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Abstract

Background: In this study, pretargeted immuno-positron-emission tomography [PET] with a bispecific monoclonal
anti-carcinoembryonic antigen [CEA] (CEACAM5) × anti-hapten antibody (bispecific monoclonal antibody [bsmAb])
and a small (1.5 kD) peptide labeled with 68Ga was compared to fludeoxyglucose [18F-FDG]-PET for detecting
intraperitoneal [i.p.] CEA-expressing human colonic tumor xenografts in nude mice.

Methods: Two groups of female BALB/c nude mice were inoculated with LS174T human colonic tumor cells i.p.
One group received 5 MBq 18F-FDG, and the other received intravenous injections of the bsmAb, followed 16 h
later with 5 MBq of 68Ga-labeled peptide. One hour after the radiolabeled peptide or FDG was given, micro-PET/
computed tomography images were acquired. Thereafter, the uptake of the 68Ga or 18F in dissected tissue was
determined.

Results: Within 1 h, high uptake of the 68Ga-labeled peptide in the tumor lesions (23.4 ± 7.2% ID/g) and low
background activity levels were observed (e.g., tumor-to-intestine ratio, 58 ± 22). This resulted in a clear
visualization of all intra-abdominal tumor lesions ≥ 10 μL and even some tumors as small as 5 μL (2 mm diameter).
18F-FDG efficiently localized in the tumors (8.7 ± 3.1% ID/g) but also showed physiological uptake in various
normal tissues (e.g., tumor-to-intestine ratio, 3.9 ± 1.1).

Conclusions: Pretargeted immuno-PET with bsmAb and a 68Ga-labeled peptide could be a very sensitive imaging
method for imaging colonic cancer, disclosing occult lesions.
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Background
Colorectal cancer is a frequently diagnosed cancer type.
It is the third most common cancer in both men and
women in the Western world [1,2]. The overall 5-year
survival is 40% to 60% [3,4]. The prognosis is mainly
determined by the presence of local or distant metas-
tases, especially in the liver and peritoneum, which
occur in half of the patients. Only patients with a lim-
ited number of liver or lung metastases have a chance
for cure by extensive surgery, generally combined with
chemotherapy. However, up to half of the patients

selected for metastasectomy have inoperable disease at
laparotomy [5]. Therefore, preoperative staging for
detecting extrahepatic disease is crucial to avoid futile
major surgery [6].
Specific detection of malignant colorectal tumor

lesions could be achieved by (pretargeted) antibody-
guided radionuclide imaging. The combination of the
specificity of antibody targeting and the sensitivity of
positron-emission tomography [PET] is very promising.
Radiolabeled antibodies have been tested for the detec-
tion of several cancer types. However, imaging with
radiolabeled whole antibodies requires a relatively long
interval between injection and imaging acquisition for
adequate contrast to develop due to the slow accretion
of intact antibodies in tumors and their slow clearance

* Correspondence: r.schoffelen@nucmed.umcn.nl
1Dept. of Nuclear Medicine, Radboud University Nijmegen Medical Centre,
6500 HB, Nijmegen, 9101, The Netherlands
Full list of author information is available at the end of the article

Schoffelen et al. EJNMMI Research 2012, 2:5
http://www.ejnmmires.com/content/2/1/5

© 2012 Schoffelen et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:r.schoffelen@nucmed.umcn.nl
http://creativecommons.org/licenses/by/2.0


[7]. Pretargeting techniques were developed to improve
radioimmunotargeting of tumors [8]. A two-step pretar-
geting method using bispecific monoclonal antibodies
[bsmAb] has been developed. First, an unlabeled bsmAb
with affinity for both the tumor and a small radiolabeled
molecule is injected. When the bsmAb has cleared from
the blood and has accumulated in the tumor, a radiola-
beled and hapten-conjugated peptide that clears rapidly
from the blood and the body but is trapped in the
tumor by the anti-hapten binding arm of the bsmAb is
administered [9-11]. Such a pretargeting method allows
imaging within 1 h after the injection of the radiolabeled
peptide, with high contrast, in animal models.
Coupling two haptens together improves peptide

uptake and stability by a process known as affinity
enhancement [12]. Chelate-metal complexes, such as
DTPA-In, have been used as haptens [13].
Fludeoxyglucose [FDG]-PET/computed tomography

[CT] has an established role in the work-up of patients
with metastasized colorectal cancer and could change
patient management in > 25% of patients [14-16]. Other
clinical indications for PET scanning in patients with
colorectal cancer are the detection of disease recurrence
and characterization of undefined lesions on conven-
tional imaging [17-20]. However, since FDG is a non-
specific tracer, it also has uptake in other tissues (e.g.,
physiological uptake in the bowel and uptake in (post-
surgical) inflammatory or infectious lesions). FDG-PET
frequently causes diagnostic dilemmas in assessing peri-
toneal disease [21-24].
In the present study, we examined the sensitivity of

pretargeting with a bispecific monoclonal anti-carci-
noembryonic antigen [CEA] × antihistamine-succinyl-
glycine [HSG] antibody, TF2, and a 68Ga-labeled pep-
tide, IMP288. Pretargeted immuno-PET was compared
to 18F-FDG-PET in a preclinical orthotopic model in
mice with small, intraperitoneally growing CEA-expres-
sing colonic tumor lesions.

Methods
Pretargeting reagents TF2 and IMP288
The bsmAb, TF2, and the peptide IMP288 were pro-
vided by Immunomedics (Morris Plains, NJ, USA). The
preparation of TF2 and binding properties has pre-
viously been described [25-29]. Gel filtration chromato-
graphy showed that TF2 bound > 90% of 68Ga-IMP288
peptide. IMP288 was synthesized and purified as
described by McBride et al. [30]. IMP288 is a DOTA-
conjugated D-Tyr-D-Lys-D-Glu-D-Lys tetrapeptide in
which both lysine residues are substituted with an HSG
moiety via their ε-amino group: 7,10-tetraazacyclodode-
cane-N, N’,N″,N″’-tetraacetic acid [DOTA]-D-Tyr-D-Lys
(HSG)-D-Glu-D-Lys(HSG)-NH2.

TF2 was labeled with 125I (PerkinElmer, Waltham,
MA, USA) by the iodogen method as described pre-
viously [31] to a specific activity of 58 MBq/nmol. 125I-
labeled TF2 was purified by eluting the reaction mixture
with phosphate-buffered saline [PBS] and 0.5% w/v
bovine serum albumin [BSA] (Sigma Chemicals, Sigma-
Aldrich Corporation, St. Louis, MO, USA) on a PD-10
column (GE Healthcare Bio-Sciences AB, Uppsala, Swe-
den). IMP288 was labeled with 68Ga as described pre-
viously [32]. Radiolabeling and purification for
administration could be accomplished within 45 min.
The final product was adjusted to have a specific activity
of 20 MBq/nmol at the moment of injection. 18F-FDG
was obtained from B.V. Cyclotron VU, Amsterdam, The
Netherlands.

Quality control of the radiolabeled preparations
Radiochemical purity of the radiolabeled TF2 and
IMP288 preparations was determined as described pre-
viously [32]. In all experiments, the radiochemical purity
of 125I-TF2 and 68Ga-IMP288 preparations exceeded
95%.

Animal experiments
All studies were approved by the Institutional Animal
Welfare Committee of the Radboud University Nijme-
gen Medical Centre and conducted in accordance with
their guidelines (revised Dutch Act on Animal Experi-
mentation, 1997). Animals were accustomed to labora-
tory conditions for 1 week before use and housed in
individually ventilated isolator cages under standard
laboratory conditions (temperature, 20°C to 24°C; rela-
tive humidity, 50% to 60%; and light-dark cycle, 12 h)
with free access to animal chow and water.
Female nude BALB/c mice (6 to 8 weeks old), weigh-

ing 20 to 25 g, received an intraperitoneal injection of
0.5 mL of a suspension of 1 × 106 LS174T cells, a CEA-
expressing human colon carcinoma cell line (CCL-188;
passage 7; American Type Culture Collection, Manassas,
VA, USA). Three weeks after tumor cell inoculation,
one group of five mice was injected intravenously with
5.0 nmol TF2 (0.2 mL) labeled with a trace amount of
125I (0.4 MBq). Sixteen hours later, 68Ga-IMP288 (5
MBq/025 nmol) was administered intravenously in 0.2
mL as described previously [32]. The other group of five
mice received 5 MBq 18F-FDG intravenously [i.v.]. The
mice were fasted for 10 h before the 18F-FDG injection,
anesthetized, and kept warm at 37°C. The mice were
euthanized 1 h after the injection of 68Ga-IMP288 or
18F-FDG by CO2/O2 asphyxiation, followed by cardiac
puncture to obtain blood.
PET/CT scans of the mice were acquired 1 h after the

injection of 68Ga-IMP288 or 18F-FDG with an Inveon
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animal PET/CT scanner (Siemens Preclinical Solutions,
Erlangen, Germany) having an intrinsic spatial resolu-
tion of 1.5 mm [33]. The animals were placed in a
supine position. PET scans were acquired for 15 min,
preceded by CT scans for anatomical reference (spatial
resolution, 113 μm; 80 kV; 500 μA; exposure time, 300
ms). Scans were reconstructed using Inveon Acquisition
Workplace software (version 1.5; Siemens Preclinical
Solutions) using a three-dimensional ordered subset
expectation maximization/maximum a posteriori algo-
rithm with the following parameters: matrix, 256 × 256
× 159; pixel size, 0.43 × 0.43 × 0.8 mm3; and maximum
a posteriori prior b 0.5.
After the scans, the mice were dissected, and the

abdomen was systematically and meticulously examined
for tumors. The location of each lesion was documen-
ted, weighed, and measured, and then the activity in
each lesion was determined in a gamma counter. The
other organs of interest were weighed and counted in a
gamma counter with standards prepared from the
injected products, using appropriate energy windows for
the radionuclide of interest. The percentage of the
injected dose per gram tissue [% ID/g] was calculated.
The correlation between the weight and uptake of 125I-
TF2 as 68Ga-IMP288 per lesion was calculated.
Immunohistochemical analysis of CEA was performed

on 4-μm-thick formalin-fixed, paraffin-embedded tissue
sections. The sections were deparaffinized in xylol and
rehydrated through a graded ethanol into water series.
To block endogenous peroxidase, slides were blocked
with 3% hydrogen peroxide in phosphate buffered saline
(10 min at room temperature). Then sections were
blocked with 20% normal goat serum (Vector Labora-
tories Inc., Burlingame, USA) in 1% BSA-PBS (30 min
at room temperature [RT]). Subsequently, tumor sec-
tions were incubated with a 1:12,000 dilution of polyclo-
nal rabbit anti-CEA antibody (A0115, Dako, Glostrup,
Denmark) overnight at 4°C, followed by incubation with
a goat-anti-rabbit biotinylated secondary antibody (1/
200 in 1% BSA-PBS) (Vector Laboratories Inc., Burlin-
game, CA, USA) for 30 min at RT. Finally, avidin-bio-
tin-enzyme complex (Vector Laboratories Inc.) was
applied for 30 min at 37°C, and 3,39-diaminobenzidine
was used to develop the tumor sections. Human colon
carcinoma was used as a positive control, and substitu-
tion of the primary antibody with 1% BSA-PBS was
used as the negative control.

Analysis of the PET images
PET/CT images were scored by a blinded, independent,
experienced nuclear physician (W.O.), being asked to
record the presence of intra-abdominal tumor lesions.
When lesions were present, he was asked to draw a
region of interest [ROI] around the tumor. Each lesion

was given a number on a 1 to 3 scale that defined the
reader’s confidence that the uptake was related to a
tumor (definitely, probably, or possibly a tumor). The
imaging findings were then compared with the tumor
lesions found at dissection. The detection rates for
tumors < 10 μL and ≥ 10 μL were calculated, corre-
sponding with a sphere diameter of < 2.7 or ≥ 2.7 mm,
respectively.

Statistical analyses
Statistical analysis was performed using the SPSS soft-
ware (Chicago, IL, USA) and GraphPad Prism version
5.00 for Windows (GraphPad Software, San Diego, CA,
USA). Means and standard deviations were used to
describe continuous data, unless stated otherwise. Cor-
relations were determined using a Spearman’s correla-
tion test. The level of significance was set at p < 0.05.

Results
Tumor growth
Three weeks after the intraperitoneal injection of the
LS174T cells, the mice did not show clinical signs of
discomfort or change in body weight. At dissection, the
abdomen contained multiple solid tumor lesions (med-
ian, n = 10/mouse; range, 4 to 17). Most frequent locali-
zations were at the rectovesical pouch, the mesentery,
and the subhepatic, -splenic, and -phrenic spaces. Some
tumor nodules were adjoining in groups of two or three
lesions. Three-dimensional caliper measurements indi-
cated that the maximum diameter of the tumor lesions
varied between 1 and 15 mm (median, 5 mm), and
weights varied between 0.3 and 650 mg (median, 16
mg).

Biodistribution
The biodistribution of 125I-TF2 and 68Ga-IMP288 in the
mice is shown in Figure 1a. High uptake of the bsmAb
(3.73 ± 1.2% ID/g) and peptide (23.4 ± 7.2% ID/g) in the
tumor lesions was observed with very low accretion in
the normal organs. This resulted in high tumor-to-nor-
mal-tissue ratios of 68Ga-IMP288 (e.g., tumor-to-intes-
tine ratio, 58 ± 22; tumor-to-liver ratio, 15 ± 3).

18F-FDG localized efficiently in the tumors (8.7 ± 3.1%
ID/g; Figure 1b) but with physiological uptake in various
normal tissues and with lower tumor-to-normal tissue
ratios (e.g., tumor-to-intestine ratio, 3.9 ± 1.1; tumor-to-
liver ratio, 2.9 ± 0.5). Tumor uptake of both 125I-TF2
and 68Ga-IMP288 correlated inversely with tumor size,
as shown in Figure 2a, b (Spearman’s rho = -0.66, p <
0.05, and Spearman’s rho = -0.63, p < 0.05, respectively).

PET/CT images
Immuno-PET with TF2 and 68Ga-IMP288 resulted in a
clear delineation of the tumors. An example of a PET/
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CT image is shown in Figure 3a. It shows the cross sec-
tions through several tumor lesions. The photographs
show their localization in the abdomen as well as their
size. Apart from the activity in the bladder, very low
uptake in normal tissues was seen. Due to the highly
specific uptake in the tumor lesions and low background
concentration, the immuno-PET/CT images could even
be used to guide the localization of tumor lesions during
dissection. Tumors that were more difficult to find
macroscopically because they were localized in the

retroperitoneal cavities or posterior to the liver were
easily seen and localized on the images.
Interestingly, one lesion that was macroscopically

doubtful to be a tumor, and showing minimal uptake on
immuno-PET, had an activity concentration as low as
0.49% ID/g. This uptake level was much lower than that
of the other lesions in the same animal (range, 16.3 to
29.6% ID/g). This lesion with the low uptake was shown
by immunohistochemistry to consist > 90% of necrotic
tissue and infiltrated leukocytes, lack CEA expression,
and have only a small rim of vital tumor cells (Figure 4),
which explains its low signal on immuno-PET.

Figure 1 Biodistribution. (a) 6.0 nmol 125I-TF2 (0.37 MBq) and 0.25
nmol 68Ga-IMP288 (5 MBq) 1 h after i.v. injection of 68Ga-IMP288 in
BALB/c nude mice with intraperitoneal CEA-expressing LS174T
tumors. (b) 0.25 nmol 68Ga-IMP288 (5 MBq) and 18F-FDG (5 MBq) 1
h after i.v. injection in the BALB/c nude mice with intraperitoneal
CEA-expressing LS174T tumors. Values are given as means ±
standard deviation (n = 5).

Figure 2 Correlation between tumor uptake of 125I-TF2 (A) and
68Ga-IMP288 (B) and tumor size. (Spearman’s rho = -0.66, p <
0.05 and Spearman’s rho = -0.63, p < 0.05, respectively.)
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In contrast, it was more difficult to discriminate the
tumor lesions from other intra-abdominal structures on
the FDG-PET images because the uptake in the tumors
was only slightly higher than that in the intestines, as is
shown in Figure 3b. FDG-PET images showed physiolo-
gical uptake in the brain and the myocardium.
To illustrate the low uptake of the pretargeting pep-

tide in the background, the immuno-PET/CT and FDG-
PET/CT images of the mice without intraperitoneal
tumors, which were imaged according to the same scan-
ning protocol, are shown in Figure 3c, d. In pretargeted
immuno-PET/CT images, only a low signal in the kid-
neys was observed, whereas no uptake was observed in
the other normal organs. The FDG-PET/CT image of
the animal without abdominal tumors clearly showed
uptake in the bowel.

Sensitivity
There was a major difference in the number of detected
lesions in the immuno-PET/CT compared with the
FDG-PET/CT. Table 1 shows the number of tumors
that were correctly aligned by the independent nuclear
physician for each imaging method. For the pretargeted
immuno-PET, all tumor lesions ≥ 10 μL were detected
(100%, 23/23). A separate analysis for the smaller

lesions, < 10 μL, showed a detection rate of 20% (3/15).
The score on the probability scale was ‘definitely posi-
tive’ for 88% of the delineated lesions. In contrast, in the
FDG-PET images, the detection rate of the tumors ≥ 10
μL was only 48% (13/27). A similar small proportion of
the smaller lesions were found by FDG-PET/CT com-
pared to immuno-PET/CT (25%, 3/12). Interestingly, the
nuclear medicine physician was much less confident
about aligning the ROIs in the FDG-PET/CT images.
For none of the lesions, he scored ‘definitely positive’
and only ‘possibly positive’ for 69% (11/16).

Discussion
This study showed that pretargeted immuno-PET is a
very sensitive imaging modality to detect CEA-expres-
sing tumor lesions in an orthotopic mouse model. The
intraperitoneal tumors were clearly delineated with a
high tumor-to-background contrast, providing high sen-
sitivity: all tumor lesions ≥ 10 μL were detected with
this method at a very good confidence rate. The smallest
lesions that were detected had a volume as low as 5 to 8
μL, which is in the same range of the spatial resolution
of the dedicated animal PET scanner.
The animal model used in this study was well charac-

terized by Koppe et al [34]. The human colon carcinoma

Figure 3 Images. 3D-volume rendering of the pretargeted immuno-PET scan (a) and the FDG-PET/CT scan (b) of the BALB/c nude mice with
intraperitoneal LS174T tumors that received 6.0 nmol TF2 and 5 MBq 68Ga-IMP288 (0.25 nmol) with a 16-h interval (a) or 18F-FDG (b). The
animals were imaged 1 h after 68Ga-IMP288 or 18F-FDG injection. Digital pictures were made during dissection to localize and measure individual
tumors. On the pretargeted immuno-PET/CT images (a), all dissected tumors were very clearly distinguishable, except for the two very small
tumors (1.2 and 4.7 μL, respectively). In the FDG-PET/CT images (b), arrows are pointed at the localizations where tumors were found at
dissection, but the signal was difficult to be discriminated from the intestines. Figure 3c, d shows the PET/CT images of mice without
intraperitoneal images after TF2 and 68Ga-IMP288 injection (c) or 18F-FDG injection (d).
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Figure 4 Immunohistochemistry. Two tumor lesions dissected from the abdomen of a BALB/c nude mouse that received 68Ga-IMP288 after
pretargeting with TF2 (a). One lesion (a: left lesion) showed normal vital tumor cells on microscopic hematoxylin and eosin [HE]- and CEA-
stained images (b: HE, × 5; c: HE, × 20; and d: CEA, × 20) and high specific tumor uptake of 68Ga-IMP288 (17.7% ID/g). On the contrary, another
lesion in the same animal (a: right lesion) showed much lower tumor activity concentration (0.49% ID/g) in biodistribution and a much lower
signal on the PET/CT images. This result was explained by the HE sections and CEA-stained images showing > 90% of non-vital tumor tissue
(necrosis and infiltrated lymphocytes), lacking CEA expression (e: HE, × 5; f: HE, × 20; and g: CEA, × 20).
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cell line LS174T has a reproducible growth pattern in
BALB/c nude mice after intraperitoneal injection. Three
weeks after tumor cell inoculation, small tumor nodules
were observed in the rectovesical pouch, the mesentery,
and the subhepatic, -splenic, and -phrenic spaces. The
preclinical model mimics peritoneal disease of patients
with metastasized colorectal cancer [35,36].
In a previous imaging study, we demonstrated the fea-

sibility of pretargeted immuno-PET using 68Ga- or 18F-
labeled di-HSG peptides in mice with subcutaneous
tumors [32]. In the current study, the activity concentra-
tion of the 68Ga-labeled IMP288 in the intraperitoneal
tumors was similar to that in the subcutaneous tumors
[32,37]. In our intraperitoneal tumor model, the varia-
tion in tumor size was much wider than that in the sub-
cutaneous model. Our biodistribution results showed an
inverse relationship between tumor weight and activity
concentration. This correlation corresponds with the
findings of other investigators [38-41]. Sharkey et al.
showed specific uptake of 124I-labeled peptide after pre-
targeting with TF2 in microdisseminated human colon
cancer colonies in the lungs of nude mice. In that
model, high tumor-to-non-tumor ratios were obtained,
illustrating the excellent tumor targeting potential of the
pretargeting strategy [42].
FDG-PET/CT has shown high sensitivity and negative

predictive value in diagnosing CRC [43,44]. Therefore, it
was used in the present study as a reference method. The
imaging quality of FDG-PET in this preclinical study was
optimized by minimizing uptake of FDG in other organs
by anesthesia, fasting, and warming of the animals [45].
Its uptake in the myocardium, brain, intestines, and liver
is comparable to the clinical situation. The ratios
between normal and tumor tissues might have appeared
to be less favorable than in patients, which might have
compromised the detection of the tumors.
Based on our preclinical results, we feel that pretar-

geted immuno-PET can be of additive value in the clini-
cal setting. When staging patients with primary tumors
in the detection of eventual metastases, a highly sensi-
tive and specific imaging method is required. Further-
more, in patients to be screened prior to curative liver

metastasectomy, the disclosure of occult extrahepatic
lesions will prevent useless operations. More so,
immuno-PET can help select patients who could
undergo radioimmunotherapy. As the pretargeting sys-
tem with the DOTA-conjugated peptides is very flexible,
it can be labeled with a broad variety of radionuclides,
such as 90Y and 177Lu for pretargeted radioimmunother-
apy, or with 111In and 99 mTc for SPECT imaging. Our
preclinical results show similar biodistribution of the
111In/177Lu- or 68Ga-labeled peptide [37]. Images about
targeting known, non-biopsied lesions can confirm anti-
gen expression and accessibility of the therapeutic dose.
Information on the biodistribution and pharmacoki-
netics can help adjust treatment regimes by providing
dosimetry data. This could be used to optimize dosing
and to avoid toxicities.
For clinical application, 68Ga has some major advan-

tages. It is readily available in a nearly carrier-free state
from an in-house 68Ge/68Ga generator. IMP288-DOTA
can be stably and rapidly labeled with 68Ga. Its half-life
matches the pharmacokinetics of the peptide. In the
present study, the positron range of 68Ga (median range,
3.5 mm) might have limited image resolution. Visser et
al. [33] showed that with the intrinsic spatial resolution
(approximately 1.5 mm) of our state-of-the-art, small-
animal PET scanner, the finite positron range has
become the limiting factor for the overall spatial resolu-
tion and activity recovery in small structures imaged
with 68Ga. Combined with the partial volume effect, this
could explain the lower detection rate of the smallest
tumor lesions with pretargeted immuno-PET despite the
higher radioactivity concentration of TF2 and 68Ga-
IMP288 in the smaller tumors.
Due to the flexibility of the di-HSG peptides, the use

of other PET radionuclides for this pretargeting system
can be explored. 18F, the most widely used positron-
emitting radioisotope, would be suitable due to its short
positron range in the tissue (0.62 mm), which might
increase the image resolution. McBride and, subse-
quently, Laverman et al. developed an innovative and
rapid method for labeling peptides with 18F based on a
metal chelator [46,47]. The biodistribution and PET

Table 1 Number of tumors correctly aligned by pretargeted immuno-PET/CT and FDG-PET/CT

Pretargeted immuno-PET/CT FDG-PET/CT

Tumors > 10 μL Dissected 23 27

Detected in images 23 (100%) 13 (48%)

Tumors < 10 μL Dissected 15 12

Detected in images 3 (20%) 3 (25%)

Probability assigned by the nuclear physician Definitely positive 23 (88%) 0

Possibly positive 3 (12%) 11 (69%)

Probably positive 0 5 (31%)

Alignment and confidence rate was done by the independent nuclear physician.
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images in the subcutaneous LS174T tumors in the nude
mice showed the feasibility of this approach [32]. Trans-
lation of this preclinical imaging method to the clinical
situation will show the effect of the intrinsic resolution
of the clinical PET scanner in combination with the spa-
tial resolution of the radionuclide.

Conclusions
In summary, this study indicates that pretargeted
immuno-PET with TF2 and 68Ga-IMP288 is a specific
and sensitive method for detecting colon cancer in a
preclinical model. Further clinical trials should focus on
the diagnostic accuracy of pretargeted immuno-PET and
determine its additional value in the clinical setting.
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