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Abstract 

Background The determination of pathological grading has a guiding significance for the treatment of pancreatic 
ductal adenocarcinoma (PDAC) patients. However, there is a lack of an accurate and safe method to obtain pathologi-
cal grading before surgery. The aim of this study is to develop a deep learning (DL) model based on 18F-fluorodeoxy-
glucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) for a fully automatic prediction of 
preoperative pathological grading of pancreatic cancer.

Methods A total of 370 PDAC patients from January 2016 to September 2021 were collected retrospectively. All 
patients underwent 18F-FDG-PET/CT examination before surgery and obtained pathological results after surgery. A 
DL model for pancreatic cancer lesion segmentation was first developed using 100 of these cases and applied to the 
remaining cases to obtain lesion regions. After that, all patients were divided into training set, validation set, and test 
set according to the ratio of 5:1:1. A predictive model of pancreatic cancer pathological grade was developed using 
the features computed from the lesion regions obtained by the lesion segmentation model and key clinical character-
istics of the patients. Finally, the stability of the model was verified by sevenfold cross-validation.

Results The Dice score of the developed PET/CT-based tumor segmentation model for PDAC was 0.89. The area 
under curve (AUC) of the PET/CT-based DL model developed on the basis of the segmentation model was 0.74, 
with an accuracy, sensitivity, and specificity of 0.72, 0.73, and 0.72, respectively. After integrating key clinical data, 
the AUC of the model improved to 0.77, with its accuracy, sensitivity, and specificity boosted to 0.75, 0.77, and 0.73, 
respectively.

Conclusion To the best of our knowledge, this is the first deep learning model to end-to-end predict the pathologi-
cal grading of PDAC in a fully automatic manner, which is expected to improve clinical decision-making.
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Background
Pancreatic cancer is a common malignancy and is 
the fourth most deadly cancer in the world [1], killing 
approximately 480,000 people worldwide each year. In 
the next decade, pancreatic cancer is likely to become the 
second leading cause of death [2]. Surgery is currently the 
only treatment that may cure pancreatic cancer. Statistics 
show [3] that 10% of patients with indications for surgical 
resection have a 5-year survival rate of 24.6% (and 2.9%) 
for patients who have (and have not) undergone pancre-
atic ductal adenocarcinoma (PDAC) resection in Stage I.

Predicting pathological grading of PDAC is an impor-
tant part of the diagnosis and treatment of PDAC. Patho-
logical differentiation of PDAC helps assess the extent, 
depth, and metastatic status of pancreatic cancer, which 
is an important basis for determining the best treatment 
plan and predicting prognosis. It plays an important role 
in guiding surgery and corresponding adjuvant therapy 
for precise individualized treatment. A study by Golan 
et  al. showed that well-differentiated PDAC was associ-
ated with long-term survival after surgery [4]. In contrast, 
poor differentiation is an independent prognostic fac-
tor affecting overall survival [5]. For patients with poorly 
differentiated PDAC, neoadjuvant therapy may pro-
vide longer survival than direct surgery [6–8]. The only 
method currently available to determine PDAC grading 
preoperatively is ultrasound or computed tomography 
(CT)-guided puncture biopsy. Tumor tissue columns 
obtained in this manner do not reliably reflect the struc-
tural features of the entire lesion due to their high het-
erogeneity [9]. A study by Larghi et  al. showed that the 
preoperative grading of Endoscopic ultrasound-guided 
fine-needle biopsy (EUS-FNB) had an accuracy of 56%, 
sensitivity of 41%, and specificity of 78% [10]. Therefore, 
a safe and accurate preoperative method for determining 
the degree of differentiation of PDAC is needed.

The determination of the pathological grading of PDAC 
relies on pathological slices as pathological examination 
is the gold standard for diagnosing the disease. How-
ever, since pathological tissue is obtained through inva-
sive puncture or surgery, the pathological results have 
a pronounced lag. At present, the diagnosis of PDAC 
is frequently conducted through noninvasive medical 
imaging techniques, including CT scans, magnetic reso-
nance imaging (MRI), and positron emission tomography 
(PET). These methods enable quicker diagnostic results. 
However, due to low image resolution, the information 
in medical images is not as clear as that in pathological 
slices. Also, the variations in equipment and operator 

lead to unstable imaging results, or at least not as stable 
as pathological examination. Therefore, how to automati-
cally predict the pathological grading of PDAC through 
imaging data is a challenging task. In this paper, we 
attempt to bridge this gap.

At present, some researchers have made some useful 
explorations. Vincent et  al. [11] found an inverse cor-
relation between apparent diffusion coefficient (ADC) 
and SUV while only ADCmin was significantly corre-
lated with tumor grade in PDAC patients. Xing et al. [12] 
used machine learning to establish a predictive model 
based on PET/CT imaging features, which divided PDAC 
patients into grade 1 and Grade 2/3 groups, with an AUC 
of 0.994 in the training set and 0.921 in the validation set. 
Deep learning is a machine learning method that auto-
matically learns features and classifies through the design 
and use of multi-layer networks [13, 14]. In recent years, 
deep learning has been widely applied in medical image 
analysis, including PET/CT image analysis [15]. PET/CT 
is a whole-body functional imaging examination, which 
reflects the malignancy or benignity of lesions through 
the metabolic activity of cells. Wang et al. [16] studied the 
use of deep learning models to segment lung cancer in 
PET/CT images and achieved a high accuracy [12]. Chao 
et  al. [17] used a dual-energy CT-based deep learning 
radiomics model to classify PDAC’s lymph node metasta-
sis (LNM) status, and the model’s AUC was 0.87.

These studies indicate that deep learning models based 
on PET/CT have a high accuracy and sensitivity. How-
ever, current research on pathological grading of PDAC 
is still limited. Therefore, our goal is to establish a fully 
automated deep learning model based on 18F-fluorodeox-
yglucose (18F-FDG)-PET/CT for predicting preoperative 
pathological grading of PDAC.

Materials and methods
Figure  1 presents the schematic workflow of the pro-
posed deep learning (DL) model based on PET/CT for 
pathological grading of patients with PDAC, which con-
sists of multiple processing stages. Below, we elaborate 
the details related to the workflow, starting with study 
population, image labeling, model construction, and 
finally model testing.

Study population
Patients who underwent pancreatic surgery at the PLA 
General Hospital from January 2016 to September 2021 
and obtained pathological confirmation of PDAC were 
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collected and included in the study according to the 
inclusion and exclusion criteria, and 370 patients were 
finally included.

Inclusion criteria: (i) PDAC was pathologically con-
firmed by radical pancreatic resection; (ii) PDAC was 
confirmed by pathological biopsy of non-radical pancre-
atic surgery; (iii) PET/CT of the pancreas was performed 
within 1  month before surgery. Exclusion criteria: (i) 
patients had adjuvant treatment such as radiotherapy, 
chemotherapy and intervention before surgery; (ii) PET/
CT images were of poor quality (tumor and borders could 
not be distinguished with the naked eye or there were 
artifacts interfering) and could not be used to analyze 
patients; (iii) other malignant tumors were combined; (iv) 
pathological findings and images could not correspond. 
Clinical data such as a patient’s age, gender, preoperative 
CA199 level, tumor location, tumor size (long and short 
diameter) on PET/CT images, and SUVmax values were 
also collected.

PET‑CT image labeling process
Supplementary Method 1.1 provides detailed informa-
tion about the PET/CT scanning protocol. The regions 
of abnormal 18F-FDG uptake on PET and density 
abnormality on CT are localized as the lesion region as 
follows. After the PET/CT image fusion is completed, 
two experienced PET/CT diagnostic physicians use 3D 
slicers (version 5.1.0, https:// www. slicer. org) software 
with a threshold of 40% SUVmax to draw out the ROI 

(Region of Interest) of the target lesion, and all discrep-
ancies are confirmed through discussion. All images 
were analyzed by two senior nuclear medicine experts 
(each with over 5 years of experience in PET interpre-
tation). The analysis included aspects such as tumor 
lesion location, size, standard uptake value (SUVmax), 
relationship with surrounding tissues, liver mean 
standard uptake value (SUVmean), SUVR (tumor-to-
normal liver standard uptake value ratio, SUVmax of 
the tumor /SUVmean of the normal liver parenchyma), 
presence of lymph node metastasis, presence of distant 
metastasis, and observations under various sequences.

The patients’ 18F-FDG PET/CT scans were obtained 
from three different machines. Consequently, measure-
ments of metabolic parameters may exhibit variations 
due to differences in machine design and scintillation 
detectors [18–20]. We cannot exclude that such differ-
ences may have at least in part confounded SUVmax 
measurements. To address this problem, we retro-
spectively calculated the mean SUV values of hepatic 
parenchyma in 370 patients with original PET/CT 
images (GE Discovery VCT, n = 161; Siemens Biog-
raphy 64 PET/CT, n = 166; uMI 510 PET/CT, n = 43). 
To measure normal liver parenchyma activity, 3 non-
overlapping spherical 1-cm3-sized VOIs were drawn in 
the normal liver on the axial PET images. There were 
no significant differences in terms of SUVmean-liver 
among the 3 PET/CT scanners (GE Discovery VCT, 
2.30 ± 0.48 vs. Siemens Biograph 64, 2.28 ± 0.38 vs. uMI 

Fig. 1 The workflow of DL model based on PET/CT for pathological grading of patients with pancreatic ductal adenocarcinoma (PDAC)

https://www.slicer.org
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510, 2.35 ± 0.29, respectively; F = 0.407, p = 0.666, vari-
ance analysis).

Constructing the lesion segmentation model
The whole process of building the deep model for lesion 
segmentation is shown in Fig. 1A. 100 cases of annotated 
PET/CT images of pancreatic cancer were input into the 
segmentation model for training.

The PET-CT images were first pre-processed: (a) Win-
dow width and window level (350, 40) were applied to 
intercept the gray value; (b). Each pair of 3D CT series 
(512*512*HCT) and 3D PET series (of size 96*96*HPET, 
128*128*HPET, 168*168*HPET, 170*170*HPET) were uni-
formly resized to 256*256*HPET; (c) For each slice, the 
gray scale was normalized [0,1]; (d) 3 PET slices and 3 CT 
slices centered around the corresponding location form a 
6-channel input to the model.

Model construction: The 6-channel input has a PET 
part and a CT part, each fed into a 2D-Unet network 
branch with no shared parameters. The feature vectors of 
the two 2D-Unets are then concatenated to pass through 
convolutions, which output the final lesion segmentation 
mask (Additional file  1: Fig.S1.). We employed a batch 
size of 8 and early stopping for choosing the best training 
step. The learning rate was set to 1 ×  10–5, and the param-
eters were updated using the Adam optimiser.

Post-processing the segmentation result: (a) All slices 
in a patient case were predicted and combined into a 
complete 3D mask; (b) A pre-trained nnUnet [21] model 
of organ segmentation was loaded to provide a coarse 
segmentation of the abdominal organs. The predicted 
segmentation of nnUnet gave the location of pancreas. 
It was used to reduce the wrong segmentation in other 
organs when fused with the pancreatic tumor segmen-
tation results from 2D-Unettumor; (c) Medical image 
analysis techniques including erosion, expansion, and 
SUVmax 40% threshold segmentation are further applied 
to obtain the final lesion segmentation results.

Building PDAC pathological grade classification models
Due to the low prevalence of pathological samples with 
extreme pathological differentiation grades in the clinic, 
the grades with few samples were merged in this study 
and all samples were set to two predictive labels: low 
grade or high grade. Highly, moderate-highly, and mod-
erately differentiated pathologies were defined as low 
grade; undifferentiated, lowly, and moderate-lowly differ-
entiated were defined as high grade (Additional file 1: Fig. 
S2.). This is similar to the classification method of Wasif 
and Rochefort et al. [22, 23]

According to the segmentation result, the lesion 
regions were cropped out of the 3D data of PET, CT, 
and segmentation Mask, respectively, and three aligned 

copies of size 64*64*16 (length*width*height) were 
obtained. The CT data were intercepted with a window 
width and window level (350, 40) and normalized to [0,1], 
and the PET data were normalized to [0,1]. The PET/CT, 
cropped according to segmentation mask, were concat-
enated in the channel dimension to obtain a tensor of size 
2*64*64*16 (number_of_channels*length*width*height). 
The tensor was fed into a Unet3D-based Encoder to 
extract image feature vectors as shown in Fig.  1B. The 
overall network model structure diagram is provided in 
Additional file 1: Fig. S3.

Cases with clinical data missing ratios greater than 20% 
were excluded from our study. A total of 21 clinical vari-
ables were collected to build predictive models based on 
clinical experience and literature reports. Subsequently, 
the individual clinical data were analyzed for significance 
using the Random Forest method (Additional file 1: Fig.
S4.). Eleven important clinical characteristics including 
age, BMI, SUVmax, ALT, AST, total bilirubin, direct bili-
rubin, blood glucose, CEA, CA125 and CA199 were kept. 
Finally, the clinical data feature vectors were extracted 
using the MLP through the multi-layer perceptron. The 
part was shown in Fig. 1C, D.

Both image features and clinical data features can 
be used to obtain prediction results for their respec-
tive modalities through the fully connected (FC) layer. 
To obtain better prediction performance, we replaced 
the last FC layer with a TMC (Trusted Multi-view Clas-
sification) [24] to integrate image features and clinical 
data features and constructed a PET/CT + Clinical data 
model. TMC is a new multi-view classification algorithm 
that dynamically integrates different views at an evidence 
level to promote classification reliability by considering 
evidence from each view (Additional file 1: Method 1.2). 
The learning rate was set to 1 ×  10–5, and the parameters 
in the feature extractor were updated using the Adam 
optimiser.

Sevenfold cross‑validation for model testing
We used a sevenfold cross-validation to better evaluate 
the generalization ability of the model. This is shown in 
Fig.  2. We divided 370 patients into 7 folds, of which 5 
folds were the training set for the model in each training 
round, onefold was the internal validation set and one-
fold was used as the test set to test the final performance 
of the model. The next round was trained by changing the 
order of the training, validation and test folds. The final 
model is obtained by averaging the results of the 7 folds.

Statistical analysis
The clinical data were statistically processed using 
SPSS 22.0 statistical analysis software: normally distrib-
uted measures were expressed as x ± s and comparisons 
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between groups were made using the student-t test. 
Skewed measures were expressed as median (range), and 
comparisons of count data were made using the X^2 test 
or Fisher’s exact probability method.

Dice score was used to evaluate the pancreatic lesion 
segmentation model. Accuracy, sensitivity, and specificity 
of the test dataset results were calculated using receiver 
operator characteristic curve (ROC) for the classification 
models. p values less than 0.05 were considered statisti-
cally significant.

Results
Patient baseline characteristics
From January 2016 to September 2021, 613 consecutive 
patients with PDAC were retrospectively recruited to our 
cancer center. Of these, 370 patients (164 women and 206 
men; mean age 60.08 ± 9.36 years) were finally screened. 
These patients were divided into two cohorts based on 
pathological grading. There were 190 cases in the LG 
group and 180 cases in the HG group. Table  1 summa-
rizes the baseline characteristics of the patients in the LG 
and HG groups.

No significant differences in clinical characteristics 
were observed between these two cohorts. Alcohol con-
sumption rates were 24.0% (45/190) and 33.3% (60/180), 
respectively, with a significant difference between the two 
cohorts (p = 0.04). A total of 21.0% (39 out of 190) of the 
LG group and 30% (87 out of 180) of the HG group had 
significant weight loss, with a statistically significant dif-
ference between the two groups (p = 0.015).

All PET/CT parameters were independently reviewed 
and assessed by two experienced PET/CT diagnosticians. 
The median value of SUVmax was 5.75 (2.2–36.0) in the 
LG group and 7.5 (3.2–31.1) in the HG group, with a sta-
tistically significant difference between the two groups 
(p = 0.001). There was no significant difference in liver 
SUVmean between the LG group and the HG group (2.30 
vs. 2.30, p = 0.974). However, the comparison of SUVR 
between the two groups (2.74 vs. 3.48, p = 0.003) demon-
strated a high level of consistency with the comparison of 
SUVmax between the groups, revealing a statistically sig-
nificant difference. Tumors in the HG group were more 
likely to be found in the head and neck of the pancreas 
than in the LG group 67% versus 54% (p = 0.01), a sta-
tistically significant difference between the two groups. 
In laboratory tests, total and direct bilirubin levels were 
lower in the LG group than in the HG group (12.4 vs. 
15.7, p = 0.007; 4.4 vs. 4.9, p = 0.037), with a statistically 
significant difference between the two groups. SUVmax 
is considerably influenced by blood glucose levels at the 
time of imaging; however, no statistically significant dif-
ference was observed in blood sugar levels between the 
LG and HG groups (5.97 vs. 5.48, p = 0.162). In terms of 
tumor marker detection, the LG group had lower lev-
els of CA-125 and CA199 than the HG group (14.46 vs. 
18.96, p = 0.004; 170.25 vs. 229, p = 0.027).

Performance of lesion segmentation model
The Dice score for the lesion segmentation Unet 
model in Additional file  1: Table  S1 is 0.72. The Dice 

Fig. 2 Sevenfold cross-validation model
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score for Unet prediction with guidance of organ loca-
tion (Unet + OL) was increased to 0.76 with the addi-
tion of nnUnet-based organ segmentation. The Dice 
score for Unet + OL prediction with post-processing 
(Unet + OLP), which is Unet + OL with the addition of 
post-processing such as erosion, expansion, and thresh-
old segmentation, was improved to 0.89. It is a signifi-
cant advantage compared to the Unet and Unet + OL 
models. As shown in Fig.  3, in the three validated 
cases, the region of lesions output by Unet + OLP was 
closer to the Ground Truth (GT) labeling than that of 
Unet + OL.

Performance of PDAC pathological grade classification 
model
Regarding testing performance, Fig.  4 shows that the 
AUC of the clinical data model was 0.95 in the training 
cohort, 0.68 in the validation cohort and 0.68 in the test 
cohort, while the AUC of the PET/CT model was 0.99 
in the training cohort, 0.72 in the validation cohort and 
0.74 in the test cohort, better than the clinical model. In 
order to improve the efficacy and accuracy of the model, 
we combined the clinical model with the PET/CT DL 
model to build a PET/CT + Clinical data model. The 
AUC of the PET/CT + Clinical data model reached 0.99, 

Table 1 Baseline characteristics of patients

a Data in parentheses are the interquartile range

BMI, Body Mass Index; ALT, alanine aminotransferase; AST, aspartate amino transferase; CEA, Carcinoma Embryonic Antigen; CA 125, carbohydrate antigen 125; CA 
199, carbohydrate antigen 199

Variable Low grade (n = 190) High grade (n = 180) p value

Demographics

Age (years), mean ± SD 59.90 ± 9.22 60.28 ± 9.52 0.698

Gender 0.066

 Female 93 (49%) 71 (39%)

 Male 97 (51%) 109 (61%)

BMIa 23.4 (21.47–25.9) 23.44 (22.03–25.13) 0.449

Smoke 59 (31%) 60 (33%) 0.639

Drink alcohol 45 (24%) 60 (33%) 0.04

Abdominal discomfort 88 (46%) 99 (55%) 0.095

Weight loss(> 5 kg) 39 (21%) 57 (30%) 0.015

PET/CT parameters

Tumor size (mm)a

 Max 31.5 (26.0–45.0) 31 (27.0–42.0) 0.728

 Min 26 (20.0–35.5) 25 (19.5–33.0) 0.254

Tumor  SUVmaxa 5.75 (4.4–7.95) 7.5 (5.6–9.6) 0.001

Liver SUVmean 2.30 (2.02–2.54) 2.30 (2.02–2.54) 0.974

SUVR 2.74 (1.60–3.01) 3.48 (2.27–4.11) 0.003

Location 0.01

 Head–neck 103 (54%) 121 (67%)

 Body–tail 87 (46%) 59 (33%)

Pathological report

Neuroaggression 113 (59%) 109 (61%) 0.832

Cancer embolus 15 (8%) 38 (21%) 0.001

Lymph node metastasis 58 (31%) 58 (32%) 0.834

Laboratory findingsa

ALT(U/L) 22.2 (11.5–58.7) 17.2 (13.2–98.5) 0.159

AST(U/L) 17.70 (13.5–49.3) 18.75 (13.5–50.8) 0.369

Total bilirubin(umol/L) 12.4 (8.7–18.6) 15.7 (8.7–32.7) 0.007

Direct bilirubin(umol/L) 4.4 (2.9–8.8) 4.9 (2.7–20.5) 0.037

Glucose (mmol/L) 5.97 (5.2–7.0) 5.48 (4.8–6.9) 0.162

CEA (μg/L) 2.77 (1.8–5.0) 3.02 (2.0–4.7) 0.325

CA125(U/mL) 14.46 (8.7–25.4) 18.96 (11.7–34.7) 0.004

CA199(U/mL) 170.25 (47.8–611.2) 229 (70.5–738.4) 0.027
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0.74, and 0.77 in the training, validation, and test cohorts, 
respectively.

It is shown in Table 2 that the accuracy, sensitivity, and 
specificity of the PET/CT model were 72%, 73%, and 
72%, respectively. The accuracy, sensitivity, and specific-
ity of the clinical data model were 66%, 67%, and 66%, 
respectively. The accuracy, sensitivity, and specificity of 
PET/CT + Clinical data model were 75%, 77%, and 73%, 
respectively. The model that integrates both image and 
clinical data achieved the best performance.

In Table  3, we present the statistical analysis of AUC 
and ACC between different models. In the test set, the 
PET/CT + clinical model’s AUC had a p value of 0.008 
compared to the PET/CT model and a p value of 0.001 
compared to the clinical data model, both demonstrat-
ing statistical significance. The ACC comparison for the 
PET/CT + clinical model yielded a p value of 0.001 when 
compared to the clinical data model, also indicating a sta-
tistically significant difference.

Discussion
The aim of this retrospective study was to create a deep 
learning model based on PET/CT scans that could auto-
matically analyze images without requiring manual inter-
vention. The model was designed to categorize PDAC 
patients into LG and HG groups based on pathological 
grading. The final model achieved an AUC of 0.77, accu-
racy of 0.75, sensitivity of 0.77, and specificity of 0.73. As 
far as we know, this study is the first to use deep learning 
techniques to predict PDAC pathological grading, which 
provides a foundation for future research in this area.

Currently, research on deep learning models for PDAC 
mainly focuses on the disease’s differential diagnosis, pre-
operative staging, and prognostic analysis. Wei et al. [25] 
used a combination of machine learning and deep learn-
ing algorithms to extract features from PET/CT images 
to predict the difference between PDAC and autoim-
mune pancreatitis, developing a multi-domain fusion 
model with an overall performance of AUC, accuracy, 
sensitivity, and specificity of 0.96, 0.90, 0.88, and 0.93, 
respectively. Bian et  al. [26] developed and validated 
an automated preoperative AI algorithm for tumor and 
lymph node segmentation in CT imaging to predict LN 
metastasis in PDAC patients. Lee et  al. [27] developed 
a deep learning model based on clinical data to predict 
postoperative survival in pancreatic cancer patients. The 
model’s performance in predicting 2-year overall sur-
vival (OS) was comparable to AJCC (AUC, 0.67; p = 0.35), 
and it was better than AJCC in predicting 1-year recur-
rence free survival (AUC, 0.54; p = 0.049). Yao et al. [28] 
employed deep learning to examine preoperative multi-
phase CT scans, developing image-based biomarkers for 
predicting overall survival in PDAC patients. These bio-
markers can be utilized to forecast the overall survival of 
patients with resectable PDAC.

Research has found that the pathological grade of 
PDAC is largely determined by the fibrous matrix qual-
ity in its stroma. Tumors with lower differentiation have 
more fibrous matrix and occupy more of the contrast 
agent [29]. This provides a principle for pathological 
grading of PDAC through imaging studies. For example, 
Tikhonova et al. [30] used a machine learning algorithm 

Fig. 3 Compare the output of different segmentation models (Unet + OL: direct Unet prediction with guidance of organ location; Unet + OLP: 
Unet + OL prediction with post-processing; GT: Ground Truth)
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to establish a diagnostic model for image-based PDAC 
grading based on preoperative CT, using data from 91 
patients to establish a diagnostic model. The AUC for 

pathological grading ≥ 2 (or 3) was 0.75 (or 0.66). Na 
et al. [29] developed and validated a radiological feature 
based on contrast-enhanced computed tomography for 

Fig. 4 Receiver operating characteristic (ROC) curve comparison among different models for predicting the pathological grade of PDAC

Table 2 The performance comparison of different models

AUC, area under receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive 
value

Models Cohorts AUC ACC SENS SPEC PPV NPV

PET/CT Train 0.99 0.97 0.97 0.97 0.97 0.96

Val 0.72 0.73 0.72 0.74 0.75 0.70

Test 0.74 0.72 0.73 0.72 0.72 0.72

Clinical Train 0.95 0.91 0.90 0.91 0.92 0.89

Val 0.68 0.67 0.66 0.69 0.75 0.59

Test 0.68 0.66 0.67 0.66 0.69 0.63

PET/CT + Clinical Train 0.99 0.98 0.98 0.97 0.98 0.98

Val 0.73 0.76 0.75 0.76 0.78 0.73

Test 0.77 0.75 0.77 0.73 0.73 0.76
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preoperative prediction of histological grading of PDAC, 
and the AUC of the final validation set was 0.770.

The above studies are all based on CT. PET/CT, inte-
grating PET and CT into the same device and program, 
characterizes the lesion from different aspects and 
provides metabolic information from the former and 
detailed anatomical information from the latter, which 
makes the PET/CT image to have both good clarity and 
a strong ability to distinguish between lesion tissue and 
normal tissue [31]. Some research has shown that, based 
on 102 patients with histologically confirmed PDAC, 
FDG uptake is related to the invasiveness of pancreatic 
cancer, and SUVmax is significantly related to patho-
logical grading [32]. Therefore, our goal is to unleash the 
potential of PET/CT in pathological grading of PDAC.

In this study, in order to achieve the prediction of 
fully automatic PDAC pathological grading and reduce 
the impact of confounding factors in PET/CT images 
as much as possible, we first developed a deep learning 
model for PDAC lesion segmentation. Due to the pres-
ence of FDG uptake in organs such as the liver, adrenal 
gland, small intestine, and bladder in addition to the pan-
creatic lesion, the model showed abnormal segmenta-
tion in the initial training (Additional file 1: Figure S5). In 
order to increase the accuracy of segmentation, nnUnet’s 
organ segmentation pre-trained model was added to pro-
vide a rough segmentation of abdominal organs, which 
are filtered out to enhance the performance of pancreatic 
lesion segmentation. Although nnUnet [33] is an excel-
lent image segmentation model that demonstrated good 
performance in the field of medical image segmentation, 
especially with a large amount of training images, it is 
difficult to directly obtain a good segmentation model 
due to the small number of pancreatic cancer sections 
in this study. We used a pre-trained nnUnet to predict 
the CT part to obtain pancreas segmentation [21], pre-
served the parameters of the model, and applied it to the 
target cases. The presence of tumors greatly reduced the 
segmentation results of the nnUnet model, but the pre-
liminary localization of the patient’s pancreas can still be 
obtained. The addition of nnUnet as a filter increased the 
Dice score of the model from 0.72 to 0.76. In the post-
processing, we added corrosion, expansion, SUVmax 40% 
threshold segmentation and other post-operations, and 

finally increased the Dice score to 0.86 (Additional file 1: 
Table S1.). Through these steps, the segmentation mod-
el’s performance was able to achieve an acceptable level.

In building a classification model for PET/CT images, 
to incorporate more effective information while minimiz-
ing the effect of segmentation errors, we cropped out a 
3D patch from the raw image centered around the seg-
mented mask. The accuracy of the final PET/CT-based 
classification model was 72%, sensitivity was 73%, and 
specificity was 72%.

To further boost the classification performance, we 
resorted to clinical indicators that are important for 
revealing pancreatic cancer characteristics. For example, 
CA199 is closely related to the prognosis of pancreatic 
cancer patients [34, 35]. A study found that CA199 pro-
duced by pancreatic cancer cell lines in vitro is associated 
with histological differentiation in nude mice in vivo [36]. 
Therefore, we extracted key clinical data indicators such 
as CA199 and combined them with the PET/CT model 
to optimize the prediction accuracy. In our early experi-
ment, we used fully connected layers to connect PET/
CT with the extracted clinical features and achieved a 
minor performance improvement; in some folds in cross-
validation, the combined model performed worser than 
the original PET/CT model. Therefore, in order to bet-
ter integrate the features of PET/CT and clinical data, 
we used TMC [24] to improve the reliability of classifica-
tion. This model parameterizes different data and com-
bines them based on Dempster-Shafer theory, which 
improves the reliability and robustness of the classifica-
tion model and improves the performance of the model 
(refer to Additional file  1: Method 1.2). Finally, to test 
the generalization ability of the model, we utilized sev-
enfold cross-validation. The final PET/CT + Clinical data 
model achieved an accuracy of 75%, sensitivity of 77%, 
and specificity of 73%. The deep learning model of PET/
CT + Clinical data has a significant improvement com-
pared to the traditional EUS-FNB [10] with an accuracy 
of 56% and sensitivity of 41%.

Our research has a few limitations. Firstly, our data are 
from a single center and lack external datasets for valida-
tion and evaluation. Three different scanners were used 
in our study. The measurement of metabolic parameters 
may be different due to machine parameters and 18F-FDG 
injection dose. To address this potential problem, our 
results were validated using SUVR. The results showed a 
high degree of agreement between SUVmax and SUVR. 
Additionally, using sevenfold cross-validation ensured the 
stability of the final model, which partially compensated 
for the lack of external validation sets. Secondly, all the 
data included in this study were from surgical patients, so 
the pathological differentiation was concentrated; how-
ever, the data for patients with excessive malignancy was 

Table 3 Comparison between PET/CT + Clinical model and 
other models using significance level of Delong test for methods

Cohorts AUC ACC 

PET/CT Clinical data PET/CT Clinical data

Validation cohort 0.614 0.090 0.002 0.002

Test cohort 0.008 0.001 0.162 0.001
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relatively scarce, which did not make the model to show 
more significant discriminability. Finally, this study only 
explored the relationship between imaging features and 
pathological differentiation of PDAC but did not investi-
gate the survival outcome of the patients, which is more 
concerned by patients and surgeons. Further research is 
needed to study the survival of patients.

Our developed deep learning model can automatically 
analyze PET/CT images without human intervention, 
reducing subjective errors and improving the accuracy 
and reliability of grading. It is important to note that 
deep learning models cannot completely replace profes-
sional knowledge of imaging and pathology. Before using 
deep learning models to predict pathological grading, 
professional knowledge needs to be combined for inter-
pretation and evaluation to ensure the accuracy and reli-
ability of the results. In conclusion, deep learning-based 
PET/CT has a great potential in pathological grading of 
pancreatic cancer, and more clinical studies are needed 
to prove its safety and effectiveness before deep learn-
ing models can replace traditional pathological staging 
methods.

Conclusions
To the best of our knowledge, this is the first report of 
using a DL model for preoperative prediction of PDAC 
pathological grading using PET/CT. The model’s predic-
tive performance was improved by combining features of 
PET/CT and key clinical data.
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