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Abstract 

By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmis-
sion. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychi-
atric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand 
have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide 
an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant trans-
porter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after 
which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radio-
ligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To 
overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic 
acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 
inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioli-
gands in the future.
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Introduction
The amino acid γ-aminobutyric acid (GABA (1)) is the 
main inhibitory neurotransmitter in the central nervous 
system (CNS). Synthesis of GABA occurs in GABA-pro-
ducing neurons through the enzymatic decarboxylation 
of glutamate by two glutamate acid decarboxylase (GAD) 
enzymes (Fig.  1) [1]. Synthesized GABA is then stored 
into vesicles, into which it is transported by the vesicular 
GABA transporter (VGAT). GABA is released from these 
vesicles into the synaptic cleft by exocytosis. This pro-
cess is regulated by voltage-dependent calcium channels, 
which allow calcium to pass into the presynaptic neu-
ron upon depolarization. After exocytosis, GABA in the 
synaptic cleft can bind to the postsynaptic  GABAA and 
 GABAB receptors, which pass on the inhibitory signal to 
the postsynaptic neuron(s) [2, 3]. GABA signals are ter-
minated by removal of GABA from the synaptic cleft by 
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its reuptake into adjacent presynaptic neurons and glial 
cells by the GABA transporters (GATs).

A well-balanced status of inhibitory (e.g. GABA) and 
excitatory (e.g. glutamate) neurotransmission systems 
is required for a healthy brain function. Hence, disrup-
tions in the GABAergic system could lead to an imbal-
ance between the two neurotransmission systems and 
are associated with the pathogenesis of various CNS dis-
eases, such as epilepsy, schizophrenia, Parkinson’s dis-
ease, and Alzheimer’s disease [4]. The GABAergic system 
is therefore a prime target of several CNS-targeted drugs 
[5], even though the exact role of GABA in these disor-
ders is not fully understood. Non-invasive imaging of the 
GABAergic system could aid to understand this role.

Several imaging methods have been developed for 
GABA receptors, with the benzodiazepine derivatives 
 [11C]flumazenil ([11C]2),  [18F]flumazenil ([18F]2), and 
 [11C]Ro15-4513 ([11C]3) frequently being used as posi-
tron emission tomography (PET) tracers for the  GABAA 
receptor (Fig. 2) [5, 6]. For example, clinical studies using 
these radioligands include applications in schizophre-
nia, major depressive disorder, Alzheimer’s disease, and 
autism spectrum disorder [6]. Since the GABA recep-
tors are mainly found on postsynaptic membranes, the 
 GABAA addressing tracers can provide information on 
postsynaptic GABA function. However, there are no 
PET tracers available yet to study presynaptic neuronal 
and glial GABAergic activity. Radiotracers for other 

Fig. 1 Schematic diagram of GABA synthesis and uptake. Reprinted with permission from Owens et al., Nat. Rev. Neurosci. 2002, 3 (9), 715–727. 
Copyright 2002 Springer Nature

Fig. 2 Structure of GABA and  GABAA radioligands



Page 3 of 21Knippenberg et al. EJNMMI Research           (2023) 13:42  

presynaptic neuronal markers have been developed by 
addressing the neuronal and vesicular neurotransmitter 
transporters. For example, the use of PET tracers to local-
ize and quantify dopamine transporters in patients with 
Parkinson’s disease is well established [7] and radioli-
gands have also been developed for serotonin, noradren-
alin, and glycine transporters [8]. However, there are no 
radioligands that can successfully image the GABA trans-
porters (GATs) in vivo.

These GATs are membrane bound GABA/Na+ sym-
porters, belonging to the solute carrier family SLC-6. As 
 Na+/Cl−-dependent transporters, they entail the cotrans-
port of two  Na+ ions and one  Cl− ion [9–11]. The first 
GAT was isolated from rat brain by Radian et  al. [12], 
after which this transporter was designated as GAT1. 
Following the isolation of GAT1 in rats, four different 
GAT subtypes have been cloned in various species lead-
ing to a complex nomenclature (Table  1) [13]. For the 
purpose of this review, the nomenclature proposed by 
the Human Genome Organization (HUGO) will be used 
(i.e. GAT1, BGT1, GAT2, and GAT3). It has been shown 
that the four GAT isoforms have a different distribution 
in the CNS [14]. GAT1—the most abundant transporter 
of the four GAT subtypes [15]—is mainly present on 
presynaptic GABAergic neurons, while GAT3 resides in 
astrocytes. Immunocytochemistry studies revealed that 
GAT2 is mainly located in the leptomeningeal cells, while 
BGT1 (betaine-GABA transporter 1) is present in the 
renal medullary cells.

Since the cellular distribution of the four GATs differs 
significantly depending on the isoform, it is preferable 
to develop selective GAT radioligands to suit the desired 
imaging application. As GAT1 is the most abundant and 
most of the research concerns this GAT subtype, this 
review will mainly focus on summarizing the efforts 
made to develop GAT1 addressing radioligands for 
in vivo imaging of presynaptic GABAergic neurons. The 
development of these radioligands is highly desirable, as 
they could contribute to our understanding of the patho-
genesis of CNS disorders. This might be especially benefi-
cial for schizophrenia and Parkinson’s disease, as in these 
disorders GATs have been shown to play an important 

pathophysiological role [4]. Several lines of evidence also 
suggest that patients with temporal lobe epilepsy have a 
lower GAT expression [16–20]. The recognition of GAT 
inhibitors to exhibit anticonvulsant properties then led 
to the development of the GAT1 inhibitor tiagabine (11, 
vide infra) [21–23], which is currently the only approved 
GAT1 inhibitor that is clinically used for the adjunctive 
treatment of epilepsy [24].

Several attempts have been made to develop GAT 
radioligands, which are summarized in this review. Since 
these attempts have mostly been unsuccessful, we spe-
cifically aim to elucidate why the radioligands that have 
been developed so far are of limited use. Based on our 
findings, we propose the use of non-nipecotic acid-based 
structures and the use of carboxylic acid bioisosterism 
as potential solutions for the successful development of 
GAT radioligands in the near future.

Cyclic GABA analogues as inhibitors 
and radioligands
In order to develop GAT1 radioligands, a good under-
standing of small molecular weight GAT1 binders is of 
crucial importance. Given that a plethora of GAT1 inhib-
itors have already been developed, these molecules are a 
good starting point to develop GAT1 addressing radioli-
gands. By the 1970s, it was known that cyclic analogues 
of GABA, such as nipecotic acid (4) and guvacine (5), 
can bind to the GABA binding site of GATs and func-
tion as GAT inhibitors (Fig.  3) [25, 26]. Further studies 
revealed that (R)-nipecotic acid ((R)-4) is about an order 
of magnitude more potent as GAT inhibitor than its 
enantiomer (S)-4 [27, 28]. This difference was also found 
for homo-β-proline (6) [29]. Since these initial studies 
were conducted using rat brain slices, the results could 
not be specified for each of the GAT subtypes. However, 
the later cloning of the various GAT subtypes allowed for 
the determination of more specified  IC50 values [30, 31], 
showing that these small amino acids mostly have a pref-
erence for GAT1.

Modelling studies showed that the amine and carbox-
ylic acid functionalities of GABA and the above-men-
tioned cyclic GABA analogues are necessary for efficient 
binding into the GABA binding site of GATs [32–37]. 
However, these functionalities also give rise to zwitteri-
onic behaviour, preventing these molecules from pass-
ing the blood–brain barrier (BBB) [38, 39]. Therefore, 
GABA and its (cyclic) analogues are of limited use in 
being a human biomarker. This was illustrated by early 
attempts to image the GABAergic system using 13N- and 
11C-labelled GABA ([13N]1 and [11C]1) (Fig. 4) [40, 41]. 
In later attempts, 11C-methylated nipecotic acid [11C]7 
was developed as potential GAT1 inhibitor, but also 
proved unsuccessful [42].

Table 1 Overview of GABA transporter nomenclature for various 
species

Species Nomenclature

Mouse mGAT1 mGAT2 mGAT3 mGAT4

Rat rGAT1 rBGT1 rGAT2 rGAT3

Human hGAT1 hBGT1 hGAT2 hGAT3

HUGO GAT1 BGT1 GAT2 GAT3
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Because PET imaging studies in rats showed no brain 
uptake of [11C]7 due to the reasons discussed above, 
the ester intermediate [11C]8 was tested. However, this 
molecule did not cross the rat’s BBB either. This result 
is more surprising, as previous imaging studies from 
1998 using mice show a moderate uptake of [11C]8 in 
the brain (2.5–5.5% injected dose per gram of tissue 
(ID/g)) [43]. Moreover, [11C]8 is both structurally and 
chemically related to N-[11C]methylpiperidin-4-ylpro-
pionate  ([11C]PMP, [11C]9), which is a radiotracer used 

in PET imaging of acetylcholinesterase (AchE) [44, 45]. 
A potential explanation for the latter issue could be that 
[11C]8 and [11C]9 are hydrolysed by different esterases 
due to the different attachment of the ester function-
ality. Previous research indicates indeed that [11C]8 is 
not hydrolysed by AchE, but by other carboxylesterases 
(CEs) [43]. A different expression of these esterases 
in plasma could then lead to the hydrolysis of [11C]8 
before brain entry. This would be consistent with the 
suspected hydrolysis of [18F]39 in rats (vide infra), 

Fig. 3 Structures of cyclic GABA analogues that have been used as GAT inhibitors.  pIC50 values are obtained from rat brain slices [24, 25] or using 
cloned mGAT1-4 [27]

Fig. 4 Schematic representation of the BBB permeability of small radiolabelled GABA analogues
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though further research would be required to find a 
definite answer.

Lipophilic GABA analogues as inhibitors 
and radioligands
The failed trials to image GATs using small analogues 
of GABA introduce a second requirement for a success-
ful radioligand besides docking into the GABA binding 
site: BBB permeability. While several PET tracers, such as 
6-[18F]fluoro-L-DOPA and  [18F]FDG, are able to cross the 
BBB through carrier-mediated transport [46], nipecotic 
acid-related compounds are not known to be transported 
in such a way. Therefore, transcellular diffusion seems the 
most feasible way to make GAT1 radioligands cross the 
BBB. Fortunately, several strategies to optimize key phys-
iochemical parameters in order to enhance membrane 
diffusion have been developed in medicinal chemistry. 
Lipinski’s Rule of Five, which relates membrane perme-
ability to molecular weight, lipophilicity, and hydrogen 
bonding [47], is one of the best known examples [48]. 
Adaptations and extensions of the Rule of Five for CNS 
drugs in specific have also been made, in which the exist-
ing limits were refined and more properties were added 
[49–52]. A common theme for these strategies is to 
improve the lipophilicity, which has also been done in the 
field of GAT inhibitors and radioligands.

Lipophilic N‑substituted GAT1 inhibitors
For the field of GAT inhibitors, the BBB problem was 
solved by the addition of a lipophilic moiety to the small 
amino acids described above. This lipophilic moiety 
most often has the form of an N-alkyl spacer connected 
to a biaryl system. Such a system was first reported by 
Ali et  al., who synthesized various N-(4,4-diphenyl-
3-butynyl)amino acid derivatives [28]. The resulting 

compounds, such as SKF89976A 10, were not only more 
lipophilic, but also more potent GAT inhibitors than 
their parent amino acids (Fig. 5A). Following the original 
report, several other research groups have synthesized 
similar derivatives. For example, bioisosteric replace-
ment of the phenyl rings of 10 by 2-thienyl moieties 
gave rise to tiagabine 11 [21–23], which is currently the 
only approved drug targeting GAT1. Other well-known 
GAT1 inhibitors include the guvacine analogues NNC-
711 12 [53] and Cl-966 13 [54] exhibiting an oxime and 
ether spacer. All these compounds are more potent as 
GAT1 inhibitor than their parent amino acids (compare 
Fig.  5A and Fig.  3 for mGAT1). Modelling studies sug-
gest that further interactions between the lipophilic tail 
and hydrophobic regions of the GAT could give rise to 
this increased potency [35, 36, 55]. Modelling studies also 
allowed for the development and validation of a pharma-
cophore model of lipophilic GAT inhibitors (Fig. 5B) [56]. 
This pharmacophore model includes three features: an 
amino acid region with the acidic centre A and the basic 
centre B and a lipophilic region with the diaryl centre C, 
which is connected by a linker. By investigating several 
known GAT inhibitors, the distances between the phar-
macophore features were found to be within the follow-
ing range: a = 3.9–5.6 Å, b = 3.8–7.8 Å, c = 3.4–9.7 Å, and 
∠ABC = 42°–147°

Based on the success of these second-generation 
GAT1 inhibitors, further selective and potent inhibitors 
have been developed over the last two decades [57–59]. 
An overview of these lipophilic GAT1 inhibitors is pre-
sented in Additional file 1: Tables S1–S7. Wanner and co-
workers published several studies and, to the best of our 
knowledge, developed the most potent GAT1 inhibitor to 
date. Their compound, DDPM-2571 14, is an NNC-711 
derivative that was found after the screening of oxime 

Fig. 5 A Structures of GAT1 inhibitors SKF89976A 10, tiagabine 11, NNC-711 12, and Cl-966 13.  pIC50 values are obtained using cloned hGAT1 [57] 
or mGAT1 [27]. B Graphical representation of the pharmacophore model of GAT inhibitors
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libraries using MS binding assays (Fig.  6) [60]. In  vivo 
studies showed that this inhibitor was effective in the 
prevention of induced seizures in mouse models [61], 
though no further in  vivo testing has been performed 
afterwards. Compound 15, the GAT1 inhibitor with the 
highest affinity, is part of an analogous series of nipecotic 
acid derivatives that has been synthesized by the same 
research group [62]. The group of Wanner has also devel-
oped potent GAT1 inhibitors with carbon linkers, for 
which they found that inhibitors with alkyne linkers and 
a biphenyl moiety have the highest potency [63]. Opti-
mization of the linker revealed that a  C4 linker has the 
optimal length and that compounds with an alkyne linker 
have a higher potency than analogous inhibitors with an 
alkene linker [64]. Substitution of the terminal aryl group 
then afforded compounds such as 16 and 17 with poten-
cies in the same range than those of the above-mentioned 
oxime series without this potentially labile functionality.

Synthesis of lipophilic GAT1 radioligands
Using the more efficient lipophilic GAT1 inhibitors 
as starting point, several attempts have been made to 
synthesize a viable GAT1 radioligand based on these 
inhibitors. While the biological evaluations of these 
radioligands are summarized in  the section "Biologi-
cal evaluation of GAT radioligands", their synthesis is 
outlined in the next two sections. The first radioligands, 
radiolabelled Cl-966 derivatives [18F]24a-c, were synthe-
sized by Kilbourn et al. in 1990 through a rather lengthy 
radiosynthesis (Scheme  1) [65]. For radioligands 
[18F]24a-b, the radiosynthesis started from the aryltri-
methylammonium triflate precursors 19a-b, which were 
obtained from the acyl chlorides 18a-b [66, 67]. On the 
other hand, the synthesis of compound [18F]24c was 

started from brominated precursor 19c. Following nucle-
ophilic fluorination, a reduction and chlorination were 
performed to access intermediates [18F]22a-c. These 
intermediates were subsequently reacted with the ethyl 
ester of N-(2-hydroxylethyl)nipecotic acid to afford the 
radioligands [18F]24a-c after deprotection of the ester 
functionality.

A few years later Le Bars et  al. reported the syn-
thesis of the 11C-labelled lipophilic GABA derivative 
[11C]27 [68], based on their promising results using the 
non-labelled derivative as GABA uptake inhibitor [69] 
(Scheme  2A). The radiolabelled analogue was obtained 
through methylation of N-diphenylbutenyl GABA 26, 
for which the synthesis has been reported by Ali et  al. 
[28]. Another 11C-labelled radioligand has been reported 
by Vandersteene et  al. [70]. Their compound [11C]31 is 
a  [11C]methoxy-labelled analogue of the GAT1 inhibi-
tor SKF89976A. Starting from 4-hydroxybenzophenone 
(28), the phenol precursor 29 was obtained in four steps 
(Scheme  2B) [71]. The radioligand [11C]31 was then 
synthesized through a methylation reaction using  [11C]
methyl iodide followed by deprotection of the ester func-
tionality in alkaline conditions.

Furthermore, 125I-labelled CIPCA [125I]33 has been 
synthesized by Van Dort et al. (Scheme 3A) [72]. In their 
approach, CIPCA 33 was obtained from 4-iodobenzoyl 
chloride (32) in six steps. Afterwards, [125I]33 was synthe-
sized through a solid state isotopic exchange in a 34% radi-
ochemical yield (RCY). In a more recent trial, tiagabine 11 
was successfully labelled with 123I by Schijns et al. [73]. In 
this synthesis, tiagabine was brominated to give radiolabel-
ling precursor 34 in a 70% yield (Scheme 3B). Through a 
Cu(I)-assisted halogen exchange, the radiolabelled deriva-
tive [123I]35 was then obtained in 50% RCY.

Fig. 6 Structures of selected GAT1 inhibitors.  pIC50 and  pKi values are obtained using cloned mGAT1 [59, 61, 62]
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Lastly, Sowa et al. developed the radioligand [18F]40 
[42], which was inspired by a series of GAT1 inhibitors 
developed by Quandt et  al. [74]. These GAT1 inhibi-
tors exhibit an asymmetrical bis-aromatic residue con-
nected to the nipecotic acid core through a vinyl ether 
spacer. Optimization of the methanone-bridged com-
pounds showed that the (Z)-isomer was slightly more 
potent. Moreover, it was found that the addition of flu-
orine substituents increased the potency and selectivity 
with respect to the non-substituted derivative, leading 
to compound 36 as the most potent inhibitor of this 
series (Scheme 4). Given the electron deficient aromatic 
system, the radiolabelled derivative [18F]39 could be 
accessed through a nucleophilic aromatic substitution 
from the chlorinated precursor 38. Further deprotec-
tion of the ester functionality afforded the radioligand 
[18F]40.

Synthesis of radioligands for other GAT subtypes
As discussed earlier, efforts to develop GAT radioli-
gands have focussed on GAT1, mainly due to its high 
abundancy among the GAT subtypes and its presyn-
aptic cellular distribution. In contrast, no attempts to 
develop a radioligand for BGT1 and GAT2 have been 
reported to date. For GAT3, however, Schirrmacher 
et al. attempted to synthesize a radioligand which they 
based on GAT3 inhibitor (S)-SNAP-5114 (S)-42 [75]. 
This inhibitor was developed by Dhar et al., who found 
that the addition of a third aryl moiety to the lipophilic 
GAT1 inhibitors causes selectivity for GAT3 (Fig.  7) 
[30]. While the non-substituted trityl derivative 41 was 
more potent for GAT1, introduction of methoxy sub-
stituents on the para positions increased the affinity for 
GAT3. Further studies into the stereochemical prefer-
ences led to compound (S)-SNAP-5114 (S)-42. The 

Scheme 1 Radiosynthesis of compounds [18F]24a‑c 



Page 8 of 21Knippenberg et al. EJNMMI Research           (2023) 13:42 

radiolabelled derivative  [18F]fluoroethyl SNAP-5114 
[18F]47 was first accessed from the tosylate precursor 
44. However, the synthesis of this precursor from com-
pound 43 and subsequent labelling proved to be diffi-
cult (i.e. route A, Scheme  5) and a different approach 
using 2-[18F]fluoroethyltosylate was developed (route 
B). In this procedure, precursor 45 was reacted with 
separately synthesized  [18F]fluoroethyltosylate to give 
ester intermediate [18F]46. Subsequent hydrolysis of 

the ester protecting group afforded radioligand [18F]47 
in 70% RCY.

Biological evaluation of GAT radioligands
For most of the reported GAT radioligands, in vivo imag-
ing studies have also been conducted (Fig.  8). Prelimi-
nary results of the first reported radioligand, [18F]24a, 
indicated that the compound exhibited low brain per-
meability in mice [65]. Despite the low brain uptake, 

Scheme 2 Radiosynthesis of compounds [11C]27 (A) and [11C]31 (B)

Scheme 3 Radiosynthesis of compounds [125I]33 (A) and [123I]35 (B)
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a heterogeneous brain distribution (i.e. cortex/stria-
tum ratio of 1.44) was obtained, which is similar to  [3H]
tiagabine [76]. However, no further studies were done to 
optimize these radioligands due to, among other reasons, 
the found toxicity of Cl-966 [42, 77, 78]. Similar results 
were obtained for the structurally related 125I-labelled 
CIPCA [125I]33. Although a 123I-labelled derivative 
would be needed for clinical single-photon emission 
computerized tomography (SPECT) imaging, studies 
using [125I]33 still provided useful information on the 
brain uptake of GAT radioligands. Imaging studies in 
mice showed a low brain uptake of the radioligand (i.e. 
0.82% of the injected dose) [72]. Thyroid radioactivity 
concentrations showed < 1% in  vivo deiodination, ruling 
out this option as cause for the low brain uptake. A slight 
heterogeneous distribution (i.e. cortex/striatum ratio of 

1.2) was obtained, which is significantly lower than the 
 [3H]tiagabine ratio [76]. This might be one of the rea-
sons why no further studies to synthesize the (R)-isomer 
or the 123I-labelled analogue were conducted. Besides 
the mediocre results of the early GAT1 radioligands, the 
GAT3 radioligand [18F]47 also suffered from low brain 
uptake (0.3% ID/g) during preliminary in  vivo imaging 
studies in mice [75].

More recently, radiolabelled iodotiagabine [123I]35 has 
been synthesized. In  vivo gamma camera whole-body 
images in rodents showed that the radioligand appeared 
in the head, suggesting it had passed the BBB [20]. How-
ever, more detailed SPECT images proved that the radi-
oligand was present in the nasal mucosa or Harderian 
glands instead of the brain. The authors suggest that 
altered biophysical properties due to the addition of the 

Scheme 4 Radiosynthesis of compound [18F]40 

Fig. 7 Structures of selected GAT3 inhibitors.  pIC50 values are obtained using cloned GATs [26]. Percentages indicate the per cent inhibition at 
100 μm



Page 10 of 21Knippenberg et al. EJNMMI Research           (2023) 13:42 

iodine or possible deiodination could explain why the 
radioligand failed to enter the brain. Moreover, radio-
ligand [18F]40 was also shown to exhibit poor BBB per-
meability during initial PET imaging studies in rodents 
[42]. Repeated imaging following pretreatment with the 
P-glycoprotein (Pgp) inhibitor cyclosporine A showed 

no difference in brain uptake, indicating that the radio-
ligand [18F]40 is not a substrate for the Pgp efflux trans-
porter. Further studies using the ester [18F]39 were then 
undertaken in order to verify whether the carboxylic acid 
moiety limits the BBB permeability of [18F]40. However, 
these experiments did not show brain uptake of [18F]39 

Scheme 5 Radiosynthesis of compound [18F]47 

Fig. 8 Schematic representation of the BBB permeability of lipophilic GAT radioligands
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either. In contrast to the results in rats, PET imaging 
studies in rhesus monkeys using [18F]39 and [18F]40 
showed significant brain uptake of the ester [18F]39 
in the cortex, thalamus, striatum, and cerebellum (i.e. 
standardized uptake value (SUV) ≈ 1 after 90 min; Fig. 9). 
The authors suggest that differences in esterase expres-
sion could lead to the hydrolysis of [18F]39 in rats before 
brain entry, which would explain the different uptake of 
[18F]39 between the species.

Despite the brain uptake of ester [18F]39, it is unlikely 
that the radioligand has specific affinity for GAT1, as the 
free carboxylic acid group of the nipecotic acid moiety is 
essential for specific binding. Several studies have shown 
that nipecotic acid ester prodrugs have no affinity for 
GAT1 and require in situ hydrolysis in order to selectively 
bind to GAT1 [79–82]. Alternatively, the radioligand 
[18F]39 could behave like a prodrug and the ester could 
hydrolyse after crossing the BBB to give the carboxylic 
acid [18F]44 that binds to GAT1. While such prodrugs 
have been used for preclinical PET imaging [83, 84], they 
complicate quantitative analysis and kinetic modelling of 
imaging data. Hence, the radioligand [18F]39 is not suit-
able for the in vivo imaging of neuronal GATs.

Alternatives for nipecotic acid‑based structures
The insufficient brain uptake of the nipecotic acid-related 
radioligands discussed above and the significant brain 
uptake of ester [18F]43 seem to suggest that the unpro-
tected nipecotic acid moiety hinders the BBB permeabil-
ity. Given that several brain-penetrating PET tracers with 
free carboxylic acid moieties have been reported [85, 86], 
the presence of the carboxylic acid does not necessarily 
disqualify a molecule from passing the BBB. Rather, it 

seems that the zwitterionic nature of the nipecotic acid 
moiety causes these problems.

As shown above, the addition of lipophilic substituents 
to the nipecotic acid residue increased the BBB perme-
ability and allowed for the development of GAT1 inhibi-
tors (e.g. tiagabine) that show sufficient brain build-up to 
achieve a therapeutic effect. However, the BBB perme-
ability of lipophilic radioligands is still insufficient to vis-
ualize GATs in vivo. These findings are also in line with 
pharmacological research of tiagabine, which suggests 
that tiagabine might exhibit a slow equilibration between 
plasma and brain [87, 88]. While this is less of an issue for 
therapeutic drugs, it can thwart the rapid brain uptake 
required for imaging purposes. Altogether, the above 
observations support the idea that the direct radiolabel-
ling of GAT1 inhibitors might not be the optimal strategy 
and alternatives for such nipecotic acid-based structures 
might need to be developed.

Non‑classical GAT1 inhibitors
A potential solution to circumvent the above-mentioned 
problem would be to use non-classical GAT inhibitors 
that are not based on nipecotic acid or similar amino 
acids as a basis for developing GAT1 radioligands. 
Although less models and structure activity relationships 
have been developed for such non-classical GAT inhibi-
tors, a few classes of compounds have been explored. 
For 2-substituted 4-hydroxybutanamides, it was found 
that a benzyl substituent on the amide group, a distal 
aromatic substituent at the 2-position, and a hydrophilic 
moiety at the 4-position are crucial for their activity 
(Fig.  10) [89, 90]. However, after screening compounds 
with various linkers, aromatic systems, and different 

Fig. 9 Baseline non-human primate imaging with [18F]40 (A), [18F]39 (B), and time radioactivity curves for [18F]39 (C). Reprinted with permission 
from Sowa et al., ACS Chem. Neurosci. 2018, 9, 2767–2773. Copyright 2018 American Chemical Society
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hydrophilic functionalities at the 4-position (alcohols, 
amines, and phthalimides) no selective GAT inhibitors 
were found within this class of compounds [90–93]. Most 
of the active inhibitors display a broad inhibitory profile 
for all four GAT subtypes instead. For example, com-
pounds BM130 and BM131 48a-b are the most promis-
ing mGAT1 inhibitors within this series, but also inhibit 
mGAT2-4.

Similar problems were observed for aminomethylphe-
nols, which have also been evaluated as GAT inhibitors. 
N-alkylated derivatives like 49 were already reported 
in the early 1980s and found to inhibit neuronal GABA 
uptake and glial β-alanine uptake in vitro [94]. Full GAT 
subtype selectivity was determined in 2008 by Kragler 
et al., who found that inhibitor 49 has a broad inhibitory 
effect for all four GAT subtypes with a slight preference 
for mGAT3 [95]. Unfortunately, variations in the lipo-
philic moiety and the position of the hydroxyl group only 

had small effects, showing that it is difficult to develop 
selective GAT inhibitors within this class of compounds.

Another class of GAT inhibitors worth mention-
ing are the 4-methoxyphenylpiperidin-4-ol derivatives, 
which exhibit a modified nipecotic acid residue. How-
ever, this modification seems to eliminate the high affin-
ity for GAT1, giving inhibitors that are mainly selective 
for GAT2. NNC-05-2090 50 is the most potent GAT2 
inhibitor of this series and exhibits a more than tenfold 
selectivity over other GATs [96]. Another non-conven-
tional GAT inhibitor has been found by Timple et  al., 
who showed that the lignan(−)-hinokinin (51) acts as a 
non-competitive inhibitor of hGAT1 [97]. Unfortunately, 
this compound is not selective for GAT1 either, as it was 
found to inhibit dopamine and the norepinephrine trans-
porters as well.

As can be observed from the above overview, modifi-
cations or omissions of the nipecotic acid residue seem 

Fig. 10 Pharmacophore model of 2-substituted 4-hydroxybutanamides and structures of selected non-classical GAT inhibitors.  pIC50 and  pKi values 
are obtained using cloned mGAT1-4 or hGAT1 [90, 94–96]
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to result in GAT inhibitors that either display a broad 
inhibitory profile for all GAT subtypes or are otherwise 
not selective for GAT. Therefore, major developments 
would be necessary to develop a non-nipecotic acid-
based GAT1 inhibitor, which makes it complicated to use 
such non-classical GAT inhibitors as basis for the devel-
opment of selective GAT1 radioligands.

Bioisosteres
Besides the use of non-classical GAT1 inhibitors as basis 
for GAT1 selective radioligands, another solution to 
overcome the zwitterionic nature of the nipecotic acid 
moiety would be to use carboxylic acid bioisosteres. This 
potential solution has also been proposed by Sowa et al. 
[42]. Fortunately, several carboxylic acid bioisosteres have 
been developed and are frequently applied in medicinal 
chemistry to create structural derivatives with similar 

biological properties [98–100]. Several of these bioisos-
teres have also been applied to GABA and its analogues.

For example, Kehler et  al. synthesized phoshinic acid 
derivatives of nipecotic acid and tested those in  [3H]
GABA uptake assays (Fig.  11) [101]. It was found that 
phosphinic acid 52 shows a moderate potency about 
tenfold weaker than nipecotic acid. On the other hand, 
the methylphospinic acid derivative 53 completely killed 
the activity. Interestingly, introduction of the lipophilic 
N-(4,4-diphenyl-3-butenyl) group to afford 54 did not 
lead to an increased potency. Lipophilic phosphonic acid 
and sulphonic acid analogues of GABA 56 and 57 also 
did not show any activity for GAT1 [102], although this 
might also be due to the additional carbon in the struc-
ture after replacement of the carboxylic acid. Moreover, 
hypotaurine 58 and taurine 59 exhibiting the sulphinic 
and sulphonic acid functionalities were shown to have no 

Fig. 11 Structure of phosphinic, phosphonic, sulphinic, and sulphonic acid derivatives of GABA and nipecotic acid.  pIC50 values are obtained from 
rat brain synaptosomes (top row) [101] or from cloned mGAT1 [102] or rGAT1 [14] (middle and bottom row, respectively)
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to minimal affinity to GAT1 [14, 103]. Therefore, these 
functional groups do not seem to be a viable bioisostere 
for GAT inhibitors.

Moreover, tetrazoles have been explored as potential 
carboxylic acid bioisosteres (Fig.  12). As early as 1984, 
Schlewer et al. synthesized several tetrazole amino acids 
[104]. Inhibition of GABA uptake was tested for deriva-
tives of β-alanine, GABA, and nipecotic acid 60–62 in rat 
brain synaptosomes, but neither of them showed prom-
ising potencies  (pIC50 < 4) [105]. More recently, Schaffert 
et al. have presented several lipophilic tetrazole analogues 
of glycine in a search for novel mGAT1-mGAT4 inhibi-
tors [105]. Their parent structure 63 showed no activity 
in any of the four GAT subtypes, which is similar to gly-
cine. Interestingly, the addition of lipophilic residues to 
give monosubstituted lipophilic derivatives 64 did not 
enhance the potency. 1,5-Disubstituted tetrazole deriva-
tives also showed only marginal inhibition for mGAT1, 
although several compounds were found to act as moder-
ate inhibitors for mGAT2-4. For example, diphenylpropyl 
derivative 65 showed moderate inhibition for mGAT3 
and mGAT4. Lengthening of the alkyl chain or introduc-
tion of a double bond to give 66 and 67 also resulted in 
an inhibitory effect in mGAT2.

Muscimol 68 is another bioisosteric analogue of GABA 
with a 3-isoxazolol moiety replacing the carboxylic acid 
[106]. While muscimol and direct analogues such as 
4,5-dihydromuscimol 69 show moderate effects as GABA 
uptake inhibitors (Fig. 13) [25, 107], they are also potent 

agonists of the ionotropic GABA receptors [108, 109]. 
Therefore, these analogues are of limited use in develop-
ing selective GAT1 radioligands. Further development 
using muscimol as a lead compound led to THPO 70 
and derivatives as selective GABA uptake inhibitors after 
incorporating the amino sidechain into the ring [106]. 
While substitution of the 3-isoxazolol moiety back to a 
carboxylic acid functionality afforded the potent GAT 
inhibitor nipecotic acid, moving the amino group of 
THPO to an exocyclic position as in 71 was less effec-
tive [110]. Nevertheless, several lipophilic exo-THPO 
analogues have been synthesized exhibiting a 3-hydroxy-
isoxazol moiety as bioisosteric replacement for the car-
boxylic acid functionality [111, 112]. Despite several of 
them being selective GAT1 inhibitors (e.g. Lu-32-176B 
72 and EF1500 73), the exo-THPO moiety has also been 
shown to be zwitterionic and exhibits a low BBB perme-
ability [110].

Further studies regarding carboxylic acid bioisoster-
ism in GAT inhibitors have been reported by Sowa, who 
performed an exploratory  [3H]GABA uptake inhibition 
assay for several nipecotic acid bioisosteres [113]. These 
preliminary results (Table  2) show that ethyl nipeco-
tate 74 and THPO 70 are of limited use as bioisosteric 
replacements due to their low potency. However, in con-
trast to earlier results, the tetrazole 62 showed promising 
inhibition of GABA uptake. Unfortunately, attempts to 
synthesize this tetrazole derivative were met with prob-
lems as no satisfactory separation of the tetrazole and the 

Fig. 12 Structure of tetrazole derivatives of several amino acids.  pIC50 values are obtained from cloned mGAT1-4 [105]. Percentages represent 
specific binding remaining in the presence of 100 μm inhibitor
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3-cyanopiperidine starting material could be obtained, 
making further investigation of this bioisostere difficult. 
Instead, further focus was devoted to using thiazole 76 as 
bioisosteric replacement. In order to allow in vivo imag-
ing, this bioisostere was radiolabelled using  [11C]MeOTf, 
to give radioligand [11C]77 (Scheme  6). PET imag-
ing studies using this tracer in rats gave excellent brain 
uptake with a maximum SUV of 4. Similar results were 
obtained in rhesus monkeys, in which a maximum whole 
brain SUV of 3 was obtained. Further analysis showed 
that radioligand was mostly taken up in the striatum 
(maximum SUV ≈ 4).

Outlook and conclusion
The studies summarized in this review demonstrate 
that most attempts to create GAT radioligands have 
been unsuccessful up until now, mostly due to insuf-
ficient brain uptake. This low brain uptake is proposed 

Fig. 13 Structure of muscimol and THPO derivatives.  pIC50 values are obtained from rat brain synaptosomes [107, 110] (top row) or from cloned 
mGAT1-4 [111] (bottom row)

Table 2 Results of the preliminary screening of nipecotic acid 
bioisosteres as GAT inhibitors by Sowa [113]

Inhibition was measured using  [3H]GABA uptake inhibition assay in rat brain 
homogenate

Compound Inhibition (%) Normalized 
to tiagabine

− 3 − 10.7

− 4 − 14.3

4 14.3

9 32.1

− 6 − 21.4

Tiagabine 28 100

Scheme 6 Synthesis of radioligand [11C]77 
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to be caused by the zwitterionic nature of the nipecotic 
acid moiety. Developing GAT1 radioligands without this 
nipecotic acid moiety is difficult, because it facilitates 
binding into GAT1. Hence, no selective non-classical 
GAT1 inhibitors are available to use as a basis for GAT1 
radioligands. Therefore, further efforts should focus on 
developing strategies to increase the brain permeability 
of nipecotic acid-based compounds.

While several PET tracers, such as 6-[18F]fluoro-L-
DOPA and 2-[18F]FDG, are able to cross the BBB through 
carrier-mediated transport [46], nipecotic acid-related 
compounds are not known to be transported in such a 
way. Hence, like most current PET imaging agents, pas-
sive diffusion seems the most feasible way for GAT1 
radioligands to enter the brain [49]. In order to facilitate 
this diffusion, lipophilic moieties have been attached to 
nipecotic acid to access tiagabine and derivatives. How-
ever, radiolabelled analogues of these lipophilic GAT1 
inhibitors still show insufficient brain uptake in order to 
be useful human biomarkers. The uptake of ester [18F]39 
showed that the incorporation of a masked carboxylic 
acid moiety could be a viable strategy. These masked 

carboxylic acids are used in two strategies: prodrugs and 
bioisosteres. While prodrugs are less ideal due to diffi-
cult quantitative analysis and kinetic modelling, the use 
of carboxylic acid bioisosteres seems to be promising 
strategy. After all, a variety of carboxylic acid bioisosteres 
have been developed and as visible in the above overview 
have precedent in the field of GAT inhibitors. Moreover, 
it has been shown that thiazole [11C]76 exhibits excellent 
brain uptake, indicating that these bioisosteric replace-
ments can improve the BBB permeability significantly.

Less explored options to increase BBB permeability 
could include disruption of the BBB in order to increase 
the paracellular diffusion of radioligands [114, 115]. How-
ever, there are only limited studies available that use this 
approach to increase the BBB permeability of PET trac-
ers. Nevertheless, several studies have shown promising 
results [116]. For example, BBB disruption using focussed 
ultrasound significantly increased the brain uptake of 
 [18F]2-fluoro-2-deoxy-sorbitol [117]. Besides BBB disrup-
tion, linking the radioligand to a carrier system could also 
enable transport across the BBB by exploiting natural 
transport mechanisms [46]. Also for this option, limited 

Fig. 14 Structure of labelled transferrin receptor targeting peptides 78 and 79 
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studies on PET tracers have been conducted, making it 
difficult to achieve a fast application in the field of GAT 
radioligands. Pioneering studies synthesized several 18F 
and 68Ga-labelled transferrin receptor targeting peptides 
in order to evaluate their potential to actively transport 
small molecular weight compounds through the BBB 
(Fig.  14) [118]. Due to a difficult radiosynthesis and 
purification of the 18F-labelled analogues, only the 68Ga-
labelled NOTA and DOTA derivatives [68Ga]78 and 
[68Ga]79 were used for further experiments. In vitro cell 
uptake experiments showed that both peptides exhibit 
negligible cellular uptake. Moreover, in  vivo experi-
ments using the DOTA derivative showed an extremely 
low brain uptake of the peptide [68Ga]79, indicating that 
further development is necessary to efficiently use these 
carrier systems to increase the BBB permeability of PET 
tracers. The same can be said for nanoparticles, which 
have also been recognized as promising carrier systems 
for brain delivery of medicine and nuclear probes [119, 
120]. For example, studies showed that nanoparticles can 
be used as carrier agents to deliver molecular imaging 
dyes across the BBB for MRI applications [121]. Moreo-
ver, several efforts have been performed in the radiola-
belling of nanoparticles in order to access nanoparticle 
PET tracers [122, 123], which could serve as precedent to 
apply this technology for the development of brain-per-
meable GAT1 radioligands.

Given the little precedent of applying BBB disruption 
and carrier systems in order to develop brain-permeable 
PET tracers, there are still major challenges that need to 
be resolved. For example, in the case of carrier systems 
the potential loss of binding affinity of the imaging agents 
is a remaining risk. Therefore, the use of BBB disruption 
or carrier systems could work as a long-term solution 
in order to improve the BBB permeability of the GAT1 
radioligands. The use of carboxylic acid bioisosteres 
could lead to a faster solution given the more extensive 
use of these masked carboxylic acids in the field of GAT1 
inhibitors.

Taken together, the proposed strategies to increase 
the BBB permeability in combination with the increased 
knowledge on small molecular weight binders for GAT1 
could lead to the development of more successful GAT1 
radioligands in the future.
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