.43 ± 3.1 P < 0.01

SUVmax 13.94 ± 11.83 15.48 ± 14.19 0.003

TBR 4.43 ± 3.61 4.54 ± 3.80 0.411
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evaluate the nearby lymph nodes of colorectal cancer, 
which will be the focus of the next step.

Conclusions
The DL filter can significantly improve the image qual-
ity of total-body 18F-FDG PET/CT ultrafast acquisition. 
Deep learning-based image filtering methods can signifi-
cantly reduce the noise of ultrafast acquisition, making 
them suitable for clinical diagnosis possible.
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